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Abstract: This study elucidates the sufficient conditions for the first-order nonlinear differential equations
with periodic coefficients and time-varying delays to have positive periodic solutions. Our results are
proved using the Krasnosel’skii fixed point theorem. In this article, we have identified two sets Δ and ∇

and proved that at least one positive periodic solution exists in the interval between the point belonging to
Δ and the point belonging to ∇. We propose simple conditions that guarantee the existence of sets Δ and ∇.
In addition, we obtain the necessary conditions for the existence of positive periodic solutions of the first-
order nonlinear differential equations when the periodic coefficients satisfy certain conditions. Finally,
examples and numerical simulations are used to illustrate the validity of our results.
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1 Introduction

Consider the first-order nonlinear equation
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where t �∈ . Let ω 0> and μ 0, 1[ ]∈ .
We assume that
(H1) a : 0, 1� [ ]→ and b i n: 0, 1i � [ ) ( )→ ∞ ≤ ≤ are ω-periodic continuous functions satisfying

a t a t ω( ) ( )= + and b t b t ωi i( ) ( )= + for t �∈ ;
(H2) τ i n: 0, 1i � [ )( )→ ∞ ≤ ≤ and H i n: 0, 1i � [ )( )→ ∞ ≤ ≤ are ω-periodic continuous functions

satisfying τ t τ t ωi i( ) ( )= + and H t H t ωi i( ) ( )= + for t �∈ ;
(H3) f : 0, 0,[ ) [ )∞ → ∞ is a Lipschitz continuous function, i.e., there is a non-negative constant L,

for any x y, , the following inequality holds:

f x f y L x y .∣ ( ) ( )∣ ∣ ∣− ≤ −
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Equation (1.1) is a delay differential equation. Delay differential equations are mainly used to describe
dynamic systems that rely on current and past historical states. The time-delay phenomenon is widely used
in the fields of population dynamics [1–4] and infectious diseases [5,6]. Scholars have shown that delay
differential equations can more accurately reflect the changing laws of objective things than differential
equations without time delay. In the past few decades, delay differential equations have received the
attention of many scholars and achieved certain results.

For equation (1.1), when the nonlinear term f x( ) has different expressions, model (1.1) also has different
application backgrounds. For example, when the nonlinear term f N Ne αN( ) =

− , then equation (1.1) will
degenerate into the following Nicholson’s blowflies model [7] through certain assumptions:

N t δN t BN t τ e ,γN t τ( ) ( ) ( ) ( )
′ = − + −

− −

where N t( ) is the size of the population at time t, B is the maximum per capita daily egg production rate, δ is
per capita daily adult death rate, τ denotes the approximate time of the life cycle, and

γ
1 is the size at which

the population reproduces at its maximum rate. Nicholson’s blowflies model has received wide attention
due to its extensive practical significance, and its theoretical achievements have made remarkable progress
in the past few decades, see [8–12]. For example, Li and Du [13] studied the existence of positive periodic
solutions of the generalized Nicholson’s blowflies model,

x t δ t x t p t x t τ t e ,
i

m

i i
q t x t τ t

1

i i( ) ( ) ( ) ( ) ( ( )) ( ) ( ( ))∑′ = − + −

=

− −

where m is a positive integer, p δ q C, , , 0,i i �( ( ))∈ ∞
+ , and τ C ,i � �( )∈

+ + are T -periodic functions for
i m1, 2, 3, ,= … .

When the nonlinear term f x x
x1

m

l( ) =
+

, then model (1.1) represents the hematopoiesis model. The term
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represents the current production (density) of blood cells that is affected by the past

blood cell count (density). The hematopoiesis model was proposed by Mackey and Glass in 1977 [14]. Since
then, hematopoiesis models have been studied by many scholars [15–19]. For example, Liu et al. [20] used
the fixed point theorem to study the existence of the positive periodic solution of the following hematopoi-
esis model and gave the necessary conditions for the existence of a unique positive periodic solution,
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where m 0> is a constant, a b τ, ,i i are positive continuous ω-periodic functions.
In recent years, many authors have studied the existence of positive ω-periodic solutions for periodic

ecological models with multiple delays. See [21–24] and references therein. However, in this article, we will
study the existence of positive periodic solutions of the first-order nonlinear differential equation with
multiple time-varying delays. When nonlinear term f takes some special forms, problem (1.1) can degrade
into some well-known models. Therefore, it is more universal than literature [7,13,20]. First, we give the
existence condition of positive periodic solutions of equation (1.1), then give the uniqueness condition of
positive periodic solution by using the contraction mapping principle, and finally give the oscillation
condition of periodic solutions.

