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Abstract: In this article, based on the path homology theory of digraphs, which has been initiated and
studied by Grigor’yan, Lin, Muranov, and Yau, we prove the existence and uniqueness of solutions to the
problem
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for w H G1( )∈ and any digraph G generated by squares and triangles belonging to the same cluster.
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1 Introduction

A digraph G is a pair V E,( ), whereV is a finite set known as the set of vertices and E V V diag{ }⊆ × ⧹ is the
set of directed edges. For vertices a b V, ∈ , the pair a b E,( ) ∈ will be denoted by a b→ . In particular,
a square is a digraph with four distinct vertices a b c, , , and d such that a b→ , b d→ , a c→ , and c d→ .
A triangle is a digraph with three distinct vertices a b, , and c such that a b→ , b c→ , and a c→ .

An elementary p-path (or p-path for short) onG is a sequence ik k
p

0{ }
=

of p 1+ vertices. If all pairs i i,k k 1( )
+

are edges, then the p-path is called allowed.
Let � be a field. Let VΛp( ) be the � -linear space consisting of all the formal linear combinations of all

elementary p-paths with the coefficients in � . An elementary p-path i ip0 ⋯ as an element of Λp is denoted
as ei ip0 ⋯

. The boundary operator V V: Λ Λp p p 1( ) ( )∂ →
−

is a � -linear map such that for any elementary path
ei ip0 ⋯

,

e e1 ,i i
q

p
q

i i i
0

n q n0 0 ( )∑∂ = −
⋯

=

⋯ ⋯

where iq means omission of the index iq.
Let p� be the subspace of VΛp( ), which consists of all the formal linear combinations of allowed paths

on G, that is,

G e i ispan : is allowed .p i i p0p0� ( ) { }= ⋯
⋯

For an element v v e Gi i
i i pp

p
0

0 � ( )= ∑ ∈

⋯

⋯
, v is called a (a b, )-cluster if, for any v 0i ip0

≠

⋯ , i a0 = and i bp = ,
where a and b are two fixed vertices in V .
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Note that the boundary of an allowed path may not be allowed. Nevertheless, Gp� ( ) has the
following subspace:

G x G x GΩ : ,p p p 1� �( ) { ( ) ( )}= ∈ ∂ ∈
−

which satisfies G GΩ Ωp p p 1( ) ( )∂ ⊆
−

for all p 1≥ − . The elements in GΩp( ) are called ∂-invariant p-paths.
The path homology of G referred to in this article is the homology of the chain complex GΩ ,p p p 0{ ( ) }∂

≥
,

denoted as H G,p �( ) or H Gp( ) for short (cf. [1–6]).
In this article, our motivation is to prove the existence and uniqueness of solutions to the problem
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for w H G1( )∈ and study the “smallest” representative element in the path homology class of digraphs under
the given norm. It should be noted that since GΩp( ) has no unified form, we only consider the case of
w H G1( )∈ for digraphs that are generated by triangles or squares of the same cluster.

In information theory, signal processing, statistics, machine learning, and optimization theory, there is
a lot of literature on analyzing, solving, and applying 1-norm minimization (cf. [7–13]). Our idea is to apply
the existing results in signal theory, convex programming, and optimization theory to the study of path
homology groups of digraphs. The main result of this article is as follows.

Theorem 1.1. Suppose G is a finite digraph generated by squares or triangles that belong to the same cluster.
Then, for any representative element w of the homology class in H G1( ), the problem
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has a unique solution u∗ such that A w uAu signT
I I( ) ( ) ( )− =

∗ ∗ , where A is the matrix of the boundary operator
G G: Ω Ω2 2 1( ) ( )∂ → and I usupp( )≔

∗ .¹

Finally, in Section 4, we illustrate the “smallest” representative element in the homology group H G1( )

of some simple digraphs by examples.

2 Auxiliary results for the main theorem

In this section, before proving the main theorem, we give some auxiliary results. First,

Lemma 2.1. Let G V E,( )= be a digraph generated either by squares that belong to the same cluster or by
triangles that belong to the same cluster. Then, the matrix A of the boundary operator G G: Ω Ω2 2 1( ) ( )∂ → is
a full-column rank matrix.

