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Abstract: All the (2, 1)-congruences on a left restriction semigroup become a complete sublattice of its
lattice of congruences. The aim of this article is to study certain fundamental properties of this complete
sublattice. We introduce k-, K-, t-, and T -operators on this sublattice and obtain some properties. As
applications, the remarkable (2, 1)-congruences are characterized. These results extend the corresponding
results on inverse semigroups and ample semigroups.
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1 Introduction

Inverse semigroups play an important role in the theory of semigroups and appear in many branches of
mathematics. So, many semigroup scholars have been trying to generalize inverse semigroups. One of the
most successful generalizations is (left; right) ample semigroups, originated by Fountain (see, [1,2]). (Left;
Right) restriction semigroups are generalizations of (left; right) ample semigroups (of course, extensions of
inverse semigroups).

Left restriction semigroups (termed as weakly left E-ample semigroups in some context) arise from
many sources (see [2,3]). They are a class of semigroups equipped with one additional unary operation +

(i.e., unary semigroups), which satisfy certain identities. Such semigroups are isomorphic to unary sub-
semigroups of partial transformation semigroups X�� , where the unary operation + is of the form
α I αdom↦ . The reader can consult [4,5] for history and more details. In particular, each inverse semigroup
S can be shaped into a left restriction semigroup where the unary operation + is defined by the rule a aa 1

=
+ −

for a S∈ . Certainly, S also has another unary operation 1− , which will not have a crucial part to play at this
stage. In this sense, left restriction semigroups are regarded as being natural extensions of inverse semi-
groups, obtained by weakening the condition of regularity, and they have many analogous properties.
Consequently, such class of semigroups has been recently extensively researched by many semigroup
experts from various perspectives (see [6–8]).

The theory of congruences plays a significant role in semigroup theory. Many researchers have been
investigating such a theory (e.g., see [9–21] and references therein). The most useful tool in studying
congruences is the kernel-trace approach, which is successfully used to research the congruences on
inverse semigroups (e.g., see [9,10]). In 1986, Pastijn and Petrich [11] established the kernel-trace theory
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on general regular semigroups. Recently, El-Qallali in [12] developed the kernel-trace theory on ample
semigroups, which is similar to that on inverse semigroups. He characterized the structural properties of the
smallest and the greatest (admissible) congruences having the same kernel and the same trace as a given
admissible congruence. From the universal algebraic point of view, a left restriction semigroup is an algebra
of type (2, 1), so we will mainly concentrate on the (2, 1)-congruences. In the case of inverse semigroups,
congruences must be admissible ones while the admissible congruences on ample semigroups are neces-
sarily (2, 1)-congruences, even 2, 1, 1( )-congruences (see [12, Lemma 2.2]). Meanwhile, the projections will
take over the role of idempotents in the process of studying left restriction semigroups, correspondingly, the
kernel and trace of congruences will be replaced by the projection kernel and trace, respectively. In this
spirit, we shall analogously investigate the (2, 1)-congruences via the projection kernel-trace approach on
left restriction semigroups, echoing the kernel-trace approach to (admissible) congruences on inverse
semigroups and ample semigroups. Inspired by [9,12], the constructions of (2, 1)-congruences having the
same projection kernel and the same projection trace will be explored on left restriction semigroups.

The kernel-trace approach can establish the two-dimensional “network” structure of the lattice of
congruences, which may provide more structure information of the related semigroup. In [13], Petrich
and Reilly set up a min network of congruences on inverse semigroups by means of the smallest group
congruence, semilattice congruence, Clifford semigroup congruence, and E-unitary inverse semigroup
congruence, which enlarges the lattice of congruences on such a semigroup, which is provided by Green
[14]. More recently, El-Qallali [15] extended the approach of [13] to ample semigroups and depicted a
network of admissible congruences on the basis of the smallest cancellative monoid, semilattice, Clifford
ample semigroup, E-unitary ample semigroup admissible congruence, and so on. Along this way, we shall
continue to research analogously remarkable (2, 1)-congruences and provide a similar min network of these
congruences for left restriction semigroups.

The main aim of this article is to study the lattice of (2, 1)-congruences on a left restriction semigroup.
The authors in [16] pointed out that all the (2, 1)-congruences on a left restriction semigroup become a
complete sublattice. This result allows us to develop the kernel-trace theory on left restriction semigroups.
The article will be organized as follows: after making some preparations, Section 3 is contributed to
investigating the structure of (2, 1)-congruences whose projection traces coincide with that of a given
(2, 1)-congruence on left restriction semigroups and determining the smallest as well as the greatest one
of such (2, 1)-congruences. Moreover, it is proved that such (2, 1)-congruences constitute a complete
sublattice of S2,1� ( ). However, the key to the kernel-trace theory on left restriction semigroups is how to
define the t− (T−)operator and the k− (K−)operator on S2,1� ( ). So, in Section 3, we introduce t- and
T -operators on S2,1� ( ). Similarly, we also probe the (2, 1)-congruences having the same projection kernel
and consider k- and K-operators on S2,1� ( ) in Section 4. All of these conclusions generalize the corre-
sponding ones on inverse semigroups and ample semigroups [9,10,12]. As applications, Section 5 is devoted
to characterizing certain specific (2, 1)-congruences on a left restriction semigroup; for example, reduced,
semilattice, Clifford left restriction semigroup, and P-unitary left restriction semigroup (2, 1)-congruences
(Propositions 5.1, 5.3, Theorem 5.5, and Lemma 5.8). In particular, ω σt = , ω ηk = , ω νk t( ) = , ω πt k( ) = are,
respectively, the least reduced, semilattice, Clifford left restriction semigroup, and P-unitary left restriction
semigroup (2, 1)-congruence on left restriction semigroups, where ω is the universal congruence (Corollaries
5.2, 5.4, 5.6, and Proposition 5.9). Moreover, such least congruences are utilized to build up a min network of
(2, 1)-congruences as building bricks on left restriction semigroups. These results enrich and extend the
related results concerning inverse semigroups [10,13] and ample semigroups [15].

