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Abstract: In this article, based on the path homology theory of digraphs, which has been initiated and
studied by Grigor’yan, Lin, Muranov, and Yau, we prove the existence and uniqueness of solutions to the
problem

ueQy(G),u#0

. 1
wll = min {5 13w — wi + Iull}

for w € Hi(G) and any digraph G generated by squares and triangles belonging to the same cluster.
Keywords: digraphs, cluster, path homology, norm
MSC 2020: 05C20, 05C50

1 Introduction

A digraph G is a pair (V, E), where V is a finite set known as the set of vertices and E ¢ V x V\{diag} is the
set of directed edges. For vertices a, b € V, the pair (a, b) € E will be denoted by a — b. In particular,
a square is a digraph with four distinct vertices a, b, ¢, and d such thata - b, b - d,a — ¢, and ¢ — d.
A triangle is a digraph with three distinct vertices a, b, and ¢ such thata —» b, b — ¢, and a — c.

An elementary p-path (or p-path for short) on G is a sequence {ix}}_, of p + 1vertices. If all pairs (i, ik+1)
are edges, then the p-path is called allowed.

Let K be a field. Let A,(V) be the K -linear space consisting of all the formal linear combinations of all
elementary p-paths with the coefficients in K. An elementary p-path i --- i, as an element of A, is denoted
as e;,...;,. The boundary operator 9, : A(V) — Ap (V) is aK-linear map such that for any elementary path
eio..‘ip,

p
eipeiy = (Do ,.iy
q=0

where i, means omission of the index i,.
Let A, be the subspace of A,(V), which consists of all the formal linear combinations of allowed paths
on G, that is,

ANG) = span{e,-o...,-p tig iy is allowed}.

For an element v = Yvioire; ;€ AL(G), v is called a (a, b)-cluster if, for any vio "% # 0, iy = a and i, = b,
where a and b are two fixed vertices in V.
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Note that the boundary of an allowed path may not be allowed. Nevertheless, A,(G) has the
following subspace:

Qp(G) = {x € AYG) : ox € Ap_1(G)},

which satisfies 9,Q,(G) ¢ Q,_1(G) for all p > -1. The elements in Q,(G) are called 0-invariant p-paths.
The path homology of G referred to in this article is the homology of the chain complex {Qp(G), 9p}p>0,
denoted as H,(G, K) or H,(G) for short (cf. [1-6]).

In this article, our motivation is to prove the existence and uniqueness of solutions to the problem

ueQ,,u#0

)1
lwll = min {5 10w — wii3 + Iul1}

for w € Hy(G) and study the “smallest” representative element in the path homology class of digraphs under
the given norm. It should be noted that since Q,(G) has no unified form, we only consider the case of
w € Hi(G) for digraphs that are generated by triangles or squares of the same cluster.

In information theory, signal processing, statistics, machine learning, and optimization theory, there is
a lot of literature on analyzing, solving, and applying 1-norm minimization (cf. [7-13]). Our idea is to apply
the existing results in signal theory, convex programming, and optimization theory to the study of path
homology groups of digraphs. The main result of this article is as follows.

Theorem 1.1. Suppose G is a finite digraph generated by squares or triangles that belong to the same cluster.
Then, for any representative element w of the homology class in Hi(G), the problem

. 1
lwll = min {5 lIou — wi3 + Iu|1} (*)

ueQy(G),u#0

has a unique solution u* such that (AT);(w — Au¥) = sign(u;), where A is the matrix of the boundary operator
0, : Q(G) — Qi(G) and I := supp(u*).t

Finally, in Section 4, we illustrate the “smallest” representative element in the homology group H;(G)
of some simple digraphs by examples.

2 Auxiliary results for the main theorem
In this section, before proving the main theorem, we give some auxiliary results. First,

Lemma 2.1. Let G = (V, E) be a digraph generated either by squares that belong to the same cluster or by
triangles that belong to the same cluster. Then, the matrix A of the boundary operator 9, : Q,(G) — Qi(G) is
a full-column rank matrix.