Here, we introduce the notations required to describe our main results. For each i n1, 2, ,= … , let
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In this article, we also assume that (H4) holds:
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For simplicity, we refer to points belonging to Δ (resp.,∇) as Δ-points (resp.,∇-points) of (1.1). Note that
there are no positive real numbers belonging to both Δ and ∇.

2 Auxiliary lemmas and preparations

For convenience, in this section, we would like to introduce some notations, definitions, lemmas, and
assumptions which are used in what follows.

Definition 1. [25] Let M be a real Banach space. A nonempty, closed, convex set P M⊂ is a cone if it satisfies
the following two conditions:
(i) x P λ, 0∈ ≥ imply λx P∈ ;
(ii) x P x P,∈ − ∈ imply x θ= , where θ is the zero element of P.

Definition 2. [25] An operator K M M: → is completely continuous if it is continuous and maps bounded
sets into relatively compact set.

The following is the well-known Krasnoselskii’s fixed point theorem in a cone.

Lemma 1. [25] Let M be a Banach space, and let P M⊂ be a cone. Assume that Ω1 and Ω2 are open subset of
M with θ Ω Ω Ω1 1 2∈ ⊂ ⊂ , and let

K P P: Ω Ω2 1( )∩ ⧹ →

be a completely continuous operator such that
(i) Ku u u P, Ω1‖ ‖ ≤ ‖ ‖ ∈ ∩ ∂ , and Ku u u P, Ω ;2‖ ‖ ≥ ‖ ‖ ∈ ∩ ∂ or
(ii) Ku u u P, Ω1‖ ‖ ≥ ‖ ‖ ∈ ∩ ∂ , and Ku u u P, Ω2‖ ‖ ≤ ‖ ‖ ∈ ∩ ∂ .

Then K has a fixed point in P Ω Ω2 1( )∩ ⧹ .

Let

M x C x t ω x t t, : for� � �{ ( ) ( ) ( ) }= ∈ + = ∈

be the Banach space of ω-periodic continuous functions equipped with the norm

x x t x tmax max .
t t ω0,�
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Define a subset in M by

P x M x t ρ x t ω: , 0, .{ ( ) [ ]}= ∈ ≥ ‖ ‖ ∈

It is easy to see that P is a cone in M .
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Lemma 2. The positive ω-periodic function x is a solution of (1.1) if and only if x M∈ satisfies that
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Proof. “Only if” part: Let x M∈ be a solution of equation (1.1). We have
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By the periodic properties, we obtain that
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for t �∈ . Hence, we obtain the expression (2.1).
“If” part: Take the derivative of (2.1) with respect to t to obtain (1.1).
Thus, the proof of Lemma 2 is complete. □
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Hence, when s t t ω,[ ]∈ + and t �∈ , we have
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Define an operator K M M: → by:
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The operator K has the following properties.

Lemma 3. The operator K defined by (2.3) maps P into P.
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The proof of Lemma 3 is complete. □

Lemma 4. The operator K P P: → is completely continuous.
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Proof. We need to verify the following two points:
(i) K is continuous;
(ii) K maps any bounded subset of P into a relatively compact subset of P.

Point (i): Let xn{ } converge to x in P. From (2.1), we obtain
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β b f μH x β b f μH x ωβ t t

β b f μH x ωβ t t

2

2

2 ,

i

n

i i i
i

n

i i i

i

n

i i i
i

n

i i i

i

n

i i i

2 1
1

2 1
1

2 1

1 1
2 1

1
2 1

⎜ ⎟

∣( )( ) ( )( )∣ ( )∣ ∣ ( ) ∣ ∣

⎛

⎝

( ) ( )
⎞

⎠

∣ ∣

( )( )∣ ∣

∑ ∑

∑ ∑

∑

− ≤ + − + + −

≤ + + + −

≤ + + −

=

∗ ∗

=

∗ ∗

=

∗ ∗

=

∗ ∗

=

∗ ∗

which implies that the operator K is equicontinuous. By using the Ascoli-Arzela theorem, K P P: → is
relatively compact. Hence, K P P: → is completely continuous. □

3 Simple conditions to ensure the existence of ∇-point and Δ-point
We can prove that (1.1) has sufficient conditions for ∇-point and Δ-point. For ∇-point, we can choose
ε such that