2 Preliminaries

Throughout this article, we shall use notions and notations from the textbook of Howie [22]. We start by
recalling some concepts and known results on left restriction semigroups in the sequel. For those not given
in this article, the reader is referred to [3,4,6].
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Definition 2.1. A left restriction semigroup is defined to be an algebra of type (2, 1), more precisely, an
algebra S S, ,( )= ⋅

+ where S,( )⋅ is a semigroup and + is a unary operation such that the following identities
are satisfied:

x x x x y x y x y x y y x xy xy x, , , .( ) ( ) ( )= = = = =
+ + + + + + + + + + + + + + (2.1)

Dually, we can define right restriction semigroups. By a restriction semigroup we mean an algebra
S, , ,( )⋅

+ ∗ of type 2, 1, 1( ) such that
(i) S, ,( )⋅

+ is a left restriction semigroup;
(ii) S, ,( )⋅

∗ is a right restriction semigroup; and
(iii) for any x S∈ , x x( ) =

∗ + ∗ and x x( ) =
+ ∗ +.

The lemma gathers some easy but useful consequences; for details, see [6].

Lemma 2.2. Let S be a left restriction semigroup and x y S, ∈ . Then

x x x x x xy xy x xy xy xy x, , , .( ) ( ) ( ) ( ) ( ) ( )= = = = =
+ + + + + + + + + + + + + +

For a left restriction semigroup S, as usual, we call P S x x S:( ) { }= ∈
+ the set of projections of S and its

elements are called projections of S. By Lemma 2.2, every projection is necessarily an idempotent element of
S, but, in general, not all of the idempotents are projections; for example, see [4]. So, by definition, it is easy
to know that P S( ) is a sub-semilattice of S. Indeed, any semilattice Y can be regarded as being a left
restriction semigroup with identity unary operator by defining a a=

+ for every a Y∈ . Therefore, such
a left restriction semigroup is simply considered and called a semilattice.

In particular, we call a left restriction semigroup to be reduced if its set of projections is a singleton. It is
easy to see that a reduced left restriction semigroup S must be a monoid with the unique projection as its
identity 1. Indeed, any monoid M with identity 1 can be endowed with the structure of a left restriction
semigroup by setting s 1=

+ for all s M∈ . Note that an inverse semigroup, regarded as a left restriction
semigroup, is reduced if and only if it is a group while a left ample semigroup is reduced if and only if it is a
right cancellative monoid. So, in what follows, we regard a monoid as a reduced left restriction semigroup
with a unary operator s: 1↦

+ .
A left restriction semigroup S is called Clifford if P S( ) is central, that is, if e P S( )∈ , then ea ae= holds

for each a S∈ . The known result [7, Proposition 2.3] tells us that S is a Clifford left restriction semigroup if
and only if S is a semilattice of monoids Mα with Y , satisfying that 1 1 1 1 1α β αβ β α= = for any α β Y, ∈ .

Let S be a left restriction semigroup. Following [22], a subset A S⊆ is said to be left unitary if for all
a A∈ and s S∈ , whenever as A∈ , we have s A∈ . Dually, we may define the notion of a right unitary subset.
If A is both left and right unitary, then we call it a unitary subset of S. In particular, a left restriction
semigroup S is P-unitary if P S( ) is a unitary subset of S.

Proposition 2.3. Let S be a left restriction semigroup. Then the following statements are equivalent:
(1) S is P-unitary;
(2) S is left P-unitary;
(3) If x y x=

+ + for x y S, ∈ , then y y=
+.

Proof. (1) ⇒ (2) ⇒ (3) are consequences of the definition.
(3) ⇒ (1). Let a b S, ∈ . If ab P S( )∈

+ , then ab a ab ab P S( ) ( ) ( )= = ∈
+ + + , so that a a P S( )= ∈

+ , thereby
P S( ) is a right unitary subset of S. If a b P S( )∈

+ , then

a b b a b a b a b P S ,( ) ( )= = = ∈
+ + + + + + +

hence b b P S( )= ∈
+ , thereby P S( ) is a left unitary subset of S. We complete the proof. □

Among left restriction semigroups, the notions of subalgebras, homomorphisms, congruences, and
factor algebras are understood in type 2, 1( ). In order to emphasize this point, we use the expressions
2, 1( )-subsemigroup, 2, 1( )-morphism, 2, 1( )-congruence, and 2, 1( )-factor semigroup, respectively.
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Let ρ be a (2, 1)-congruence on a left restriction semigroup. On the quotient S ρ/ , define

S ρ S ρ aρ a ρ: ; ./ → / ↦
+ +

Obviously, + is well defined. We use still S ρ/ to denote the algebra S ρ, ,( )/ ⋅
+ of type (2, 1). The following

proposition is immediate and we here omit the details.

Proposition 2.4. Let ρ be a (2, 1)-congruence on a left restriction semigroup S. Then so is S ρ/ , and
P S ρ x ρ x S:( ) { }/ = ∈

+ .

Moreover, we have the following result.

Proposition 2.5. Let α β, be (2, 1)-congruences on a left restriction semigroup S. If α β⊆ , then
(i) β α/ is a (2, 1)-congruence on S α/ ;
(ii) S β/ is (2, 1)-isomorphic to S α β α( ) ( )/ / / .

Proof.
(i) It is immediate from [16, Proposition 2.3] and [22, Theorem 1.5.4, p. 25].
(ii) Consider the mapping

θ S α β α S β xα β α xβ: ; ,( ) ( ) ( )( )/ / / → / / ↦

and note that by [22, Theorem 1.5.4, p. 25], θ is a semigroup isomorphism from S α β α( ) ( )/ / / onto
S β/ and

xα β α θ x α β α θ x β xβ xα β α θ .[(( )( )) ] [( )( )] ( ) [(( )( )) ]/ = / = = = /
+ + + + +

Thus, we obtain that θ is indeed a (2, 1)-isomorphism. □

Remark 2.6. In view of Proposition 2.5, we can assert that the map β β α↦ / has actually established an
isotone isomorphism from the lattice of those (2, 1)-congruences on S that contain α onto S α2,1� ( )/ ,
the lattice of all (2, 1)-congruences on S α/ .