Proof. Cask 1. G is generated by squares that belong to the same cluster (Figure 1). Then,

Q1(G) = A(G) = span{eyy, €i13,...,€1n-1)» €215 €3n> -+ »€n-1)nb>
QZ(G) = Span{eIZn — €13n, €13n — €140y .-+ €1(n-2)n — el(n—l)n}y
dimQ4(G) = 2(n - 2), dimQx(G) =n -3

1 The subscript I in this article represents the support set of the unique solution u*, which is a subset of {1, 2, ...,dimu*}. Hence,
u; is the vector made of all non-zero elements of u*, and sign(u;) is the vector determined by the signs of all elements of u;.
Meanwhile, (A7), is sub-matrix of AT composed of the elements at the intersection of the rows determined by I and all columns
of AT (maintaining the relative order of rows and columns).
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n—1 n—1

Figure 1: Case 1 and Case 2.

and
[1 0 0 O - 0 0]
11 00 0 O
0 -1 10- 0 0
0 0 -11- 0 O
0 0 0O0- -11
A 1o 0 00 - 0 -1
W2t =11 0 00 0 OFf
-11 00 0 O
0 -1 10- 0 O
0 0 -11-- 0 O
0 0 0O -1 1
[0 0 00 0 -1

Hence, R(A) = n — 3, and A is a full-column rank matrix.
Cast 2. G is generated by triangles that belong to the same cluster. Then,

01(G) = A(G) = span{ery, €13, ...,€1n-1)> €1ns €215 €3ns -+ »E(n-1)n}>

QZ(G) = span{elZn, el3m-~~ael(n—1)n};
dimQ(G) =2(n-2)+1, dimQyG)=n-2

and
[1 0 O 0 0]
0O 1 O 0 0
0O 0 1 0 0
o 0 o - 0 1
Apn-2snx(-p = |71 -1 -1 - -1 -1
1 0 O 0 0
0O 1 O 0 0
0O 0 1 0 0
0O 0 O 0 1
Hence, R(A) = n — 2, and A is a full-column rank matrix. O

Remark 1. In fact, by [1], for digraph G discussed above, dimHy(G) = 1, dimH;(G) = 0, and dimH,(G) = 0
(p 2 2). Let f be a self-map on G (a digraph map which maps G to G). Then, the Lefschetz number
A(f) = tracef |y, — tracef |y, + tracef |y, = 1 # 0. Therefore, similar to [14], f has a fixed point.
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Second, by [12], we have the following lemma.

Lemma 2.2. (cf. [12]). Let f be a strictly convex function. If f(Ax — b) + |x|; is constant on a convex set S, then
both Ax — b and |x|; are constant on S.

3 Proof of the main theorem
In this section, we prove the existence and uniqueness of solutions to the minimization problem.

Proof of Theorem 1.1. Step 1. Existence.
Cask 1. G is generated by squares that belong to the same cluster. Then, for any given one-dimensional
closed path w € H|(G),

! !
w = lhep + be + -+ liseinon) + Lo + -+ Ly_28(m-1n,

where ;, [l e K,1<i<n-2.
Since

O=ow=-(h+bL++lh e+ (- ey +-+(na = Li_y)en 1+ @ +-+1_5)en,
it follows that
L+b+-+1,.,=0
L=l
L=l
by = Irlz—z
L+b++1,_,=0

and
L
L
“(h+ L+ +ls3)
W = I
1
b
b+ b+ tlh3)
Let
0+u= Span{elZn — €13n, €13n — €lny -5 €1(n-2)n — el(n—l)n} € QZ;
u = xi(epn — €3n) + X(esn — €in) + -+ Xn_3(€1n-2n — €1m-1n)> Xi € K
and

1
fla, %,...,.xp3) = EHau - W||§ + Juls

1
=S llAu - wi + [uh

n-3
=0 -+ 0 -4 -bY+ 4003 - X4~ b3+ L+ b+ +li3— X 3)” + Z |
i=1
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n-3 n-4 n-3 n-3 \? n-3
= sziZ -2 ZXiXiH + ZII'Z + (le) + Z|Xi|
i=1 i=1 i=1 i=1 i=1
n-4
+ 2 Z (G = xi = 2(h + b+ -+l + 2l_3)Xp_3.
i=1

Then, the Hessian matrix of f; at any point (X, %, ...,X,_3) € K" is given as follows:

[ 4 -2 0 O 0 0 O]

-2 4 -2 0 - 0 0 O

0 -2 4 -2 ... 0 0 O

(H)(n-3)x(n-3) 00 0 0 - 4 -2 0
0O 0 0 0 -+ =2 4 =2

0 0 0 0 - 0 -2 4

Obviously, H, is a positive definite matrix and (hy;)g, > 0. Thus, f; has the minimum points. That is, there
exists a solution to the problem () for Case 1.