βω b
βρωμ H ε1

1 .i
n

i

i
n

i

1

1

∑

∑ +
<

=

=

If function f satisfies

f x
x

lim 0,
x 0

( )
=

→

(3.1)

then we can find a sufficiently small number x 0>
∗ such that f x εx( ) < for x x0 ≤ ≤

∗. Since f is continuous
on 0,[ )∞ , we can see that f x εx( ) <

∗ ∗. Hence, from (3.1), we have

βω b f x
βρωμ H ε

f x x
max

1
1 max .i

n
i ρx x x

i
n

i
ρx x x

1

1

( )
( )

∑

∑ +
< ≤

= ≤ ≤

=

≤ ≤
∗

∗ ∗

∗ ∗

Hence, we see that x ∈ ∇
∗ .
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For Δ-point, we can choose G such that

αω b
αωμ H G1

1 .i
n

i

i
n

i

1

1

∑

∑ +
>

=

=

If for given G, there exists M 0> , so that when x M ρx> = ∗, there is f x Gx( ) > . Then, we have

αω b f x
αωμ H G

f x x
min

1
1 min .i

n
i ρx x x

i
n

i
ρx x x

1

1

( )
( )

∑

∑ +
> ≥

= ≤ ≤

=

≤ ≤ ∗

∗ ∗

∗ ∗

Hence, we see that x Δ∈∗ .

4 Main results

Theorem 1. Under conditions (H1)–(H3), if there exist a Δ-point x∗ and a∇-point x∗ of (1.1), then equation (1.1)
has at least one positive ω-periodic solution x satisfying x x x x xmin , max ,{ } { }≤ ‖ ‖ ≤∗

∗
∗

∗ .

Proof. To apply Lemma 1, we have to only find open bounded subsets Ω1 and Ω2 of M that satisfy either
conditions (i) and (ii). Here, we define the subsets Ω1 and Ω2 of M by

x M x x xΩ : min ,1 { { }}= ∈ ‖ ‖ < ∗
∗

and

x M x x xΩ : max , ,2 { { }}= ∈ ‖ ‖ < ∗
∗

respectively. Any ∇-point x∗ and any Δ-point x∗ never have the same value. Hence, the inclusion relation
θ Ω Ω Ω1 1 2∈ ⊂ ⊂ holds. And from Lemma 4, K P P: Ω Ω2 1( )∩ ⧹ → is completely continuous. There are two
cases to consider depending on which is larger, x∗ or x∗. We present the proof only of the case x x<∗

∗

because the proofs of both cases are essentially the same.
Any ω-periodic function x of P MΩ1∩ ∂ ⊂ satisfies x t ρ x ρx( ) ≥ ‖ ‖ = ∗ for t �∈ . Hence, we have

ρx x s τ s x s i nfor and 1, 2, , .i �( ( ))≤ − ≤ ∈ = …∗ ∗ (4.1)

By (2.2) and (4.1), we obtain

Kx t α b s f x s τ s μ H s x s τ s s

αω b f x αωμ H x

x

d

min

t

t ω

i

n

i i
i

n

i i

i

n

i
ρx x x i

n

i

1 1

1 1

( )( )
⎡

⎣
⎢

( ) ( ( ( ))) ( ) ( ( ))
⎤

⎦
⎥

( )

∫ ∑ ∑

∑ ∑

≥ − − −

≥ −

≥

+

= =

=
≤ ≤

=

∗

∗

∗ ∗

for t �∈ . From these inequalities, we can see that Kx x x‖ ‖ ≥ = ‖ ‖∗ for x P Ω1∈ ∩ ∂ .
Any ω-periodic function x of P MΩ2∩ ∂ ⊂ satisfies x t ρ x ρx( ) ≥ ‖ ‖ =

∗ for t �∈ . Hence, we have

ρx x s τ s x s i nfor and 1, 2, , .i �( ( ))≤ − ≤ ∈ = …
∗ ∗ (4.2)

By (2.2) and (4.2), we obtain

Kx t β b s f x s τ s μ H s x s τ s s

βω b f x βρωμ H x

x

d

max

t

t ω

i

n

i i
i

n

i i

i

n

i
ρx x x i

n

i

1 1

1 1

( )( )
⎡

⎣
⎢

( ) ( ( ( ))) ( ) ( ( ))
⎤

⎦
⎥

( )