Let S be a semigroup with a subsemilattice E of E S( ) the set of idempotents. The relations E�͠ and E� are
efficient tools in the study of generalized regular semigroups (see, [3,4]). In [3], Gould provided an equiva-
lent definition of a left restriction semigroup in terms of E�͠ , that is, S is weakly left (right) E-ample with
respect to E if and only if S, ,( )⋅

+ is a left (right) restriction semigroup with P S E( ) = . Later on, when

considering the relation P S�͠ ( ) on a left restriction semigroup S, it is usual to drop the subscript and write

P S�͠ ( ) more simply as �͠ and make the same convention for P S� ( ). In the literature, the relation �͠ is used only
for weakly left ample semigroups (a class of left restriction semigroups in which all the idempotents are
projections see [23–25]), but here this will not cause any confusion. It is well known that for elements a b, of

a left restriction semigroup, a b, �( ) ͠∈ if and only if a b=
+ +, from which it follows that �͠ is indeed a left

congruence on any left restriction semigroup; in particular, a a�͠ +. This observation will be repeatedly used
in the sequel.

Kernel-trace approach is a useful tool to study congruences on an inverse semigroup. As (left; right)
restriction semigroups are generalizations of inverse semigroups, the following problem is natural: Whether
do (left; right) restriction semigroups have a kernel-trace approach similar to that on inverse semigroups?
In order to solve it, we first start to define Pkernel and Ptrace on a left restriction semigroup as follows:

Definition 2.7. For an equivalence ϱ on S, the projection kernel of ϱ is

a S a e e P SPker ϱ : ϱ ,( ) { ( )}= ∈ ∈
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and the projection trace of ϱ is

P S P SPtr ϱ ϱ .( ) ( ( ) ( ))= ∩ ×

The following lemma is immediate.

Lemma 2.8. Let ϱ , ϱ1 2 be equivalences on S. If ϱ ϱ1 2⊆ , then Ptr ϱ Ptr ϱ1 2( ) ( )⊆ and Pker ϱ Pker ϱ1 2( ) ( )⊆ .

Recall that a (2, 1)-congruence ρ on a left restriction semigroup S is called
(i) projection-separating if for any a b S, ∈ , a b ρ,( ) ∈

+ + implies that a b=
+ +.

(ii) projection-pure if and only if eρ P S( )⊆ for any e P S( )∈ .

By the definition above, it is easy to check that a (2, 1)-congruence ρ on S is projection-separating if and
only if ρ εPtr( ) = , where ε is the identical congruence and that ρ is projection-pure if and only if

ρ P SPker( ) ( )= . These two classes of (2, 1)-congruences play an important role in the study of left restriction
semigroups. We shall denote by SR( ) the set of projection-pure (2, 1)-congruences on S and by SP( ) the set
of projection-separating (2, 1)-congruences on S, respectively.

By the foregoing argument, the following lemma is straightforward.

Lemma 2.9. Let S be a left restriction semigroup and ρ be a (2, 1)-congruence on S. Thena b aρ S ρ bρ� �( )͠ ͠⇒ / ,
for any a b S, ∈ .

Let Q,( )≤ be a partially ordered set. Recall that an interval is the subset of the form:

α β γ Q α γ β, : ,[ ] { }= ∈ ≤ ≤

for some α β Q α β, ,∈ ≤ . It is worthy to point out when Q is a complete lattice, any interval is necessarily
a complete sublattice of Q. This fact will be frequently used in the following sections.

3 t- and T -operators
In the remainder of this article, we always assume that S is a left restriction semigroup. We denote by S�( )

the set of congruences and by S2,1� ( ) the set of (2, 1)-congruences on S, respectively. It is easy to know that
under set inclusion, both S�( ) and S2,1� ( ) are lattices, even S�( ) is complete. In [16, Theorem 2.1], the
authors pointed out that S2,1� ( ) is a complete sublattice of S�( ), and the smallest and the greatest element of
both S�( ) and S2,1� ( ) are ε and ω. We shall sometimes use ε S( ) and ω S( ) to avoid confusion, and the similar
notation for other relations. The main aim of this section is to study t- and T-operators on the complete
lattice S2,1� ( ).

To begin with, we investigate the (2, 1)-congruences having the same projection trace on left restriction
semigroups through the approach of [11], and the next lemma is necessary and used several times.

Lemma 3.1. Let ρ S2,1� ( )∈ with ρ τPtr( ) = . Then for a b S, ∈

(1) a ρ S ρ b ρ a τb�( ) ( )( )͠ / ⇔
+ + + +;

(2) aρ S ρ bρ a τ b� � �( ) ( )( ) ( )͠ ͠ ͠/ ⇔ ;

(3) ρ τ� � �͠ ͠ ͠∨ = and ρ τPtr �( )͠∨ = .

Proof.
(1) It is immediate from the definition.

(2) Suppose now that aρ S ρ bρ�( ) ( )( )͠ / . Then aρ bρ( ) ( )=
+ +, that is to mean a ρb+ +. Note that a a�͠ + and b b�͠+ .

Then a a ρb b� �͠ ͠+ + . Hence, a τ b� �( )͠ ͠ .
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Conversely, let a τ b� �( )͠ ͠ . Then a x τy b� �͠ ͠+ + for x y S, ∈ . By using Lemma 2.9, aρ S ρ x ρ y ρ S ρ bρ� �( ) ( )͠ ͠/ = /
+ + .

Therefore, we have proved aρ S ρ bρ�( ) ( )( )͠ / .

(3) Let a ρ b�( )͠∨ . By [22, Proposition 1.5.11, p. 28], there exist x x x S, , , n1 2 ⋯ ∈ such that

aρx x ρ ρx b.n1 2� �͠ ͠⋯

Since ρ is a (2, 1)-congruence on S, by Lemma 2.9 we obtain

aρ x ρ x ρ x ρ bρ,n1 2� �͠ ͠= = ⋯=

so thataρ S ρ bρ�( )͠ / . By using (2), it followsa τ b� �( )͠ ͠ , which implies ρ τ� � �( ) ( )͠ ͠ ͠∨ ⊆ . Clearly, τ ρ� � �( ) ( )͠ ͠ ͠⊆ ∨ .
Again by (2), τ� �͠ ͠ is an equivalence including ρ and �͠ on S. Then it yields ρ τ� � �͠ ͠ ͠∨ = . Associating (1)with (2),
we have ρ τP S�( )∣͠

( )∨ = . □

Let ϱ be a relation and denote by ϱ∗ the least (2, 1)-congruence on S containing ϱ and by ϱ♭ the greatest
congruence on S contained in ϱ. Let ρ S2,1� ( )∈ with ρ τPtr( ) = . We put

ρ τ ρ ρ τ, .t
T � � �( ) ( )͠ ͠ ͠= = ∨ =

∗ ♭ ♭

Theorem 3.2. Let S be a left restriction semigroup. If ρ S2,1� ( )∈ , then ρt and ρT are the least and the greatest
(2, 1)-congruences with the same projection trace τ as ρ, respectively.