Caskt 2. G is generated by triangles that belong to the same cluster. Then, for any given one-dimensional
closed path w € Hi(G),

! !
w = lep + bes + -+ Insin-1) + -1 + Lo + -+ Iy 2em-1yns

where [, I e K,1<i<n-2.
Since ow = 0, it follows that

L=1,i=1,2,..,n-2
11+12+"'+ln_1=0

and

~(b+ L+t
L
kL

Wan-2)+1)x1 =

In—2

Let

0 # u = span{en, epn,.--rein-ny € Q2(G),
U = Xiepn + X€13n + -+ + Xn_2€1(n-1ns Xi € K

and
1 P
H0a, %, X 2) = 5”311 - wl3 + ful

1
=S llAu - wii + [uh

n-2
1
=00 -0+ 0 -b)++0g 2~ 2’ + Z x| + E[Xl +ot Xy = (b + )]
i=1
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n-2 3 n-2 n-2 n-2
= 2o =2 Yl (et b)) Yoxi+ Yl
i=1 i=1 i=1 i=1
n-2 3
+ ) Ell-z + ) xxg+ Yl
i=1 1<igj<n-2 1<i<j<n-2
Then, the Hessian matrix of f; is given as follows:
31 11 - 1
1 3 11 - 1
11 3 1 - 1
(H)(n-2x(n-2) = 1113« 1l
1 1 11 3

Similar to Case 1, we have that the matrix H, is also a positive definite matrix and (h;;)g, > 0. Hence, f; has
the minimum points, and there exists a solution to the problem (x) for Case 2.

Step 2. Uniqueness. For any given w, by Step 1, the set of solutions of problem () is not empty. Since
f= % I-I5 is a strictly convex function, the problem (*) is a convex problem. Hence, by Lemma 2.2,
Au - w = Constant.

On the other hand, by Lemma 2.1, the matrix A of 9, : Q,(G) — Q(G) is a full-column rank matrix.
Thus, if Au = Au’, then u = u'. That is, the solution to the problem (x) is unique.

Step 3. We will prove the property of the solution of () in Theorem 1.1 by solving linear equations.

For Case 1 of Step 1, by the structural characteristics of fi, it is sufficient to consider the following cases.

(1) Eachx; 20 (i =1,2,...,n — 3). Then,

fo=ta-20+2L-04)+1=0
fXZ=4X2—2Xl—33+2(13—12)+120
fx3:4X3—2Xz—2X4+2(l4—l3)+1=0

fx,,,z. =4xy 4 — 2Xn—S - 2Xn—3 + z(ln—B - In—4) +1=0
an—B =4x,_3 — ZXn,4 - 2(11 + 12 + "'+In,4 + 21n,3) +1=0.

By the first equation, 26 = 4x + 2(L, — L) + 1. Substituting it into the second equation up to the
(n - 3)-th equation, we have that

2X3 = 6X1—4l1+ 212+ 213+ 3,

2, =84 -6l +2(L+ L+ 1) + 6,
) 2X5 = 10)(1 - 811 + 2(12 +...+15) + 10,

2xl~=2ix1-z(i-1)11+z(12+---+1,~)+’(‘;1),2<i<n-3.
Hence,
n-3
X =1 - s
1 1 4
n-+4
XNx=h4L+1L- s
p=h+h >
3n-5
x=L+bL+L5- s
<3 1+h+ 05 4
X4=ll+12+13+l4—4n_6,
4
Zl ’(”_1_2) =1,..,n-3.
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Therefore,

2)x<O0andx; =20 (i =2,3,...,n - 3). Then,

B)x<O0andx;=20(=1,3,...,n - 3). Then,

ll_n—3
x _n—4
% 11+12
u= e .
X; in —i—
! 11+12+...+1i_u
: 4
Xn-3
11+12+"'+ln,3—n—_3
,_ (=36
4(n - 2)
_ 2
X1 l]+12—(n 4)
Xy 2(1’[—2)
i ' (n—i-2Gn-2i-4)
. L+bL+-+1 -
: 4(n - 2)
Xn-3
n? -5n+2
L+b+-tly3— ———
1 2 n-3 4(n_2)
I_n2—9n+20
' 20n - 4)
2n?2 - 20n + 44
L+ - ————
% 202n - 4)
X2 2
X% ll+12+13_3n 29n + 64
u=| . |= 202n - 4) ,
Xn-4 : 5
Xn73 ll+12+...+ln74_w
22n - 4)
2 _
11+12+...+1n73_w
22n - 4)

j

X]'= Zlk_

n%j + (2 -n)j? - (4 + 8)n + 10j + 16

Solution to norm minimum problem on digraphs

\
N

k=1

s

22n - 4)