Proof. CASE 1. G is generated by squares that belong to the same cluster (Figure 1). Then,

G G e e e e e e
G e e e e e e

G n G n

Ω span , , , , , , , ,
Ω span , , , ,
dimΩ 2 2 , dimΩ 3

n n n n n

n n n n n n n n

1 1 12 13 1 1 2 3 1

2 12 13 13 14 1 2 1 1

1 2

�( ) ( ) { }

( ) { }

( ) ( ) ( )

( ) ( )

( ) ( )

= = … …

= − − … −

= − = −

− −

− −



1 The subscript I in this article represents the support set of the unique solution u∗, which is a subset of u1, 2, ,dim{ }…

∗ . Hence,
uI

∗ is the vector made of all non-zero elements of u∗, and usign I( )∗ is the vector determined by the signs of all elements of uI
∗.

Meanwhile, AT
I( ) is sub-matrix of AT composed of the elements at the intersection of the rows determined by I and all columns

of AT (maintaining the relative order of rows and columns).
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and

A

1 0 0 0 0 0
1 1 0 0 0 0

0 1 1 0 0 0
0 0 1 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1
1 0 0 0 0 0
1 1 0 0 0 0

0 1 1 0 0 0
0 0 1 1 0 0

0 0 0 0 1 1
0 0 0 0 0 1

.n n2 2 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

( ) ( ) =

⋯

− ⋯

− ⋯

− ⋯

⋯ ⋯

⋯ −

⋯ −

⋯

− ⋯

− ⋯

− ⋯

⋯ ⋯

⋯ −

⋯ −

− × −

Hence, R A n 3( ) = − , and A is a full-column rank matrix.
CASE 2. G is generated by triangles that belong to the same cluster. Then,

G G e e e e e e e
G e e e

G n G n

Ω span , , , , , , , , ,
Ω span , , , ,
dimΩ 2 2 1, dimΩ 2

n n n n n n

n n n n

1 1 12 13 1 1 1 2 3 1

2 12 13 1 1

1 2

�( ) ( ) { }

( ) { }

( ) ( ) ( )

( ) ( )

( )

= = … …

= …

= − + = −

− −

−

and

A

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
1 1 1 1 1

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 0 1

.n n2 2 1 2

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

( ( ) ) ( ) =

⋯

⋯

⋯

⋯ ⋯

⋯

− − − ⋯ − −

⋯

⋯

⋯

⋯ ⋯

⋯

− + × −

Hence, R A n 2( ) = − , and A is a full-column rank matrix. □

Remark 1. In fact, by [1], for digraph G discussed above, H Gdim 10( ) = , H Gdim 01( ) = , and H Gdim 0p( ) =

(p 2≥ ). Let f be a self-map on G (a digraph map which maps G to G). Then, the Lefschetz number
f f f fΛ trace trace trace 1 0H H H0 1 2( ) ∣ ∣ ∣= − + = ≠ . Therefore, similar to [14], f has a fixed point.

Figure 1: Case 1 and Case 2.
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Second, by [12], we have the following lemma.

Lemma 2.2. (cf. [12]). Let f be a strictly convex function. If f Ax b x 1( ) ∣ ∣− + is constant on a convex set S, then
both Ax b− and x 1∣ ∣ are constant on S.

3 Proof of the main theorem

In this section, we prove the existence and uniqueness of solutions to the minimization problem.

Proof of Theorem 1.1. Step 1. Existence.
CASE 1. G is generated by squares that belong to the same cluster. Then, for any given one-dimensional

closed path w H G1( )∈ ,

w l e l e l e l e l e ,n n n n n n1 12 2 13 2 1 1 1 2 2 1( ) ( )= + + ⋯+ + ′ + ⋯+ ′
− − − −

where l l,i i �′ ∈ , i n1 2≤ ≤ − .
Since

w l l l e l l e l l e l l e0 ,n n n n n n1 2 2 1 1 1 2 2 2 1 1 2( ) ( ) ( ) ( )= ∂ = − + + ⋯+ + − ′ + ⋯+ − ′ + ′ + ⋯+ ′
− − − − −

it follows that

l l l
l l
l l

l l
l l l

0

0

n

n n

n

1 2 2

1 1

2 2

2 2

1 2 2

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

+ + ⋯+ =

= ′

= ′

⋯

= ′

′ + ′ + ⋯+ ′ =

−

− −

−

and

w

l
l

l l l
l
l

l l l

.
n

n

1

2

1 2 3

1

2

1 2 3

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

=

⋮

− + + ⋯+

⋮

− + + ⋯+

−
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Let

u e e e e e e
u x e e x e e x e e x
0 span , , , Ω ,

,
n n n n n n n n

n n n n n n n n n i

12 13 13 14 1 2 1 1 2

1 12 13 2 13 14 3 1 2 1 1 �

{ }

( ) ( ) ( )