Proof. Note that τ∗ is the least (2, 1)-congruence including τ so that τ ρ⊆
∗ . By hypothesis, we can obtain

τ τPtr( ) =
∗ since τ τPtr( )⊆

∗ and

τ ρ τ ρ τPtr Ptr .( ) ( )⊆ ⇒ ⊆ =
∗ ∗

For the remainder, we first show that ρT is a (2, 1)-congruence with the projection trace τ. By [22,
Proposition 1.5.10], we can see that

ρ a b S S x y S xay xby ρ, : , ,1� �( ) {( ) ( )( ) }͠ ͠∨ = ∈ × ∀ ∈ ∈ ∨
♭

is the greatest congruence contained in ρ �͠∨ . Furthermore, ρ �( )͠∨
♭ respects the unary operation + since

a b ρ a b ρ
a b τ a τb a ρb

xa yρxb y xa y τ xb y
xa y xa y τ xb y xb y
a b ρ

, ,
,

, .

� �

� �

� �

�

( ) ( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

͠ ͠

͠ ͠

͠ ͠

͠

∈ ∨ ⇒ ∈ ∨

⇒ ∈ ⇒ ⇒

⇒ ⇒

⇒

⇒ ∈ ∨

♭

+ + + +

+ + + + + +

+ + + + + +

+ + ♭

Additionally, since ρ ρ �( )͠⊆ ∨ implies ρ ρ ρ� �( ) ( )͠ ͠⊆ ∨ ⊆ ∨
♭ , then

ρ ρ ρ τ ρPtr Ptr Ptr .P S� �( ) (( ) ) ( )∣ ( )͠ ͠
( )⊆ ∨ ⊆ ∨ = =

♭

Hereby, we obtain ρ τPtr �(( ) )͠∨ =
♭ .

In the end, we shall claim that ρ �( )͠∨
♭ is the greatest (2, 1)-congruence with the projection trace τ,

where τ ρ P S∣ ( )= . In fact, if λ S2,1� ( )∈ with λ τPtr( ) = , then by Lemma 3.1, we deduce

λ λ τ ρ .� � � �( )͠ ͠ ͠ ͠⊆ ∨ = = ∨

This shows that λ ρ �( )͠⊆ ∨
♭ since ρ �( )͠∨

♭ is the greatest (2, 1)-congruence contained in ρ �͠∨ . Therefore,
the proof is completed. □

Motivated by Lawson [20, Theorem 1.4.12, p. 25], we define~ on a left restriction semigroup S as follows:
for x y S, ∈ ,

x y y x x y~ if and only if .=
+ +
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Lemma 3.3. The relation ~ is reflexive, symmetric, and compatible with the multiplication. Moreover, a b~+ +

for any a b, in S.

Proof. By definition, it is not difficult to check that ~ is reflexive and symmetric.
Let a b c d S, , , ∈ . If a b~ and c d~ , then b a a b=

+ + , d c c d=
+ + , and so

bd ac bd b ac bd a b c bd b bd
a bd b c a bd c bd bd b
b a c d b ac d b a a b d c c d
b ac ad ac b ad ac ac a
ac a bd ac bd b a a b

since by Lemma 2.2,
since by 2.1 ,
since ,
since by 2.1 ,
since .

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

= = ( = )

= ⋅ ⋅ = ( ( ) = )

= ⋅ = ⋅ ⋅ ( = = )

= = ( ( ) = )

= = ( = )

+ + + + + + + +

+ + + + + +

+ + + + + + + +

+ + + + + +

+ + + + +

Hence ac bd~ , which implies that ~ is compatible with the multiplication. We note that

b a b a a b a b ,( ) ( )= = =
+ + + + + + + + + +

and the result follows. □

Proposition 3.4. If ρ S2,1� ( )∈ , then
(1) ρ a b S S c S c a c b c ρa ρb ρ, : , ~t {( ) ( ) } ( )= ∈ × ∃ ∈ = = ∩

+ + + + + ∗.

(2) ρ a b S S y S ay ρ by, :T 1{( ) ( )( ) ( ) }= ∈ × ∀ ∈
+ + .

Proof. (1). By [12, Corollary 3.3], the relation

ξ a b S S c S c a c b c ρa ρb, : ,{( ) ( ) }≔ ∈ × ∃ ∈ =
+ + + + +

is the least (2, 1)-congruence with the projection trace ρPtr( ) on S. Note that by Theorem 3.2, ρt is also the
least (2, 1)-congruence on S with projection trace ρPtr( ), we can observe that ρ ξt = .

Let a b S, ∈ . If a ρ b~( )∩ , then b a a b=
+ + , a ρb+ +, and hence

b a a b a b b a ρ a ρ b, ,⋅ = ⋅
+ + + + + + + +

thereby a b ξ ρ, t( ) ∈ = . It follows that ρ ρ~ t( )∩ ⊆ . Therefore, ρ ρ~ t( )∩ ⊆
∗ . This shows that

ρ ρPtr ~ Ptr t( ) ( )∩ ⊆
∗ . Conversely, if a b ρ τ, Ptr t( ) ( )∈ = , then by definition, a a=

+, b b=
+, and aρb.

Obviously, a b a b b a b a= = =
+ + + + + + . In other words, a b, ~( ) ∈ . Therefore, a b ρ, ~( ) ( )∈ ∩ and whence

ρ ρPtr Ptr ~t( ) ( )⊆ ∩
∗. We have now verified that ρ ρPtr Ptr ~t( ) ( )= ∩

∗. But by Theorem 3.2, ρt is the least
(2, 1)-congruence on S with projection trace ρ ρPtr Ptr ~ ,( ) ( )= ∩

∗ now ρ ρ ~t ( )⊆ ∩
∗. Conse-

quently, ρ ρ ~t ( )= ∩
∗.

(2) We prove first that ζ a b S S y S ay ρ by, : 1{( ) ( ) ( ) ( ) }= ∈ × ∀ ∈
+ + is a (2, 1)-congruence on S.