4)x,.3<0andx; 20 (@G =1,2,...,n - 4). Then,

I n?2-5n+2
' 20n - 4)
2 -12n+ 8
[ e e
X 2(2n - 4)
Xy 2
X ll+lz+l3—3n 2In + 18
u=| . |= 202n - 4) ,
Xn-4
2 _
n>-9n + 18
bt btotl - 2 2°
22n - 4)

— 1095
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iji'l_j[nZ—(jw)mzj]

k , j=1L
) 22n - 4)

Hence, by calculation, we have that (AT);(w — Au) = sign(u;), where I := supp(u) for all cases. Therefore,
for any given w, by the uniqueness of solutions to the problem (), the unique solution u* must be one of all
possible cases satisfying (AT );(w — Au*) = sign(u}), where I = supp(u*).

For Case 2 of Step 1, consider the following cases.

(1) Eachx; 2 0(i =1, 2, ...,n — 2). Then,

fu=3a-Ch+b++h )+ +%B++X2+1=0
fo=3-l+3L+L++h)+x+%6++X2+1=0
fo=36-(+L+3+L+ - +h)+Xx+X%+X3++X2+1=0

Hence,

1

L-=

n

X1 1

X L-—

u= .2 =| " n

Xn-2 1
ln—2 -

ll+n_2
n
2
X1 Iz—;
9]
LT b-2
Xn-2 n
2
ln—2__

Then, we also have that the unique solution u* of the problem (*) satisfies (A7) (w — Au*) = sign(u;}),
where I := supp(u*).
Therefore, Theorem 1.1 is proved. O

Remark 2. The conclusion of Theorem 1.1 is independent of the selection of the basis of Q,(G).
Furthermore, by the partitioned matrix, we have the following corollary.

Corollary 3.1. Let G = (V, E) be a digraph generated by clusters satisfying the following conditions:
(1) each cluster is composed of different squares or triangles;
(2) different clusters intersect at most at one vertex.

Then the matrix A of the boundary operator 3, : Q,(G) — Qi(G) is a full column rank matrix and there is
a unique solution u* to the problem (*) satisfying (AT)[(w — Au*) = sign(u;) where I = supp(u*).



DE GRUYTER Solution to norm minimum problem on digraphs =—— 1097

4 Examples
In this section, we first show how coefficients and norms play an important role in the problem ().

Example 4.1. Let G be a digraph as follows (Figure 2). Then,
Qy(G) = span{eis — ei3s, €135 — €145}
Let
w = 9[4(e1s — eus)] = 4(err — ew + ey — €ys)
be a one-dimensional closed path on G. Suppose
u = x(es — e35) + X(enss — eus) € Qy(G).
Then,
u-w=0-4ep+ (- xes+ (4 -xey+ 0a-4)exs+ - xes + (4 - x)es.

Hence, |0u — w|y depends on whether the three formulas (x; — 4), (x; — 1), and (4 — x) are zero or not, and
as long as two of the three formulas are zero, the third one must be zero. Thus, it is sufficient to consider the
following cases:

1) Ifxq=4,%=4,|0u — wjp + |ul = 8;

Q IEx=4,0+4,10u—-wo + |ui=4+4+ |0

B) Ifxo=x,x%4,|0u—-w| + |uly = 4 + 2|x];

4) fxo =4, +4,|0u — W + |uh) =4+ 4 + |x;

B) fxx# 4,0+ 4,0 %X, |0u—wy+ |u;) =6+ x| + x|

Therefore, there exists no non-zero solution of the problem
min{|ou — w|o + |uli}

inR or Q.
Consider another closed 1-path

1 1 7
w= a[5(6’125 — e3s5) + 4(es — eys)] = 5(612 +ex3) + 5(913 + e35) — 4(ey + eys).
Then, the minimum points of minycq,)uzoflou — wlo + |ul} are not unique. Specifically,

1 1
ou-w= (Xl — 5)612 + (X2 - X1 — %)913 + (4 - X2)€14 + (Xl — 5)325 + (Xz - X1 - 2)635 + (4 — X2)€45.

