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1 Introduction and problem statement

In the last few decades, loaded differential equations with boundary conditions have been studied by many
researchers [1-11]. This is because, loaded equations describe problems in optimal control, regulation of the
layer of soil water and ground moisture, and underground fluid and gas dynamics. Monographs [12,13]
contain various applications of loaded equations as a method for studying problems in mathematical
biology, mathematical physics, the theory of mathematical modeling of nonlocal processes and phe-
nomena, and the theory of elastic shells.

Various problems for loaded differential equations with integral conditions and methods for finding
their solutions are considered in [14-21]. Boundary value problems with integro-multipoint boundary
conditions have been studied by many researchers, for example, see [22,23].

In a recent article [24], the author discussed the numerical method for solving the boundary value
problem for essentially loaded differential equations based on the Dzhumabaev parametrization method
[25,26]. This is a constructive method originally developed to investigate and solve boundary value prob-
lems for ordinary differential equations. The Dzhumabaev parametrization method is based on dividing the
interval [0, T] into N parts and introducing the additional parameters. In [25], coefficient criteria were
established for the unique solvability of linear boundary value problems. An algorithm for finding their
approximate solutions was developed. The Dzhumabaev parametrization method was later extended to
boundary value problems, both linear and nonlinear, for various classes of equations. In [24], the term
essentially loaded differential equation means that the right side of the differential equation depends on the
value of the desired solution and its derivatives at given points, where the order of the derivatives is not less
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than the order of the differential part of the equation. In [24], by assuming the invertibility of the matrix
compiled through the coefficients at the values of the derivative of the desired function at load points, we
reduce the considering problem to a two-point boundary value problem for loaded differential equations.

Motivated by the research going on in this direction, in this article, we study the finding a numerical
solution to the linear boundary value problem for systems of essentially loaded differential equations with
an integro-multipoint condition of the form:

B~ AoOx + YAWIO) + O, te(©,T), M
i=1
m+1 Oms1
Y B(6) + j Cix(t)dt =d, deR", xeR. 2
j:O 90

Here, (n x n)-matrices A;(t), (i =0, m), C(t), and n-vector-function f(t) are continuous on [0, T], B
(j =0, m + 1) are constant (n x n)-matrices, and 0 = 0y < 6; <...< Oy < Opy1 = T; x| = max;_r7|x.

Let C([O, T], R") denote the space of continuous functions x : [0, T] — R" with the norm |x|; =
maxXe(o,rjlx ().

A solution to problem (1), (2) is a continuously differentiable on (0, T) function x(t) € C([0, T], R")
satisfying the system of essentially loaded differential equations (1) and the integro-multipoint condition (2).

The aim of this article is to propose a numerical implementation of the Dzhumabaev parametrization
method for solving the boundary value problem for systems of essentially loaded differential equations with
integro-multipoint condition (1), (2).

1.1 The scheme of the Dzhumabaev parametrization method

Definition 1. Problem (1), (2) is called uniquely solvable, if for any function f(t) € C([0, T], R") and vector
d € R", it has a unique solution.

The interval [0, T] is partitioned by the loading points: [0, T) = [ J™{'[6,_4, 6,).

Let C([0, T], 8, R"m+D) denote the space of function systems x[t] = (x(t), x(t), ...,Xm.1(t)), where x;:
[6;-1, 6,) — R™ are continuous on [6,_1, 6,) and have finite left-sided limits lim;_,g _ox,(t) forallr = 1, m + 1,
with the norm |Ix]-]ll, = max,_gzm1Suptefs, .00 I% (Ol

The restriction of the function x(t) to the rth subinterval [8,_1, 8,) is denoted by x,(t), i.e., x,(t) = x(t) for
t € [6,_1, 6,),r =1, m + 1, and the restriction of the function x(¢) to the rth subinterval[6,_;, 6,) is denoted by
X (t), i.e., %, (t) = x(t) fort € [6,_1, 6,),r = 1, m + 1. The problem (1), (2) is then transformed into the equiva-
lent problem:

dx, < . —_—
d_t’ = Ao(t)x + Y Ai()%(0) + f(t), te[61,6), r=Tm+1, (3)
i=1
m m+1 o,
Y B8 + Bt lim i+ Y. [ CCOX(OE = d, (%)
j=0 t—0m41-0 r=1 0 .
,lié}?o""(t) =x.1060), i=1,m, (5)

where (5) are conditions for matching the solution at the interior partition points. From conditions (5) and
the assumption of the continuity of the coefficients A;(t), (i = 0, m), it follows that the derivatives of the
solution will also be continuous at the partition points.