( ) ( )

( ) ( )

≠ = − − … − ∈

= − + − + ⋯+ − ∈

− −

− − −

and

f x x x u w u

w u

x l x x l x x l l l l x x

, , , 1
2
1
2

Au

n

n n n n n
i

n

i

1 1 2 3 2
2

1

2
2

1

1 1
2

2 1 2
2

3 4 3
2

1 2 3 3
2

1

3

( ) ∥ ∥ ∣ ∣

∥ ∥ ∣ ∣

( ) ( ) ( ) ( ) ∣ ∣∑

… = ∂ − +

= − +

= − + − − + ⋯+ − − + + + ⋯+ − +

−

− − − − −

=

−
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x x x l l x

l l x l l l l x

2 2

2 2 2 .

i

n

i
i

n

i i
i

n

i
i

n

i
i

n

i

i

n

i i i n n n

1

3
2

1

4

1
1

3
2

1

3 2

1

3

1

4

1 1 2 4 3 3

⎜ ⎟
⎛

⎝

⎞

⎠

∣ ∣
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Then, the Hessian matrix of f1 at any point x x x, , , n
n

1 2 3
3�( )… ∈

−

− is given as follows:

H

4 2 0 0 0 0 0
2 4 2 0 0 0 0

0 2 4 2 0 0 0

0 0 0 0 4 2 0
0 0 0 0 2 4 2
0 0 0 0 0 2 4

.n n1 3 3( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

( ) ( ) =

− ⋯

− − ⋯

− − ⋯

⋯ ⋯ ⋯

⋯ −

⋯ − −

⋯ −

− × −

Obviously, H1 is a positive definite matrix and h 0H11 1( ) > . Thus, f1 has the minimum points. That is, there
exists a solution to the problem ( )∗ for Case 1.

CASE 2.G is generated by triangles that belong to the same cluster. Then, for any given one-dimensional
closed path w H G1( )∈ ,

w l e l e l e l e l e l e ,n n n n n n n n1 12 2 13 2 1 1 1 1 1 2 2 1( ) ( )= + + ⋯+ + + ′ + ⋯+ ′
− − − − −

where l l,i i �′ ∈ , i n1 2≤ ≤ − .
Since w 0∂ = , it follows that

l l i n
l l l

, 1, 2, , 2
0

i i

n1 2 1

⎧

⎨
⎩

= ′ = … −

+ + ⋯+ =
−

and

w

l
l

l
l l l

l
l

l

.n

n

n

n

2 2 1 1

1

2

2

1 2 2

1

2

2

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

( ( ) ) =

⋮

− + + ⋯+

⋮

− + ×

−

−

−

Let

u e e e G
u x e x e x e x
0 span , , , Ω ,

,
n n n n

n n n n n i

12 13 1 1 2

1 12 2 13 2 1 1 �

{ } ( )( )

( )

≠ = … ∈

= + + ⋯+ ∈

−

− −

and

f x x x u w u

w u

x l x l x l x x x l l

, , , 1
2
1
2

Au

1
2

n

n n
i

n

i n n

2 1 2 2 2
2

1

2
2

1

1 1
2

2 2
2

2 2
2

1

2

1 2 1 2
2

( ) ∥ ∥ ∣ ∣

∥ ∥ ∣ ∣

( ) ( ) ( ) ∣ ∣ [ ( )]∑

… = ∂ − +

= − +

= − + − + ⋯+ − + + + ⋯+ − + ⋯+

−

− −

=

−

− −
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x l x l l x x

l x x l l

3
2

2

3
2

.