Obviously, ζ is an equivalence on S. If aζb and c S∈ , then by definition, for any y S1
∈ , acy ρ bcy( ) ( )+ +,

which follows that acζbc. Therefore, ζ is a right congruence on S. Considering that ρ is a (2, 1)-congruence
on S, we have c ay ρc by( ) ( )+ + so that cay c ay ρ c by cby( ) ( ( ) ) ( ( ) ) ( )= =

+ + + + + +. So, ca cb ζ,( ) ∈ and whence ζ is
a left congruence on S. Now ζ is a congruence on S. Furthermore, we note aζb implies a ρb+ + and so

a y a y ρb y b y .( ) ( )= =
+ + + + + + + +

In other words,

a ρb a ζb .⇒
+ + + + (3.1)

Therefore, ζ is a (2, 1)-congruence on S, and ρ ζPtr Ptr( ) ( )⊆ .
On the other hand, by definition, a ζb+ + can imply that a ρb+ +, so that ζ ρPtr Ptr( ) ( )⊆ . Now
ζ ρPtr Ptr( ) ( )= . So, by Theorem 3.2, we have ζ ρT

⊆ . Conversely, if aρ bT , then ayρ byT . Since by Theorem
3.2, ρT is a (2, 1)-congruence on S, it follows that ay ρ by( ) ( )+ +. Therefore, a b ζ,( ) ∈ and whence ρ ζT

⊆ .
We complete the proof. □
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We can now define t- and T -operators on S2,1� ( ).

Definition 3.5. On S2,1� ( ), we define the t-operator by

S S ρ ρ• : ;t
t

2,1 2,1� �( ) ( )→ ↦

and the T -operator by

S S ρ ρ• : ; .T T2,1 2,1� �( ) ( )→ ↦

We arrive now at the main result of this section.

Proposition 3.6. Let S be a left restriction semigroup and ρ θ S, 2,1� ( )∈ . Then the following statements hold:
(1) ρ ρ,t

T[ ] is a complete sublattice of S2,1� ( ) with the same projection trace as ρ.
(2) t t Tt2

= = and T T tT2
= = .

(3) If ρ θ⊆ , then ρ θt t⊆ and ρ θT T
⊆ .

Proof. (1) It is immediate from Theorem 3.2 and the fact that an arbitrary interval of a complete lattice is
necessarily a complete sublattice.

(2) and (3) are the consequences of (1) and definitions of t- and T-operators. □

As already stated in Section 2, any (2, 1)-congruence ρ on S is projection-separating if and only if
ρ εPtr( ) = . In this case, S ε ε ε ε, ,t

T TP( ) [ ] [ ]= = is a complete sublattice of S2,1� ( ). Thus, we have the
following proposition.

Proposition 3.7. Let S be a left restriction semigroup and ρ S2,1� ( )∈ . Then the mapping

ϕ ρ ρ S ρ ξ ξ ρ: , ;t
T

t tP[ ] ( )→ / ↦ /

is an isotone isomorphism of complete sublattices.

Proof. Suppose now ξ ρ ρ,t
T[ ]∈ . Then from Proposition 2.5 it follows that ξ ρt/ is a (2, 1)-congruence on

S ρt/ . Observe that ξ ρ S ρt tP( )/ ∈ / if and only if ξ ρPtr Ptr t( ) ( )= . Considering Proposition 3.6, it is easy to
see that ϕ is well-defined. Accordingly, we have that ϕ is an isotone isomorphism of complete sublattice
from ρ ρ,t

T[ ] onto ρ ρ ρ ρ,t t
T

t[ ]/ / by Remark 2.6. Since S ρ ε S ρ ε S ρ,t t t
TP( ) [ ( ) ( ( )) ]/ = / / and ρ ρ ε S ρt t t( )/ = / ,

we only need to verify ρ ρ ε S ρT
t t

T( ( ))/ = / . Note that ρT is the greatest (2, 1)-congruence with the same

projection trace as ρt, and thus ρ ρT
t/ is the greatest projection-separation (2, 1)-congruence on S ρt/ . Hence,

by using the maximality we obtain ρ ρ ε S ρT
t t

T( ( ))/ = / . Therefore, we complete the proof. □

4 k- and K -operators
Now suppose K ρPker( )= for ρ S2,1� ( )∈ . Let πK be an equivalence on S whose equivalent classes are

K S K, \{ }. Then the congruence πK
♭ , that is the greatest congruence on S contained in πK , is given by

π a b S S x y S xay K xby K, : , .K
1{( ) ( ) }= ∈ × ∀ ∈ ∈ ⇔ ∈

♭

As usual, we call πK
♭ the syntactic congruence of K ; for syntactic congruence, see [22, p. 28]. We define

ρ a a a K, : .k {( ) }= ∈
+ ∗
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Theorem 4.1. With the same notations as above,
(1) ρk is the least (2, 1)-congruence with projection kernel K on S.
(2) π KPker K( ) =

♭ .

Proof. (1). First, we claim ρ KPker k( ) = . If x K∈ , then

x x a a a K a a a K ρ, , : , : ,k( ) {( ) } {( ) }∈ ∈ ⊆ ∈ =
+ + + ∗

and whence K ρPker k( )⊆ . On the other hand, by x K∈ , we know that xρ P S ρ( )∈ / , so that xρ xρ x ρ( )= =
+ +

since ρ is a (2, 1)-congruence on S. It follows that x x ρ,( ) ∈
+ . Therefore, we have a a a K ρ, :{( ) }∈ ⊆

+ , and
hence ρ a a a K ρ, :k {( ) }= ∈ ⊆

+ ∗ , thereby ρ ρ KPker Pkerk( ) ( )⊆ = . Now, ρ KPker k( ) = , as required.
Now let ξ be a (2, 1)-congruence on S such that ξ KPker( ) = . By the foregoing proof, we have verified

that a a a K ξ, :{( ) }∈ ⊆
+ ∗ . Thus, ρ ξk ⊆ . Consequently, ρk is the least (2, 1)-congruence with its projection

kernel K on S.
(2). Assume now a S∈ . If a πPker K( )∈

♭ , then a e π, K( ) ∈
♭ for some e P S( )∈ . Hence a a a K1= ⋅ ∈

+ since

πK
♭ is the syntactic congruence over K and a e a e P S K1 ( )= ∈ ⊆

+ + , where 1 is the identity of S1. It follows that

π KPker K( ) ⊆
♭ . Conversely, if m K∈ , then by the proof of (1), m m ρ,( ) ∈

+ ; so that xmy xm y ρ,( ) ∈
+ for

x y S, 1
∈ ; in other words, xmy ρ xm y ρ( ) ( )=

+ . This means that

xmy K xm y K.∈ ⇔ ∈
+

So, we have m m π, K( ) ∈
+ ♭ , so that m πPker K( )∈

♭ , leading to K πPker K( )⊆
♭ . Therefore, π KPker K( ) =

♭ . □

Corollary 4.2. The relation πK
♭ is the greatest congruences on S whose projection kernel is K .