A solution of problem (3)-(5) is a system of functions x*[t] = (q(t), 5(t), ..., xm1(t)) €
c([o, T], 6, R™™+D) where functions x;(t), r = I, m + 1, are continuously differentiable on [6,_,, 6,),
which satisfies system (3) and conditions (4) and (5).
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Problem (1), (2), and (3)-(5) are equivalent. If a system of functions X[t] = (%(t), %(t),...,Xnm1(t)) €
C([0, T], 8, R™™*D) is a solution of problem (3)-(5), then the function X(t) defined by the equalities
X(t) = %(t), X(t) = %,(t), t € [6,.1,0,), r = T, m + 1, and X(On;1) = lim,_g,,,,_0%ms1(t) is a solution of the ori-
ginal problem (1), (2). Conversely, if x(t) is a solution of problem (1), (2), then the system of functions x[¢t] =
(a(®), xo(t), ..., Xm1(t)), where x,(t) = x(t), %(t) = X(t), t € [6,-1,6,), r =1, m + 1, and lim, g, ,, 0Xns1(t) =
X(6,41) is a solution of problem (3)—(5).

Introducing the additional parameters A, = lim;_g,_,0%(t), ¥, = lim;g,_,0%(t), r = 1, m + 1, and per-
forming a replacement of the function u,(t) = x,(t) — A, on the each interval [6,_, 6,),r = 1, m + 1, we obtain
the boundary value problem with parameters A,, r = I, m + 1:

du <
dt’ = Ao + A) + YA, + f(), telf4,6), r=Tm+1, (6)
i=1
ur(er—l) = 09 r= 1: m + 1y (7)
m m+1 o
> Bjss + Bt + Bt lim una(® + Y. [ GO0 + A)de = d, ®
20 t—6p1-0 r=1 0.
A + tlie,vn}o ui(t) = A, i=1,m, 9)
oA WO =ty T=Lm . (10)

A solution to problem (6)-(10) is a triple (A*, u*, u*[t]), with elements A* = (A, A3,...,A;:,;) € Rm+D,
W= py, i) € RO and wit] = (uf (), us(), ..., um, (1)) € C([0, T, 6, RMm+D), where u,(t) are
continuously differentiable on [6,_1, 6,), r = 1, m + 1, and satisfying the system of ordinary differential
equations (6) and conditions (7)-(10) at the A, = A;, u, = u, j=1,m + 1.

Problem (1), (2) are equivalent to problem (6)—(10). If the function x*(t) is a solution to problem (1), (2),
then the triple (A*, p*, u*[t]), where A* = (x*(8o), x*(01),...,x*(6p)), M* = (x*(6), X*(0y),...,Xx*(6y)), and
wt] = (x*(t) — x*(6o), x*(t) — x*(6y),...,x*(t) — x*(6,,)) is a solution to problem (6)—(10). Conversely, if
the triple (A, fI, fi[t]), with elements A = (4, Ay, ..., Ams1) € R"D, 0 = (L, By, ..., [,,,,) € RO, G[E] =
T (t), t(t),...,Hna(t)) € C([0, T], 8, Rm+D) is a solution to problem (6)-(10), then the function X(t)
defined by the equalities X(t) = #,(t) + At € [6,-1,6,), r =T, m + 1, and X(T) = A1 + limy_ 7—olim1(t) will
be the solution of the original problem (1), (2).