i

n

i
i

n

i i n
i

n

i
i

n

i

i

n

i
i j n

i j
i j n

i j

1

2
2

1

2

1 2
1

2

1

2

1

2
2

1 2 1 2

( ) ∣ ∣∑ ∑ ∑ ∑

∑ ∑ ∑

= − − + ⋯+ +

+ + +

=

−

=

−

−

=

−

=

−

=

−

⩽ ≤ ⩽ − ⩽ < ⩽ −

Then, the Hessian matrix of f2 is given as follows:

H

3 1 1 1 1
1 3 1 1 1
1 1 3 1 1
1 1 1 3 1

1 1 1 1 3

.n n2 2 2( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

( ) ( ) =

⋯

⋯

⋯

⋯

⋯ ⋯

⋯

− × −

Similar to Case 1, we have that the matrix H2 is also a positive definite matrix and h 0H11 2( ) > . Hence, f2 has
the minimum points, and there exists a solution to the problem ( )∗ for Case 2.

Step 2. Uniqueness. For any given w, by Step 1, the set of solutions of problem ( )∗ is not empty. Since

f 1
2 2

2∥ ∥= ⋅ is a strictly convex function, the problem ( )∗ is a convex problem. Hence, by Lemma 2.2,

wAu Constant− = .
On the other hand, by Lemma 2.1, the matrix A of G G: Ω Ω2 2 1( ) ( )∂ → is a full-column rank matrix.

Thus, if Au Au= ′, then u u= ′. That is, the solution to the problem ( )∗ is unique.
Step 3. We will prove the property of the solution of ( )∗ in Theorem 1.1 by solving linear equations.
For Case 1 of Step 1, by the structural characteristics of f1, it is sufficient to consider the following cases.
(1) Each x i n0 1, 2, , 3i ( )⩾ = … − . Then,

f x x l l
f x x x l l
f x x x l l

f x x x l l
f x x l l l l

4 2 2 1 0
4 2 2 2 1 0
4 2 2 2 1 0

4 2 2 2 1 0
4 2 2 2 1 0.

x

x

x

x n n n n n

x n n n n

1 2 2 1

2 1 3 3 2

3 2 4 4 3

4 5 3 3 4

3 4 1 2 4 3

n

n

1

2

3

4

3

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

( )

( )

( )

( )

( )

= − + − + =

= − − + − + =

= − − + − + =

⋯⋯

= − − + − + =

= − − + + ⋯+ + + =

− − − − −

− − − −

−

−

By the first equation, x x l l2 4 2 12 1 2 1( )= + − + . Substituting it into the second equation up to the
n 3( )− -th equation, we have that

x x l l l
x x l l l l
x x l l l

x ix i l l l i i i n

2 6 4 2 2 3,
2 8 6 2 6,
2 10 8 2 10,

2 2 2 1 2 1
2

, 2 3.i i

3 1 1 2 3

4 1 1 2 3 4

5 1 1 2 5

1 1 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( ) ( )
( )

= − + + +

= − + + + +

= − + + ⋯+ +

⋯

= − − + + ⋯+ +

−

⩽ ⩽ −

Hence,

x l n

x l l n

x l l l n

x l l l l n

x l i n i i n

3
4

,

4
2

,

3 5
4

,

4 6
4

,

2
4

, 1, , 3.i
k

i

k

1 1

2 1 2

3 1 2 3

4 1 2 3 4

1

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

( )
∑

= −

−

= + −

−

= + + −

−

= + + + −

−

⋯⋯

= −

− −

= … −

=
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Therefore,

u

x
x

x

x

l n

l l n

l l l i n i

l l l n

3
4

4
2

2
4

3
4

.
i

n

i

n

1
2

3

1

1 2

1 2

1 2 3

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

=

⋮

⋮

=

−

−

+ −

−

⋮

+ + ⋯+ −

− −

⋮

+ + ⋯+ −

−

−

−

(2) x 01 ⩽ and x 0i ⩾ (i n2, 3, , 3= … − ). Then,

u

x
x

x

x

l n n
n

l l n
n

l l l n i in i
n

l l l n n
n

3 6
4 2

4
2 2

2 2 4
4 2

5 2
4 2

.
i

n

i

n

1
2

3

1

1 2
2

1 2

1 2 3
2

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

( )( )

( )

( )

( )