∫ ∑ ∑

∑ ∑

≤ − − −

≤ −

≤

+

= =

=
≤ ≤

=

∗

∗

∗ ∗

for t �∈ . From these inequalities, we can see that Kx x x‖ ‖ ≤ = ‖ ‖
∗ for x P Ω .2∈ ∩ ∂
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Thus, we have confirmed that assumption (ii) of Lemma 1 is satisfied in the case x x≤∗
∗ (the assumption

(i) of Lemma 1 holds in the case x x≥∗
∗). From Lemma 1, we can conclude that the operator K has a fixed

point x in P Ω Ω .2 1( )∩ ∂ ⧹ Hence, the fixed point x is a positive ω-periodic solution that satisfied the
properties

x t ρ x t x x xfor and .  �( ) ≥ ‖ ‖ ∈ ≤ ‖ ‖ ≤∗
∗

Then, x is a positive ω-periodic solution to equation (1.1). The proof is complete. □

Theorem 2. If Lβω b μβω H 1i
n

i i
n

i1 1∑ + ∑ <
= =

holds, then equation (1.1) has a unique positive ω-periodic solu-
tion x.

Proof. From Lemma 4, we know that K is a continuous operator from P to P. For any x y P, ∈ , we have

Kx t Ky t b s f x s τ s μ H s x s τ s G t s s

b s f y s τ s μ H s y s τ s G t s s

β b s f x s τ s f y s τ s s

μβ H s x s τ s y s τ s s

Lβω b μβω H x y

, d

, d

d

d

.

t

t ω

i

n

i i
i

n

i i

t

t ω

i

n

i i
i

n

i i

t

t ω

i

n

i i i

t

t ω

i

n

i i i

i

n

i
i

n

i

1 1

1 1

1

1

1 1

∥( )( ) ( )( )∥
⎡

⎣
⎢

( ) ( ( ( ))) ( ) ( ( ))
⎤

⎦
⎥

( )

⎡

⎣
⎢

( ) ( ( ( ))) ( ) ( ( ))
⎤

⎦
⎥

( )

( )∥ ( ( ( ))) ( ( ( )))∥

( )∥ ( ( )) ( ( ))∥

⎡

⎣
⎢

⎤

⎦
⎥

∫

∫

∫

∫

∑ ∑

∑ ∑

∑

∑

∑ ∑

− = − − −

− − − −

≤ − − −

+ − − −

≤ + ‖ − ‖

+

= =

+

= =

+

=

+

=

= =

According to condition Lβω b μβω H 1i
n

i i
n

i1 1∑ + ∑ <
= =

, K is a compressed map. Thus, from the contraction
mapping principle, equation (1.1) has a unique positive ω-periodic solution x. The proof of Theorem 2
is complete. □

5 Necessary condition

For convenience, let us make an assumption:

H t
μ H t x t τ t

x t
H t

μ H t x t τ t
x t

lim inf , lim sup ,
x i I

i
n

i i

x i I

i
n

i i
inf

0
1

sup
0

1

n n

( )
( ) ( ( ))

( )
( )

( ) ( ( ))

( )
=

∑ −
=

∑ −

→ ∈

=

→ ∈

=

+ +

where I n1, 2, 3, , .n { }= …

Theorem 3. Assume that (H1)–(H4) hold and that

a t H t a t H t b t
i

n

isup inf
1

( ) ( ) ( ) ( ) ( )∑+ ≥ + ≥

=

(5.1)

for all t. Then every positive solution of equation (1.1) tends to zero as t → ∞.

Proof. Let x t( ) be any positive solution of equation (1.1). Equation (1.1) can be changed into

t
x t e b t f x t τ t ed

d
.a r r

i

n

i i
a r rd

1

d
t μ i

n Hi r x r τi r
x r

t μ i
n Hi r x r τi r

x r0
1

0
1⎛

⎝
⎜ ( )

⎞

⎠
⎟ ( ) ( ( ( )))

⎡
⎣

( ) ⎤
⎦

[ ( ) ]
( ) ( ( ))

( )

( ) ( ( ))

( )∑
∫ ∫

= −
+

=

+
∑

=
− ∑

=
−
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Integrating the above from t 00 > to t t0> , we have

x t x t e b s f x s τ s e sd .
a r r

t

t

i

n

i i
a r r

0
d

1

d
t

t μ i
n Hi r x r τi r

x r
t

s μ i
n Hi r x r τi r

x r
0

1

0

1

( ) ( ) ( ) ( ( ( )))
⎡
⎣

( ) ⎤
⎦

⎡
⎣

( ) ⎤
⎦

( ) ( ( ))