First, find the values of p;, j= 1, m + 1. By passing on the right-hand side of (6) to the limit as

t > 06,1+ 0andr =1, m + 1, and substituting the expression into (10), we obtain the system of equations
for the unknown parameters K j=1,m+ 1:

H, — ZAi(Br—l)yiﬂ = AO(erfl)Ar + f(er—l)’ r=1,m+1, (11)

i=1

that is, we can rewrite equation (11) in the following form:

G(Ou = H@O,A), u e Rm+D, (12)
Here,
-A00) A0y ... —An1(00) ~-An(6o)
I-A4(0) -40) ... -Aupa(6) -An(61)
G(O) = -A(0) I-A00) ... -Ana(0y) -An(6,)

_Al&em—l) _Azkem—l) coo I = Ap1(Ome1) —Am(Om-1)
_Al(em) _AZ(Gm) _Am—l(em) I_Am(em)

Q Q! Q0 QO ~
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where [ is the identity matrix of dimension n and O is the zero matrix of dimension n,

H(0, A) = (Hy(0, A), Hy(0, A), ..., Hn.1(0, D)),
H,(0,1) = Ao(6,- DA, + f(O,-1), r=1,m+1

Assume that the matrix G(0) is invertible. Denote by S(6) the inverse matrix G(0), i.e., S(8) = [G(O)],
where S(0) = sp (0), p, k =1, m + 1. Then from (12), we can uniquely determine u:

u=[GO)'H(, 1) = S(OYH(H, ),

i.e.,

m+1
U= Y S ilOAcO-DAk + f(O-)}, r=T,m+1. (13)
k=1
In (6), substituting the right-hand side of (13) instead of i;,,, i=1,m + 1, we obtain

m+1
= Aoy + A) + Y DA + F(t), te[f.1,6), r=T,m+1, (14)
j=1

du,
dt

where

m

Di(t) = Y Ai(O)sis1,j(Ao(6-), j=T,m+1,
i=1
m m+1

F(t)=) Y A(®)siak(0)f (Br-1) + f(D).

i=1k=1

Definition 2. The Cauchy problem (14) and (7) is called uniquely solvable, if for any A € R™™+D,
f(t) € C([0, T], R™) it has a unique solution.

Let @,(t) be a fundamental matrix of the differential equation % =Aog(t)x on[6,_1,6,],r=1,m + 1.
Then the unique solution to the Cauchy problem for the system of ordinary differential equations (14)
and (7) with the fixed values

t t m+1 t
w(t) = O(t) J D N(T)Ao(T)dTA, + D(t) I @ (1) Y, Di(1)dTA; + D(t) J & {(7)F(r)dr,
j=1

gr—l er—l gr—l (15)

telB,_1,60,), r=1,m+ 1.

As a rule, construction of fundamental matrices for the systems of ordinary differential equations with
variable coefficients fails. Therefore, later, we propose a numerical method for solving problem (1), (2).
For this purpose, we consider the Cauchy problems for ordinary differential equations on subintervals

% AWz + PM), 2(6,0)=0, tel6.46], r-Tm+L (16)

where P(t) is either (n x n) matrix, or n vector, both continuous on [6,_4, 6,], r = 1, m + 1. Consequently, the
solution to problem (16) is a square matrix or a vector of dimension n. Denote by a,(P, t) a solution to the
Cauchy problem (16). Obviously,

t
(P, £) = D(t) j OOP(r, tel61, 6], r=Lmil, )
er—l

where @,(t) is a fundamental matrix of the differential equation (16) on the rth subinterval.
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Now, taking into account (17), we can rewrite (15) in the following form:

m+1
u,(t) = a,(Ag, HA, + Z a(Dj, A + a,(F, t), te[6.4,6), r=1,m+1 (18)
j=1

Substituting the right-hand side of (18) into conditions (8) and (9), at the corresponding limit values,
we obtain the following system of linear algebraic equations with respect to parameters A,, r=1,m + 1:

m m+1
ZB]'Ai+1 + Bm+1/1m+l + Bm+1{am+l(A0’ 9m+1)/1m+1 + Z am+1(Dj: 9m+1)/1j}
j=0 j=1
m+1 o, m+1 6, m+1
+ CHAAL + ) I CHiar (Ao, DA, + ) a(Dy, HAAL (19)
r=1 o, r=1 o, j=1
m+1 o
= d- BpanF 6n) - Y. | COaF, O,
r=1 6,
m+1
Ai + ai(Ao, DA + z ai(D;, O)A; — Ay = —ai(F, 6;), i=1,m. (20)
j=1

We denote the matrix corresponding to the left-hand side of the system of equations (19) and (20) by Q.(6)
and write the system in the following form:

Q.0 = E(F), A e Rum+D, 1)
where E(0) = (d - Bps1@mi(F, Opyr) - Y1 j: COGEF, Odt, —aF,0), ..., —an(F, 60w,
Q.0) = (Q(®), p,k=1,m+1, ie.,

6, by m+1 o
01.(6) = Bo + Bt iDs, 6.) + [ COAE+ [0, 0t + Y, [ cOaDy 00,
9 % =lg,

m+1 L

O O 6,
Qk(8) = Bict + Busniic ) + [ COUE+ [ COA0, 00+ Y [ CORD 0, k= 27w,
r=1 0

Ok k-1 r-1
6m+1 9m+1
Ql,m+l(e) = Bm + Bm+1 + Bm+1am+l(A0, 6m+1) + Bm+lam+1(Dm+l’ 9m+1) + —[ C(t)dt + j C(t)aerl(AO, t)dt
O 0,
m+1 o
+ Y [ coa @ ot
r=1 6,1

Qpp-10) =1+ ay_1(Ao, 6p-1) + ay_1(Dp_1,6,_1), pP=2,m+1,
Qup(0) = ap_1(Dp, Op-1) -1, p=2,m+1,
Qpi(0) = ap_1(Dy, 6p-1), k#p, k#+p-1, k=I,m+1, p=2,m+1.

1.2 Numerical implementation of the method

We offer the following numerical implementation of the Dzhumabaev parametrization method for solving
linear boundary value problem for essentially loaded differential equations with integro-multipoint condi-
tion based on the Runge-Kutta method of fourth-order and Simpson’s method.



1178 =— Zhazira M. Kadirbayeva and Symbat S. Kabdrakhova DE GRUYTER

(1) Suppose we have a partition: 0 =0y < 0; < 0, <---< Op_1 < Oy, < Op1 = T. Divide each rth interval
[6,_1,6,], r =1, m + 1, into N, parts with step size h, = (6, — 6,_,)/N,. Assume that on each interval
[6,_1,6,], r =1, m + 1, the variable 0 takes its discrete values: § =6, 1, 0 =6, 1+ hy,..., 0 = 6,_; +
(N, = Dh,, 8 = 6,, and denote by {6,_1, 6,}, r = T, m + 1, the set of such points.

(2) We find the values of (n x n) matrices a,(Ao,0), a/(D;,0), i =T,m + 1, and n vector a,(F,0)
on{6,_4,6}, r=1,m+1.

(3) Applying Simpson’s method on the set {6,_1, 6,}, r = 1, m + 1, we evaluate the definite integrals

6, 6,
W(C) = jca)dt, Wi(F) = IC(t)ar(F, odt, r-TLmTl,
er—l gr—l

o, 0,
Wi(Ao) = jca)ar(Ao, odt, WD) = jca)a,(n,-, odt, j=Tml.
er—l er—l

(4) Construct the system of linear algebraic equations in parameters
QA = Fl(®), AR, (22)

and find its solution A, As noted earlier, the elements of A" = ()lf' ,)lzf’ , ...,A,ﬁ, A,ﬁﬂ) are the values
of an approximate solution to problem (1), (2) at the left end-points of the subintervals:
Xi@ ) =AM r=T,m+1.

(5) To define the values of an approximate solution at the remaining points of set {6,_1, 6,}, r =1, m + 1,
we solve the Cauchy problems:

dX m+1 -
i Ao(O)x + Y DiOA! + F(1),

j=1

xO-)=Al, telb.6], r=Tm+l.

We found the solutions to Cauchy problems by using the fourth-order Runge-Kutta method. Thus, the
algorithm allows us to find the numerical solution to the problem (1), (2), when the matrices G(60), Q.(0)
are invertible.

1.3 Solvability of the problem

In this section, we establish conditions for the unique solvability of problem (1), (2). To prove the main
assertion, we need the following lemma.