Figure 2: Example 4.1.
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Similarly, consider the following cases:

(1) Ifx=23,%="40u-wo+uh=73+4=2

() Ifxlzé,xz¢4,|au—w|0+|u|l=4+%+|le>§;
3) Ifx2=4,x1¢%,|au—w|0+|u|1:4+4+|X1|>8;
(4) Ifxz—xlz%,xlq&%(xzq&lo,lau—wlo+|u|1:4+|x1|+|x1+§‘ >4+%;

5) IfXHE%,XHé‘th—XHE%,|au—W|0 +ulh =6+ x| + [l > 6.

Hence, minf (x, %) = % when u = (

Next, for given digraphs, we try to find the “smallest” representative element in the homology class
H,(G) with coefficients in any field K (in particular, K = Q or R).
Example 4.2. Let G be the digraph in Example 4.1. Then,
Q2(G) = panfers — eiss, €135 — s}
For any element u € Q,(G), it can be written as follows:
u = x(es — e35) + (e — eus), 1, X% € K.

Since dimH;(G) = 0, it follows that

Hy(G) = {[0]}
={[(en + €x5) — (ews + ess5)]}
={[(ei3 + e35) — (ew + ess)]}
={[(en + €5) — (en3 + e33)]}.

Consider the following closed 1-paths.
(1) w= (e + e) — (en3 + e35). Then,

1
fla, %) = 5 ||ou - W||§ +luh =06 -1D%+ 06— x+ 1%+ Xzz + pal + |xl.

3
Hence, when u = (Xl) = (4], Iwll = minf(x, %) = <.
X2 0 8

(2) w = (e;3 + ess) — (e + e45). Then,

1
fla, %) = 5 llou - Wiz + uh =X+ 0 - x = D2+ (1 - ) + x| + |xl.

X 0 . 7
Hence, when u = (Xz) =13 | Iwll = minf(x, %) = 5.
4

(3) w= (e + ex) - (e + €5). Then,

1
fla, %) = 5 lou — wil3 + lul = (a4 — D? + 0o — x)? + (1 - %)% + x| + xl.

X
Hence’ when u = (Xz) = s ”W” = minf(xla XZ) = %-

N|= N =

Remark 3. By Example 4.2, we know that in all intuitively visible one-dimensional closed paths

(e + ex5) — (ey + €45)
(en3 + e35) — (ey + €45)
(e + ex) — (e13 + e35),
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the paths that happen to be the boundaries of the elements in the basis of Q,(G) are the “smallest”
representative elements for digraphs generated by squares that belong to the same cluster.

In the following example, we illustrate that for digraph G whose Q,(G) is generated by triangles that
belong to the same cluster, Remark 3 still holds.

Example 4.3. Without loss of generality, take the following digraph G as an example (Figure 3). Let

Qy(G) = span{eys, €35, €145}
U= X5 + X%e135 + €15, X1, %0, 3 € K.

Consider the following cases.
(1) W =ep+ ey — €= 69125. Then,
1
fa, %, 6) = Ellau - wl + |ul

3, 3, 3, 3
:EX1+EX2+§X3 +X1X2+X1X3+X2X3—3X1—X2—X3+5+|X1|+|X2|+|X3|

and

. 5
u= ,  Iwll = minf (x4, x, %) = r

O O WwWlN

(2) w = (e + ey) - (e3 + e35) = d(es — ei35). Then,
1
fla, %, x3) = E ||ou - W||§ + Juls
3.,.3,

3
= EXl + EXZ + EXBZ + X060 + X6 + 06— 220+ 260+ 2+ x| + 0| + x|

and

. 3
,  Iwll = minf (x4, %, ) = >

<
Il
ON|,|_\ N =

Figure 3: Example 4.3.
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Then, we have that w = ej, + ey — ej5 = depps is the boundary of one basis element of Q,(G), and its norm is
the smallest in all intuitively visible one-dimensional elementary closed paths (|deps| < [|0(e12s — eg3s)]).
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