( )

( ) ( ( ))

( )∫∑
∫ ∫

= + −
− +

=

+

∑
=

− ∑
=

−

From (3.1) and (5.1),

x t x t e ε b s x s τ s e s

x t e ε a s H s x s τ s e s

d

d .

a r r

t

t

i

n

i i
a r H r r

a r H r r

t

t

i
a r H r r

0
d

1

d

0
d

sup
d

t

t μ i
n Hi r x r τi r

x r
t

s

t

t

t

s

0

1

0

sup

0
inf

0

sup

( ) ( ) ( ) ( ( ))

( ) [ ( ) ( )] ( ( ))

⎡

⎣
⎢

( ) ⎤

⎦
⎥ [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

( ) ( ( ))

( )

∫

∫

∑
∫ ∫

∫ ∫

≤ + −

≤ + + −

∑
− +

=

+

− + +

=
−

(5.2)

Let ζ x tlim supt ( )= →∞ , then ζ0 ≤ < ∞. Below we prove that ζ 0= . We divide it into three cases.
Case 1.When x t 0( )′ > . Choose t 00 > such that x t 0( )′ > for t t0> . Then x t τ t x t τ t0 i i0 0( ( )) ( ( ))< − < − <x t( )

for t t0> . From (1.1),

a t x t b t f x t τ t μ H t x t τ t

x t a t
μ H t x t τ t

x t
b t f x t τ t

x t a t H t ε b t x t τ t

x t a t H t ε b t x t

x t ε b t a t H t

0

0.

i

n

i i
i

n

i i

i
n

i i

i

n

i i

i

n

i i

i

n

i

i

n

i

1 1

1

1

inf
1

inf
1

1
inf

( ) ( ) ( ) ( ( ( ))) ( ) ( ( ))

( )
⎡

⎣

⎢
⎢

( )
( ) ( ( ))

( )

⎤

⎦

⎥
⎥

( ) ( ( ( )))

( )[ ( ) ( )] ( ) ( ( ))

( )[ ( ) ( )] ( ) ( )

( )[ ( ) ( ) ( )]

∑ ∑

∑
∑

∑

∑

∑

< − + − − −

≤ − +

−

+ −

≤ − + + −

≤ − + +

≤ − −

≤

= =

=

=

=

=

=

This contradiction shows that Case 1 is impossible.
Case 2. When x t 0( )′ < . Choose t 00 > such that x t 0( )′ < for t t0> . Then ζ x t τ t x t τ ti i0 0( ( )) ( ( ))< − < − for
t t0> . From (5.1) and (5.2), we have

x t x t e ε a s H s x s τ s e s

x t e ε x t τ t e

d

max 1 .

a r H r r

t

t

i
a r H r r

a r H r r

i I
i

a r H r r

0
d

sup
d

0
d

0 0
d

t

t

t

s

t

t

n

t

t

0
inf

0

sup

0
inf

0
sup

( ) ( ) [ ( ) ( )] ( ( ))

( ) ( ( ))
⎡

⎣
⎢

⎤

⎦
⎥

[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

∫
∫ ∫

∫ ∫

≤ + + −

≤ + − −

− + +

− +

∈

− +

(5.3)

Let t → ∞ in (5.3), we obtain

ζ ε x t τ tmax .
i I

i0 0
n

( ( ))≤ −
∈

Again let t0 → ∞ in the above, we have that ζ εζ≤ . Because ε 0, 1( )∈ , which implies that ζ 0= .
Case 3. When x t( )′ is oscillatory. In this case, there is tn with tn → ∞ as n → ∞ such that

x t n x t ζ0 for 1, 2, , and lim .n
n

n( ) ( )′ = = … =
→∞

From (1.1) and (3.1), we have

a t x t μ H t x t τ t b t f x t τ t ε b t x t τ t .n n
i

n

i n n i n
i

n

i n n i n
i

n

i n n i n
1 1 1

( ) ( ) ( ) ( ( )) ( ) ( ( ( ))) ( ) ( ( ))∑ ∑ ∑+ − = − ≤ −

= = =
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Transforming the above formula, we have

x t a t H t ε b t x t τ t .n n n
i

n

i n n i ninf
1

( )[ ( ) ( )] ( ) ( ( ))∑+ ≤ −

=

(5.4)