( )( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

=

⋮

⋮

=

−

− −

−

+ −

−

−

⋮

+ + ⋯+ −

− − − −

−

⋮

+ + ⋯+ −

− +

−

−

−

(3) x 02 ⩽ and x 0i ⩾ (i n1, 3, , 3= … − ). Then,

u

x
x
x

x
x

l n n
n

l l n n
n

l l l n n
n

l l l n n
n

l l l n n
n

9 20
2 2 4

2 20 44
2 2 4

3 29 64
2 2 4

2 14 8
2 2 4

7 4
2 2 4

,

n
n

n

n

1
2
3

4
3

1
2

1 2
2

1 2 3
2

1 2 4
2

1 2 3
2

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

( )

( )

( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

=

⋮

=

−

− +

−

+ −

− +

−

+ + −

− +

−

⋮

+ + ⋯+ −

− +

−

+ + ⋯+ −

− +

−

−

−

−

−

x l n j n j j n j
n

j2 4 8 10 16
2 2 4

, 2.j
k

j

k
1

2 2( ) ( )

( )
∑= −

+ − − + + +

−

⩾

=

(4) x 0n 3 ⩽
−

and x 0i ⩾ (i n1, 2, , 4= … − ). Then,

u

x
x
x

x
x

l n n
n

l l n n
n

l l l n n
n

l l l n n
n

l l l n n
n

5 2
2 2 4
2 12 8

2 2 4
3 21 18

2 2 4

2 16 32
2 2 4

9 18
2 2 4

,

n
n

n

n

1
2
3

4
3

1
2

1 2
2

1 2 3
2

1 2 4
2

1 2 3
2

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

( )

( )

( )

( )

( )

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

=

⋮

=

−

− +

−

+ −

− +

−

+ + −

− +

−

⋮

+ + ⋯+ −

− +

−

+ + ⋯+ −

− +

−

−

−

−

−
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x l j n j n j
n

j4 2
2 2 4

, 1.j
k

j

k
1

2[ ( ) ]

( )
∑= −

− + +

−

⩾

=

Hence, by calculation, we have that A w uAu signT
I I( ) ( ) ( )− = , where I usupp( )≔ for all cases. Therefore,

for any given w, by the uniqueness of solutions to the problem ( )∗ , the unique solution u∗ must be one of all
possible cases satisfying A w uAu signT

I I( ) ( ) ( )− =

∗ ∗ , where I usupp( )≔

∗ .
For Case 2 of Step 1, consider the following cases.
(1) Each x 0i ⩾ i n1, 2, , 2( )= … − . Then,

f x l l l x x x
f x l l l l x x x
f x l l l l l x x x x

f x l l l l x x x

3 3 1 0
3 3 1 0
3 3 1 0

3 3 1 0.

x n n

x n n

x n n

x n n n n

1 1 2 2 2 3 2

2 1 2 3 2 1 3 2

3 1 2 3 4 2 1 2 4 2

2 1 2 3 2 1 2 3n

1

2

3

2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( )

( )

= − + + ⋯+ + + + ⋯+ + =

= − + + + ⋯+ + + + ⋯+ + =

= − + + + + ⋯+ + + + + ⋯+ + =

⋯⋯

= − + + ⋯+ + + + + ⋯+ + =

− −

− −

− −

− − − −
−

Hence,

u

x
x

x

l
n

l
n

l
n

1

1

1

.

n

n

1
2

2

1

2

2

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎟
⎟

=

⋮

=

−

−

⋮

−

−

−

(2) Some x 0i ⩽ . Without loss of generality, x 01 ⩽ and x 0i ⩾ (i n2, 3, , 3= … − ). Then,

u

x
x

x

l n
n

l
n

l
n

l
n

2

2

2

2

.

n

n

1
2

2

1

2

3

2

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟

⎟
⎟

=

⋮

=

+

−

−

−

⋮

−

−

−

Then, we also have that the unique solution u∗ of the problem ( )∗ satisfies A w uAu signT
I I( ) ( ) ( )− =

∗ ∗ ,
where I usupp( )≔

∗ .
Therefore, Theorem 1.1 is proved. □

Remark 2. The conclusion of Theorem 1.1 is independent of the selection of the basis of GΩ2( ).

Furthermore, by the partitioned matrix, we have the following corollary.

Corollary 3.1. Let G V E,( )= be a digraph generated by clusters satisfying the following conditions:
(1) each cluster is composed of different squares or triangles;
(2) different clusters intersect at most at one vertex.