Definition 4.3. On S2,1� ( ), we define the k-operator by

S S ρ ρ• : ;k
k

2,1 2,1� �( ) ( )→ ↦

and the K -operator by
S S ρ ρ ξ S ρ ξ π• : ; : .K K

K
2,1 2,1 2,1� � �( ) ( ) { ( ) }→ ↦ = ⋁ ∈ ⊆ ⊆

♭

Following [16], if α β S, 2,1� ( )∈ , then both α β∩ and α β∨ are in S2,1� ( ). Moreover, S2,1� ( ) is a complete
subsemilattice of S�( ). In this case, the following lemma is evident.

Lemma 4.4. For any (2, 1)-congruence ρ on S whose projection kernel is K , there exists

ρ ξ S ρ ξ π: ,K
K

2,1�{ ( ) }= ⋁ ∈ ⊆ ⊆
♭

which is the greatest (2, 1)-congruence on S with K as its projection kernel. So, •K is well-defined.

Proposition 4.5. Let S be a left restriction semigroup and ρ θ S, 2,1� ( )∈ . Then the following statements
are true:
(1) ρ ρ,k

K[ ] is a complete sublattice of S2,1� ( ) with the same projection kernel as ρ.
(2) k k Kk2

= = and K K kK2
= = .

(3) If ρ θ⊆ , then ρ θk k⊆ .

Proof. (1) It directly follows from Theorem 4.1 and Definition 4.3 and the fact that any interval of a complete
lattice is still complete.

(2) and (3) are immediate from the definitions of k- and K-operators. □

It is worth noting that ε P SPker( ) ( )= and any (2, 1)-congruence ρ is projection-pure if and only if
ρ P SPker( ) ( )= . Then we can easily deduce that S ε ε ε ε, ,k

K KR( ) [ ] [ ]= = so that by Proposition 4.5, the
following corollary is necessary.
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Proposition 4.6. Let S be a left restriction semigroup and ρ S2,1� ( )∈ . Then the mapping

ψ ρ ρ S ρ ξ ξ ρ: , ;k
K

k kR[ ] ( )→ / ↦ /

is a complete isotone isomorphism.

Proof. Assume that ξ ρ ρ,k
K[ ]∈ . Then in view of Proposition 2.5, we can see that ξ ρk/ is necessarily a (2, 1)-

congruence on S ρk/ . Note that ξ ρ S ρk kR( )/ ∈ / if and only if ξ ρPker Pker k( ) ( )= . Then by Proposition 4.5,
it is not hard to check that ψ is well-defined. Furthermore, by using Remark 2.6 we can see that ψ
is a complete isotone isomorphism from ρ ρ,k

K[ ] onto ρ ρ ρ ρ,k k
K

k[ ]/ / . On the other hand, because

S ρ ε S ρ ε S ρ,k k k
KR( ) [ ( ) ( ( )) ]/ = / / and ρ ρ ε S ρk k k( )/ = / , it suffices to show ρ ρ ε S ρK

k k
K( ( ))/ = / . Observe

that ρK is the greatest (2, 1)-congruence with the same projection kernel as ρk, and whence ρ ρK
k/ is

the greatest projection-pure (2, 1)-congruence on S ρk/ . Therefore, by the maximality we can obtain

ρ ρ ε S ρK
k k

K( ( ))/ = / . This completes the proof. □

5 A min network of (2, 1)-congruences
As applications of k-, K-, t-, and T -operators, in this section we shall give the characterizations of some
remarkable (2, 1)-congruences on a left restriction semigroup S.

Let ρ be a (2, 1)-congruence on a left restriction semigroup S. Then ρ is reduced if S ρ/ is a reduced left
restriction semigroup, i.e., P S ρ( )/ is a singleton. It is worthy to point out that reduced congruences are
generalizations of group and (right)cancellative congruences on inverse and (left) ample semigroups,
respectively.

Proposition 5.1. Let S be a left restriction semigroup. If ρ is a (2, 1)-congruence on S, then the following
statements equal:
(1) ρ is a reduced congruence on S;
(2) ρ P S P SPtr( ) ( ) ( )= × ;

(3) ρ ω ω,t
T[ ]∈ .

Proof. (1)⇒ (2). Assume that ρ is a reduced congruence on S. Then P S ρ 1∣ ( )∣/ = . Recall from Proposition 2.4
that P S ρ x ρ x S:( ) { }/ = ∈

+ . Then e f ρ,( ) ∈ for any e f P S, ( )∈ . Hence, we have P S P S ρPtr( ) ( ) ( )× ⊆ . This,
together with the reverse inclusion shows ρ P S P SPtr( ) ( ) ( )= × .

(2) ⇒ (1). It is immediate from the definition and P S ρ x ρ x S:( ) { }/ = ∈
+ .

(1)⇒ (3). Let ρ be a reduced congruence on S. Then ρ P S P SPtr( ) ( ) ( )= × . Note that ω P S P SPtr( ) ( ) ( )= × ,
and thus by Proposition 3.6, ω ω,t

T[ ] contains all the (2, 1)-congruences whose projection trace are the same as
ρ. Thus, ρ ω ω,t

T[ ]∈ holds.
(3) ⇒ (1). It is trivial. □

By Proposition 5.1, we have the following corollary.

Corollary 5.2. Let S be a left restriction semigroup. Then the smallest reduced (2, 1)-congruence σ is
equal to ωt. In this case, each (2, 1)-congruence ρ is reduced if and only if ρ σ ω,[ ]∈ . Moreover,
σ a b x S x a x b, :{( ) ( ) }= ∃ ∈ =

+ + and σ ~=
∗.