Choose l l n In( )= ∈ such that

x t τ t x t τ tmax .n l n
i I

n i n
n

( ) ( ) ( ( ))− = −
∈

(5.5)

From (5.4) and (5.5), we have

x t a t H t εx t τ t b t .n n n n l n
i

n

i ninf
1

( )[ ( ) ( )] ( ( )) ( )∑+ ≤ −

=

(5.6)

Set ξ x t τ tlim supn n l n( ( ))= −→∞ , then ξ ζ≤ . Thus, (5.6) becomes

ζ a t H t εξ b t εζ b t ,n n
i

n

i n
i

n

i ninf
1 1

[ ( ) ( )] ( ) ( )∑ ∑+ ≤ ≤

= =

which is a contradiction. So we have that ζ 0= . The proof is complete. □

From Theorem 3, we have the following results immediately.

Corollary 1. Let (H1)–(H4) and (5.1) hold. Then equation (1.1) has no positive ω-periodic solution.

Corollary 2. Let (H1)–(H4) hold, and let a t H t b ti
n

isup 1( ) ( ) ( )+ < ∑
=

. Then equation (1.1) has at least one
positive ω-periodic solution.

6 Example and numerical simulation

In this section, we give an example to illustrate the correctness of our main results.

Example 1. Consider the delayed periodic Nicholson’s blowflies models with a time-varying delay:

x t t x t t x t τ t e t x t τ t1
2

1
3

sin 5 2 sin 1 sin .t x t τ t2 cos1
5( ) ⎛

⎝
⎞
⎠

( ) ( ) ( ( )) ( ) ( ( ))( ) ( ( ))
′ = − + + + − − + −

− + − (6.1)

Proof. Note that a t tsin1
2

1
3( ) = + , b t t5 2 sin( ) = + , τ t t1 cos( ) = − , H t t2 2 sin( ) = + , μ 1

2= , and ω π2= .
There are

b t b t H t H t7, 3, 4, 0.( ) ( ) ( ) ( )= = = =

Then

α
e e

β e

e

e
e

1

1

1
1

,
1 1

.
a r r π

a r r

a r r

π

πd

d

d
ω

ω

ω

0

0

0
( )

( )

( )
=

−

=
−

=

−

=
−∫

∫

∫

Thus,

P x M x t
e

x t π: 1 , 0, 2 .π( ) [ ]{ }= ∈ ≥ ‖ ‖ ∈

According to the definition of sets Δ and∇, we can easily find points belonging to sets Δ and∇ satisfy all the
conditions of Theorem 1. Hence, equation (6.1) has a positive π2 -periodic solution. This fact is verified by
the numerical simulation in Figure 1. □
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Example 2. Consider the delayed periodic Nicholson’s blowflies models with time delay:

x t t x t t x t e t x t2 sin 1 sin 2 2 sin 2 .t x t2 cos 21
5( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

′ = − + + + − − + −
− + − (6.2)

Proof. Let τ 2= and μ 1= , then we note

a t t b t t H t t2 sin , 1 sin , 2 sin .( ) ( ) ( )= + = + = +

Then, we have

a t H t t t b t4 2 sin 1 sin .( ) ( ) ( )+ = + > + =

Therefore, from Theorem 3, every positive solution of equation (6.2) tends to zero as t → ∞. This fact
is verified by the numerical simulation in Figure 2. □

Figure 1: Numerical solution x t( ) of equation (6.1) for initial value φ t 1( ) ≡ .

Figure 2: Numerical solution x t( ) of equation (6.2) for initial value ϕ t 1( ) ≡ .
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7 Conclusion

In this work, we used Ascoli-Arzela and Krasnosel’skii fixed point theorems and some useful properties of
Green’s function to establish the existence of at least one positive periodic solution for our equation.
In biology, equation (1.1) can be used to describe the relevant dynamic behavior of different single species,
such as Nicholson’s blowflies model and hematopoiesis model. The research work of this article enriches
and supplements the findings in the literature and differ from those of [7,13,14,20] in two aspects.

First, when f takes some special forms, equation (1.1) can degrade into some well-known models. And
equation (1.1) contains many influencing factors such as periodic coefficient, death term, harvesting term
and time-varying delays, so the research results of equation (1.1) are applicable to many problems.

Second, we prove the existence, uniqueness, and oscillations of the period solutions of equation (1.1)
and give the relationship between birth rate, death and harvesting rate when the periodic solution tends
to zero.
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