Then the matrix A of the boundary operator G G: Ω Ω2 2 1( ) ( )∂ → is a full column rank matrix and there is
a unique solution u∗ to the problem ( )∗ satisfying A w uAu signT

I I( ) ( ) ( )− =

∗ ∗ where I usupp( )≔

∗ .
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4 Examples

In this section, we first show how coefficients and norms play an important role in the problem ( )∗ .

Example 4.1. Let G be a digraph as follows (Figure 2). Then,

G e e e eΩ span , .2 125 135 135 145( ) { }= − −

Let

w e e e e e e4 4125 145 12 14 25 45[ ( )] ( )= ∂ − = − + −

be a one-dimensional closed path on G. Suppose

u x e e x e e GΩ .1 125 135 2 135 145 2( ) ( ) ( )= − + − ∈

Then,

u w x e x x e x e x e x x e x e4 4 4 4 .1 12 2 1 13 2 14 1 25 2 1 35 2 45( ) ( ) ( ) ( ) ( ) ( )∂ − = − + − + − + − + − + −

Hence, u w 0∣ ∣∂ − depends on whether the three formulas x x x4 ,1 2 1( ) ( )− − , and x4 2( )− are zero or not, and
as long as two of the three formulas are zero, the third one must be zero. Thus, it is sufficient to consider the
following cases:
(1) If x x4, 41 2= = , u w u 80 1∣ ∣ ∣ ∣∂ − + = ;
(2) If x x4, 41 2= ≠ , u w u x4 40 1 2∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + ;
(3) If x x x, 42 1 1= ≠ , u w u x4 20 1 1∣ ∣ ∣ ∣ ∣ ∣∂ − + = + ;
(4) If x x4, 42 1= ≠ , u w u x4 40 1 1∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + ;
(5) If x x x x4, 4,1 2 2 1≠ ≠ ≠ , u w u x x60 1 1 2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + .

Therefore, there exists no non-zero solution of the problem

u w umin 0 1{∣ ∣ ∣ ∣ }∂ − +

in � or �.
Consider another closed 1-path

w e e e e e e e e e e1
2

4 1
2

7
2

4 .125 135 135 145 12 25 13 35 14 45[ ( ) ( )] ( ) ( ) ( )= ∂ − + − = + + + − +

Then, the minimum points of u w uminu G uΩ , 0 0 12 {∣ ∣ ∣ ∣ }( ) ∂ − +
∈ ≠

are not unique. Specifically,

u w x e x x e x e x e x x e x e1
2

7
2

4 1
2

7
2

4 .1 12 2 1 13 2 14 1 25 2 1 35 2 45⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )∂ − = − + − − + − + − + − − + −

Figure 2: Example 4.1.
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Similarly, consider the following cases:

(1) If x x, 41
1
2 2= = , u w u 40 1

1
2

9
2∣ ∣ ∣ ∣∂ − + = + = ;

(2) If x x, 41
1
2 2= ≠ , u w u x40 1

1
2 2

9
2∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + ⩾ ;

(3) If x x4,2 1
1
2= ≠ , u w u x4 4 80 1 1∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + ⩾ ;

(4) If x x x x, 42 1
7
2 1

1
2 2( )− = ≠ ≠ , u w u x x4 40 1 1 1

7
2

7
2∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + + ⩾ + ;

(5) If x x x x, 4,1
1
2 2 2 1

7
2≠ ≠ − ≠ , u w u x x6 60 1 1 2∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣∂ − + = + + ≥ .

Hence, f x xmin ,1 2
9
2( ) = when u

4

1
2⎜ ⎟

⎛

⎝

⎞

⎠

= or
0

1
2⎜ ⎟

⎛

⎝

⎞

⎠

.

Next, for given digraphs, we try to find the “smallest” representative element in the homology class
H G1( ) with coefficients in any field � (in particular, � �= or �).

Example 4.2. Let G be the digraph in Example 4.1. Then,

G e e e eΩ pan , .2 125 135 135 145( ) { }= − −

For any element u GΩ2( )∈ , it can be written as follows:

u x e e x e e x x, , .1 125 135 2 135 145 1 2 �( ) ( )= − + − ∈

Since H Gdim 01( ) = , it follows that

H G
e e e e
e e e e
e e e e

0

.