Lemma 1. If G(0) is invertible, then the following assertions hold:
(@) If X € Rn*) gnd T e R"m+D gre solutions of systems (21) and (12), respectively, and the function
system fi[t] € C([0, T], 6, R"™*D) is a solution to the Cauchy problem (6), (7) with A, = A,, p, = fi,
r =1, m + 1, then the function X(t), defined by the equalities:
Y(t) = ﬁr(t) + Xr, te [er—ly er), lim Y(t) = ﬁ,’ r= m, Y(T) = FAN"’H—] + lim ﬁmﬁ-l(t);
t—>T-0

t—6,_1+0

is a solution to problem (1), (2);

(b) The vectors A* € R"™*D gnd pu* ¢ R"™*D_ composed of the values of the solution x*(t) and its derivative
x*(t) to problem (1), (2) at the partition points A; = lim;_q,_.ox*(t), and ' =lim; g, ,oxX*(t),
r =1, m + 1, satisfy the systems (21) and (12), respectively.
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The evidence is similar in concept to the proof of Lemma 1 with slight variations [27].
We present the main theorem on the existence of a unique solution to problem (1), (2) in terms of
matrices G(8) and Q.(6).

Theorem 1. Let the matrices G(@) : R"m+D) — Rnm+l) gqnd Q,(0) : Rm+D) — Rnm+1) pe invertible. Then
boundary value problem (1), (2) has a unique solution x*(t) for any f(t) € C([0, T], R"), d € R".

Proof. Let f(t) € C([0, T], R") and d € R". We find an unique solution to the systems (12) and (21), using the
invertibility of matrices G(8) and Q.(0): u* = [G(6)]'P(0, A*) and A* = -[Q.(6)]"'E(H). Solving the Cauchy
problem (6), (7) with A = A* and u = p*, define the function system u*[t]. The invertibility of the matrices
G(0) and Q.(0) lead to the existence of unique function system u*[t] with the elements u;[t], defined by the
right-hand side of (15) at A = A*. Then, according to Lemma 1, the function x*(t), defined by the equalities:
x*(t) = u;(t) + AS, t € [0, 0)), lime g, oX*(t) = ', v =1, m + 1, x*(T) = Apyyq + lime_ 7oty 4(8), is a solu-
tion to problem (1), (2). Uniqueness of the solution is proved by contradiction. Theorem 1 is proved. [

To illustrate the fulfillment of the theorem’s conditions and the proposed approach of the numerical
solving of the boundary value problem for systems of essentially loaded differential equations with integro-
multipoint condition (1), (2) based on the Dzhumabaev parametrization method, let us consider the fol-
lowing examples.

1.4 Examples

Example 1. We consider a linear boundary value problem for essentially loaded differential equations with
an integro-multipoint condition:

dx

a Ap(t)x + A()x(61) + A ()X(82) + A;(0)%(85) + f(t), te(0,1), (23)
4 g
Y Bix(§) + IC(t)x(t)dt:d, deR, xeP. (24)
j=0
8
Here,
’ 1 3 36t — 108t3 — 132t2 — 48t% — 396
6,=0, 61:2’ 92=5, 93:2’ 0,=T=1, f(6)=]| 48t2—-90t3 - 12t% - 252t — 696 |
—360t4 — 228t3 — 108t2 — 408t — 54
t 2 ¢t 1 t t2 t 0 6 t2 3t 0
At)=|t-1¢ 0o A®=|4 6 0f At)=1t2 4 -5| AMO=|t+2 6 7|
3t2 5 6t 3th t 2 0 t-5 7t 0o 1
14 5 -3 05 1 6 8 50 6
Bo=|6 3 -2}, Bi=13 2 1|, B,=(3 0 7} B;=(2 1 -6,
8 0 -1 -5 35 6 -4 2 4 6 8
2 6 -7 -t 8 0 368
By,=6 0 5| CH=|-4 2 1| d=|869]|
-5 11 3 0 3t -5 454

We use the numerical implementation of algorithm. The accuracy of the solution depends on the accuracy
of solving the Cauchy problem on subintervals and evaluating definite integrals. We provide the results
of the numerical implementation of algorithm by partitioning the subintervals [0, 0.25], [0.25, 0.5],



1180 =— Zhazira M. Kadirbayeva and Symbat S. Kabdrakhova DE GRUYTER

[0.5, 0.75],[0.75, 1] with step h = 0.025. Solving the system of equations (22), we obtain the numerical values
of the parameters

. 12.00002405 . 12.00002727 . 24.00002692 _ {48.00001942
Al =|-6.00001267 [ Ak = [-3.00001292 | A - |-0.00001382 [, Af =| 2.99998431
0.0000129 6.00000624 18.00000584 36.00000785

9612 — 24t + 12
Exact solution of problem (23) and (24) is the following: x*(t) = 12t - 6

48¢t2 + 12t

The differences between the exact and approximate solutions to problem (23) and (24) ¢ =
X (t) — X, i = 1,3, are provided in Table 1. Table 2 provides the difference between numerical
and exact solutions of problem (23) and (24), where we solve Cauchy problems by using the Runge-Kutta
Fehlberg method.