Proof. It is evident that σ ωt= holds. Furthermore, when putting ρ ω= in Proposition 3.4, the proof is
completed. □

A (2, 1)-congruence ρ on a left restriction semigroup S is called a
(i) semilattice congruence if S ρ/ itself is a semilattice.
(ii) Clifford congruence if S ρ/ is a Clifford left restriction semigroup.
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Proposition 5.3. Let ρ be a (2, 1)-congruence on S. Then the following conditions equal:
(1) ρ is a semilattice congruence on S.
(2) ρ SPker( ) = .
(3) S ρ x ρ x S:{ }/ = ∈

+ .

(4) ρ�͠ ⊆ .

(5) ρ ω ω,k
K[ ]∈ .

Proof. It is obvious that (1), (2), and (3) are equivalent. Now we show the others.
(1)⇒ (4). Because ρ is a semilattice congruence on S, we can see a a ρ,( ) ∈

+ and b b ρ,( ) ∈
+ for a b S, ∈ .

Moreover,

a b a b aρa b ρb aρb.�͠ ⇒ = ⇒ = ⇒
+ + + +

Hence, it proves ρ�͠ ⊆ .

(4) ⇒ (1). It is a direct consequence of a a�͠ + for any a S∈ .
(1) ⇒ (5). Let ρ be a semilattice congruence on S. Then ρ SPker( ) = . Observe that ω SPker( ) = and that

ω ω,k
K[ ] includes all the (2, 1)-congruences whose projection kernels are S, so we have ρ ω ω,k

K[ ]∈ .
(5) ⇒ (1). It is immediate from the fact ρ ω SPker Pker( ) ( )= = . □

Corollary 5.4. Let S be a left restriction semigroup. Then ωk equals �͠
∗ and is the least semilattice congruence

η on S. Moreover, any (2, 1)-congruence ρ is a semilattice congruence if and only if ρ η ω,[ ]∈ .

Proof. Since ω itself is a semilattice congruence on S, the least semilattice congruence η does exist. Then
from Proposition 5.3 (5) it follows that η ωk= . On the other hand, by Proposition 5.3 (4) we can deduce that

�͠
∗ is a semilattice congruence, and thereby η �͠⊆

∗. In addition, note η�͠ ⊆ so that η�͠ ⊆
∗ . Therefore, it has

proved η ωk �͠= =
∗. The rest statement is trivial. □

Theorem 5.5. Let ρ be a (2, 1)-congruence on S and η S ρ( )/ the least semilattice congruence on S ρ/ . Then the
following statements are equivalent:
(1) ρ is a Clifford congruence on S.
(2) ρT is a semilattice congruence on S.
(3) ρ ρ ηT

= ∨ .

(4) ρ ρ η S ρT ( )/ = / .

Proof. (1)⇒ (2). By hypothesis, we can see ax ρ x a+ + , for a S∈ and x S1
∈ . Because ρ is a (2, 1)-congruence

on S and x a ρ a x+ + + +, we may obtain

ax ax ρ x a x a ρ a x a x ,( ) ( ) ( ) ( ) ( ) ( )= = =
+ + + + + + + + + + +

and thus ax ρ a x( ) ( )+ + + so that aρ aT +. Therefore, ρT is a semilattice congruence on S.
(2) ⇒ (1). Since ρT is a semilattice congruence on S, we obtain aρ aT + for a S∈ , and whence

ax ρ a x( ) ( )+ + + a x ρx a=
+ + + +, for x S1

∈ . Thus, we have ax ρx a( )+ + +. Multiplying ax ρx a( )+ + + on the right hand
by a, we obtain ax aρx a a( )+ + + , so that ax ρx a+ + by ax a ax( ) =

+ +. Thus, ρ is a Clifford congruence on S.
(2)⇒ (3). Note that η is the least semilattice congruence on S. By assumption, it follows that η ρT

⊆ , and

thus ρ η ρT( )∨ ⊆ since ρ ρT
⊆ . According to Theorem 3.2 and Proposition 5.3 (4), we obtain ρ ρT �( )͠= ∨

♭

and η�͠ ⊆ . Hence, ρ ρ ρ η� �( ) ( ) ( )͠ ͠∨ ⊆ ∨ ⊆ ∨
♭ , which is equal to ρ ρ ηT ( )⊆ ∨ . Therefore,

we have ρ ρ ηT
= ∨ .

(3) ⇒ (2). Clearly, η ρ η ρT( )⊆ ∨ = , which together with Corollary 5.4 shows that ρT is a semilattice
congruence on S.

(3) ⇒ (4). Suppose now that ρ is a (2, 1)-congruence on S. By using Proposition 2.5, S η ρ( )/ ∨ is (2, 1)-
isomorphic to S ρ η ρ ρ( ) (( ) )/ / ∨ / . Additionally, η η ρ⊆ ∨ , and thus by Corollary 4.6, η ρ∨ is a semilattice
congruence on S. Hence, η ρ ρ( )∨ / is necessarily a semilattice congruence on S ρ/ . Note that η S ρ( )/ is the
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least semilattice congruence on S ρ/ , so we have η S ρ η ρ ρ( ) ( )/ ⊆ ∨ / . On the other hand, define a relation ξ
on S as follows:

xξy xρ η S ρ yρ .( ) ( )( )⇔ /

It is not difficult to check that ξ is a (2, 1)-congruence as well as ρ ξ⊆ . Moreover, we can obtain
ξ ρ η S ρ( )/ = / . Again by Proposition 2.5, S ξ/ is (2, 1)-isomorphic to S ρ ξ ρ S ρ η S ρ( ) ( ) ( ) ( )/ / / = / / / . In
this case, ξ is also a semilattice congruence on S, which implies η ξ⊆ . Hence, η ρ ξ( )∨ ⊆ so that
η ρ ρ ξ ρ η S ρ( ) ( )∨ / ⊆ / = / . From the foregoing argument, we obtain η S ρ η ρ ρ( ) ( )/ = ∨ / . Therefore, we
conclude ρ ρ η S ρT ( )/ = / .

(4) ⇒ (3). Observing the proof of 3 4( ) ( )⇒ , it is easy to see η ρ ρ η S ρ( ) ( )∨ / = / . By hypothesis
ρ ρ η S ρT ( )/ = / , it immediately follows ρ ρ η ρ ρT ( )/ = ∨ / so that ρ ρ ηT

= ∨ . This completes the proof. □

Corollary 5.6. Let S be a left restriction semigroup. Then ηt is the least Clifford congruence ν on S and
ν η ωt k t( )= = , where η is the least semilattice congruence on S. In this case, every (2, 1)-congruence ρ is
Clifford congruence if and only if ρ ν ω,[ ]∈ .