1

12 25 14 45

13 35 14 45

12 25 13 35

( ) {[ ]}

{[( ) ( )]}

{[( ) ( )]}

{[( ) ( )]}

=

= + − +

= + − +

= + − +

Consider the following closed 1-paths.
(1) w e e e e12 25 13 35( ) ( )= + − + . Then,

f x x u w u x x x x x x, 1
2

1 1 .1 2 2
2

1 1
2

2 1
2

2
2

1 2( ) ∥ ∥ ∣ ∣ ( ) ( ) ∣ ∣ ∣ ∣= ∂ − + = − + − + + + +

Hence, when u x
x 0

1
2

3
4⎜ ⎟

⎛

⎝

⎞

⎠
( )

= = , w f x xmin ,1 2
7
8( )‖ ‖ = = .

(2) w e e e e13 35 14 45( ) ( )= + − + . Then,

f x x u w u x x x x x x, 1
2

1 1 .1 2 2
2

1 1
2

2 1
2

2
2

1 2( ) ∥ ∥ ∣ ∣ ( ) ( ) ∣ ∣ ∣ ∣= ∂ − + = + − − + − + +

Hence, when u x
x

01
2

3
4

⎜ ⎟
⎛

⎝

⎞

⎠
( )

= = , w f x xmin ,1 2
7
8( )‖ ‖ = = .

(3) w e e e e12 25 14 45( ) ( )= + − + . Then,

f x x u w u x x x x x x, 1
2

1 1 .1 2 2
2

1 1
2

2 1
2

2
2

1 2( ) ∥ ∥ ∣ ∣ ( ) ( ) ( ) ∣ ∣ ∣ ∣= ∂ − + = − + − + − + +

Hence, when u
x
x

1
2

1
2
1
2

⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎜⎜

⎞

⎠

⎟⎟
= = , w f x xmin ,1 2

3
2( )‖ ‖ = = .

Remark 3. By Example 4.2, we know that in all intuitively visible one-dimensional closed paths

e e e e
e e e e
e e e e ,

12 25 14 45

13 35 14 45

12 25 13 35

( ) ( )

( ) ( )

( ) ( )

+ − +

+ − +

+ − +
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the paths that happen to be the boundaries of the elements in the basis of GΩ2( ) are the “smallest”
representative elements for digraphs generated by squares that belong to the same cluster.

In the following example, we illustrate that for digraph G whose GΩ2( ) is generated by triangles that
belong to the same cluster, Remark 3 still holds.

Example 4.3. Without loss of generality, take the following digraph G as an example (Figure 3). Let

G e e e
u x e x e x e x x x

Ω span , ,
, , , .

2 125 135 145

1 125 2 135 3 145 1 2 3 �

( ) { }=

= + + ∈

Consider the following cases.
(1) w e e e e12 25 15 125= + − = ∂ . Then,

f x x x u w u

x x x x x x x x x x x x x x x

, , 1
2
3
2

3
2

3
2

3 3
2

1 2 3 2
2

1

1
2

2
2

3
2

1 2 1 3 2 3 1 2 3 1 2 3

( ) ∥ ∥ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

= ∂ − +

= + + + + + − − − + + + +

and

u w f x x x

2
3
0
0

, min , , 5
6

.1 2 3

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
( )= ‖ ‖ = =

(2) w e e e e e e12 25 13 35 125 135( ) ( ) ( )= + − + = ∂ − . Then,

f x x x u w u

x x x x x x x x x x x x x x

, , 1
2
3
2

3
2

3
2

2 2 2

1 2 3 2
2

1

1
2

2
2

3
2

1 2 1 3 2 3 1 2 1 2 3

( ) ∥ ∥ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

= ∂ − +

= + + + + + − + + + + +

and

u w f x x x

1
2
1

2
0

, min , , 3
2

.1 2 3

⎛

⎝

⎜

⎜

⎜⎜

⎞

⎠

⎟

⎟

⎟⎟

( )= − ‖ ‖ = =

Figure 3: Example 4.3.
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Then, we have that w e e e e12 25 15 125= + − = ∂ is the boundary of one basis element of GΩ2( ), and its norm is
the smallest in all intuitively visible one-dimensional elementary closed paths ( e e e125 125 135( )‖∂ ‖ < ‖∂ − ‖).
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