From Tables 1 and 2, it can be seen that the Runge-Kutta Fehlberg method is able to produce lower error
rates compared with those from the fourth-order Runge-Kutta method. All results were received by using
MathCad15.

Example 2. We consider a linear boundary value problem for essentially loaded differential equations with
an integro-multipoint condition:

(0 e (3 ) (8 OB (2 )

6483 — 33t4 — 9t2 + %63% _3 ’1129 (25)
n , te(0,1),
1509 Bty e, 49, 407
16 16 4 4

Table 1: Error analysis in Example 1 (using the fourth-order Runge-Kutta method)

k t & & & k ty & & &

0 0 2.4 x 1075 1.27 x 10 1.29 x 107° 20 05 2.69 x 1075 138 x1075  0.58 x 1073
1 0.025  2.45x10° 127 x107° 119 x 1073 21 0.525 2,66 x 10 139 x10”°  0.61x 107
2 0.05 2.49 x 1075 127 x 107  1.09 x 1075 22 0.55 2.62x1075  1.41x107° 0.63 x 107°
3 0.075 252 x10°° 1.27 x 10 1.01 x 107° 23 0.575 2,57 x 10~ 1.42 x 1075 0.66 x 1075
4 0.1 256 x 10 127 x10°  0.93x10° 24 0.6 2.51x 107 1.44 x10°  0.69 x 1075
5 0.125 259 x10°5 127 x10°  0.86x105 25  0.625 244 x105 146 x10°  0.72 x 10~°
6 0.15 2.63 x 1075 1.27 x 10~° 0.8 x 1073 26 0.65 2.36 x 1075 1.48 x 107° 0.74 x 1075
7 0.175 2.66 x10°  1.28 x 1075 0.75 x 1073 27 0.675 228 x10° 15x107° 0.77 x 107°
8 0.2 2.68 x 10> 128 x10° 0.7 x 107 28 07 2.18 x 1075 1.52 x 107> 0.78 x 107>
9 0.225 2.71x10°° 1.29 x 107> 0.66 x 10 29 0.725 2.07 x 1073 1.54 x 1075 0.79 x 1075
10 0.25 2.73x10°  1.29x10% 0.62x10° 30 0.75 1.94 x 107> 1.57 x 1075 0.79 x 107>
1 0.275 274 x105  0.13x105  0.59 x 1075 31 0.775 1.8 x 1075 1.6 x 107 0.76 x 1075
12 0.3 2.76 x 107  1.31x 1075 0.57 x 1073 32 0.8 1.65 x 107 1.63x10°  0.71x 107
13 0.325  2.77 x 1075 1.31 x 107° 0.55 x 107 33 0.825 1.47 x 107 1.67 x 1075 0.63 x 107°
14 0.35 2.77 x 1075 1.32x10°  0.54 x 107° 34  0.85 1.28 x 10>  1.71x 107° 0.51 x 107°
15 0375  2.77 x 107° 133 x 10  0.54 x 1075 35 0.875  1.06 x 10 175 x 107 0.34 x 107
16 0.4 2.77 x 1075 134 x 107  0.54 x 107° 36 0.9 0.82 x 10 1.8 x107° 0.1x 107
17 0.425 276 x105  135x10°  0.54 x 107° 37 0925 0.54x10° 1.85x10°  0.22 x 107
18 0.45 2.74 x 1073 136 x 107> 0.55 x 1075 38 0.95 0.23 x 1075 1.91x 1075 0.66 x 1075
19 0.475 272x10% 137 x10°  0.57 x 107° 39 0975 0.12 x10°° 198 x10°  1.23 x 107
20 0.5 2.69 x10° 138 x10° 0.58x10° 40 1 0.53 x 10  2.06 x 105  1.97 x 107°
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Table 2: Error analysis in Example 1 (using the Runge-Kutta Fehlberg method)