Proof. Obviously, the least Clifford congruence ν exists on S. Note that η η ηT
t

T( )⊆ = , and thus by Corollary
5.4, ηt

T( ) is a semilattice congruence on S. According to Theorem 5.5 (1), ηt is a Clifford congruence on S so
that ν ηt⊆ .

On the other hand, let ρ be any Clifford (2, 1)-congruence on S. By Theorem 5.5 (2), ρT is a semilattice
congruence on S so that η ρT

⊆ . Using Proposition 3.6, we have

η ρ ρ ρ,t
T

t t( )⊆ = ⊆

whence η νt ⊆ certainly holds. Therefore, we obtain ν η ωt k t( )= = since ω ηk = . □

Proposition 5.7. Let S be a left restriction semigroup. Then ω σ η= ∨ .

Proof. In view of Corollaries 5.2 and 5.4, it is not hard to obtain σ ~=
∗ and η �͠=

∗. Note that aωb always
holds for a b S, ∈ , and thus

a b a b a a b a a a b b a b b b a b, .( ) ( )⋅ = = ⋅ ⋅ = = ⋅
+ + + + + + + + + + + +

This, together with b a a b( ) ( )=
+ + + +, shows a b a a b b~ ~�͠+ + . so that ω ~ ~�( )͠⊆ . By noting that σ~ ⊆ and

η�͠ ⊆ , it yields ω σησ( )⊆ , whence ω σ η( )⊆ ∨ . Consequently, we have proved ω σ η= ∨ . □

A (2, 1)-congruence ρ on S is called P-unitary congruence, if S ρ/ is P-unitary. In this case,
P S ρ eρ e P S:( ) { ( )}/ = ∈ .

Lemma 5.8. Let S be a left restriction semigroup. If ρ is a (2, 1)-congruence on S, then the following conditions
are equivalent:
(1) S ρ/ is P-unitary;
(2) b a ρPker( )∈

+ implies that a ρPker( )∈ for a b S, ∈ ;
(3) x y x ρ,( ) ∈

+ + implies y y ρ,( ) ∈
+ , for x y S, ∈ .

Proof. (1) ⇒ (2). Let b a ρPker( )∈
+ . Then b a ρ eρ P S ρ( ) ( )= ∈ /

+ for some e P S( )∈ . Since ρ is a P-unitary
congruence, we have aρ P S ρ( )∈ / , thereby a ρPker( )∈ .

(2)⇒ (3). Let x y x ρ,( ) ∈
+ + . Then x y ρPker( )∈

+ . By means of (2), we have y ρPker( )∈ so that y y ρ,( ) ∈
+ .

(3) ⇒ (1). In view of Proposition 2.4, we only need to show that S ρ/ is left P-unitary. Suppose now
ea ρ P S ρ( ) ( )∈ / for e P S( )∈ . Then ea ea ρ,( ) ∈

+ , which is equal to ea a ea ρ,( ) ∈
+ + . By hypothesis, we obtain

a a ρ,( ) ∈
+ so that aρ P S ρ( )∈ / . Therefore, the proof is completed. □
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Proposition 5.9. Let S be a left restriction semigroup. Then σ ωk t k( )= is the least P-unitary (2, 1)-congruence
π on S. In addition, if ρ is a P-unitary (2, 1)-congruence, then ρ π ω,[ ]∈ .

Proof. First of all, we claim that σk itself is a P-unitary (2, 1)-congruence on S. In fact, let x y S, ∈ .
If x y σPker k( )∈

+ , then from σ σPker Pkerk( ) ( )= it follows x y σPker( )∈
+ . Hence, x y x y σ,( ) ∈

+ + + .
According to Corollary 5.2, we obtain y y σ,( ) ∈

+ so that y σPker( )∈ . Furthermore, y σPker k( )∈ since
σ σPker Pker k( ) ( )= . By Lemma 5.8, we can see that σk is a P-unitary congruence on S. Hence, the least

P-unitary (2, 1)-congruence π exists on S so that π σk⊆ .
Second, we declare that σk is contained in any P-unitary (2, 1)-congruence ρ on S. To see this, let

a σPker k( )∈ . Since σ σPker Pkerk( ) ( )= , then a σPker( )∈ . Hence, we have a a σ,( ) ∈
+ . In this case, there is

b S∈ such that b a b a=
+ + +, which is equal to b a a b a( ) ( )=

+ + + +. Clearly, b a a b a ρ,(( ) ( ) ) ∈
+ + + + . Observe that ρ

is a P-unitary congruence on S, using Lemma 5.8 again, it yields a a ρ,( ) ∈
+ so that a ρPker( )∈ . Thus, we

can know σ ρPker Pkerk( ) ( )⊆ . On the other hand, by using Proposition 4.5, it follows that σ ρk k k( ) ⊆ . Noting
σ σk k k( ) = , it derives σ ρk k⊆ . Associating with ρ ρk ⊆ , thereby σ ρk ⊆ . Because π is also a P-unitary con-
gruence on S, we immediately obtain σ πk ⊆ . Therefore, π σk= holds.

Finally, the equality σ ωk t k( )= is a direct consequence of σ ωt= . □

Remark 5.10. As already mentioned in the previous paragraphs, for a left restriction semigroup S, the
interval σ ω,[ ] consists of all of its reduced congruences, the interval η ω,[ ] contains all its semilattice
congruences, the interval ν ω,[ ] is the set of all the Clifford congruences and the interval π ω,[ ] contains
all the P-unitary congruences. These (2, 1)-congruences constitute the complete sublattices of S2,1� ( ),
respectively. On the other hand, from the universal algebraic viewpoint, the class of P-unitary left restric-
tion semigroups is a quasivariety. Then by [10, Lemma I.11.14, p. 60], the partially ordered set of all
P-unitary (2, 1)-congruences on S under inclusion also constitute a complete sublattice of S2,1� ( ) with
the greatest element ω. Meanwhile, each type of (2, 1)-congruence determines the corresponding left
restriction semigroups. In this sense, congruences are usually applied to formulate some remarkable
semigroups from a given semigroup and have a great influence on the structure of such a semigroup.

Figure 1: A min network of (2, 1)-congruences.
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In closing this article, we shall present a diagram named the min network of (2, 1)-congruences on left
restriction semigroups (Figure 1).
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