k ty & & & k tx & & &

0 0 1.11 x 107 8.88 x 107  1.46 x 1077 20 05 1.35 x 107 1.02 x 107°  8.27 x 10710
1 0.025 114 x10° 8.92x107¥ 139 x 107 21 0525 1.32x107° 1.03 x 10°  8.19 x 1071°
2 0.05 117 x 107  8.97 x 107 132 x 107° 22 0.55 1.30 x 107° 1.04 x 10°  8.22 x 10710
3 0.075 1.19x10° 9.02x10  1.26 x 107° 23 0575  1.27 x 107 1.05 x 10  8.27 x 10710
4 0.1 1.22x 107  9.07 x 10710 1.21 x 107 24 0.6 1.24 x 107° 1.06 x 10  8.35 x 1071°
5 0.125 124 x10° 9.13x107° 116 x 107° 25  0.625 120 x 107° 1.07 x 107 8.45 x 1070
6 0.15 1.27 x107°  9.19 x10™°® 1,11 x 10~ 26  0.65 1.15 x 10~° 1.09 x 10  8.57 x 1071°
7 0.175 129 x107° 9.25x107°  1.07 x 107° 27  0.675 110 x 107 110 x 107  8.72 x 10710
8 0.2 1.31x107° 9.32x107° 103 x 107° 28 0.7 1.04 x 107 1.11 x 107 8.88 x 10710
9 0.225 133x10° 9.38x107° 997x10°0 29 0725 9.80x107° 113x10°  9.05x 1071
10 0.25 134 x107% 9.45x107° 965x10%° 30 0.75 9.07 x10™° 114 x 107  9.23 x 1071°
11 0275 136 x10° 9.52x107° 950x107° 31 0775 8.00x10°° 116 x 107  7.98 x 10710
12 03 137 x 107  9.59 x 107  9.25x 107 32 0.8 7.08 x 1071 118 x 10  7.96 x 10710
13 0325 138x10° 9.67x10° 9.03x10 33 0.825 6.08x107° 1.20x10° 7.89 x 10710
14 0.35 138 x10° 9.75x 107 883 x 107 34 0.85 4,96 x 10710 122 x10°  7.74 x 1070
15 0375 138x10° 9.83x100 8.67x10° 35 0.875 3.74x1071° 1.25x10°  7.49 x 10710
16 0.4 138 x10° 9.91x107® 853x10°® 36 0.9 238 x10710 128 x107  7.09 x 1071
17 0.425 138x10° 9.99x107° 842x10°® 37 0925 899x10" 1.31x10°  6.51x 1071
18  0.45 1.37 x10°  1.01x 107 8.34x107° 38 0.95 739 x107%  135%x10°  5.69 x 10710
19  0.475 136 x10°  1.02 x 107 8.29 x107 39 0975 255x107° 139 x107°  4.56 x 1070
20 05 1.35x10°  1.02 x 107 827 x101° 40 1 4.55x107° 143 x107°  3.02 x 1071°

1

(3 9p0- (2 346 M) SR o ¢ 2o

761 (26)

30
8,495 |
96

X € R%,

The exact solution of problem (25) and (26) is the following: x*(t) = (
12t2 + 20t

t3 - 64t% + 18)

We use the numerical implementation of algorithm. The accuracy of the solution depends on the
accuracy of solving the Cauchy problem on subintervals and evaluating definite integrals. We provide
the results of the numerical implementation of algorithm by partitioning the subintervals [0, 0.25],
[0.25, 0.5], [0.5, 0.75], [0.75, 1] with step h; = 0.025. For the difference of the corresponding values of the
exact and constructed solutions of the problem, the following estimate is true:

1ax [|Ix*(t;) — X(t)| < 0.0000014.
j=0,40

With step h, = 0.0125:

1ax [x*(t;) — X (¢l < 0.000000088.
j=0,80

With step h; = 0.00625:

max [Ix*(t;) — X(t;)]| < 0.0000000055.
j=0,160
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With step h, = 0.003125:

max [x*(t) — X(t;)l < 0.00000000034.
j=0,320
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