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Abstract: In this article, we consider a two-dimensional inverse heat conduction problem that determines
the surface temperature distribution from measured data at the fixed location. This problem is severely ill-
posed, i.e., the solution does not depend continuously on the data. A quasi-boundary value regularization
method in conjunction with the a posteriori parameter choice strategy is proposed to solve the problem.
A Holder-type error estimate between the approximate solution and its exact solution is also given.
The error estimate shows that the regularized solution is dependent continuously on the data.
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1 Introduction

The inverse heat conduction problem (IHCP) arises from many physical and engineering problems such as
nuclear physics, aerospace, food science, metallurgy, and nondestructive testing. It is well known that the
THCP is severely ill-posed in Hadamard’s sense [1], i.e., the solution does not depend continuously on the data,
any small error in the measurement can induce an enormous error in computing the unknown solution. Therefore,
some regularization techniques are needed to restore the stability of the solution to the problem [2-5].

As we know, many authors have studied IHCPs with different regularization methods. These methods
include the Fourier method [6—8], the Tikhonov method [9-11], the method of fundamental solutions [12,13],
the mollification method [14-16], the wavelet-Galerkin method [17,18], the wavelet method [19-22], the
variational method [23], and so on. However, to the authors’ knowledge, most of the aforementioned methods
focus on the one-dimensional IHCP. A few works based on numerical methods have been presented for the
two-dimensional IHCP. This article will investigate the following two-dimensional IHCP:

U = Uy + Uy, O<x<l1l, y>0, t>0,

u,y,t) =gy, t), y=0, t=0,

u(0,y,t) =0, y=0, t>=0, (1.1
u(x,0,t) =0, 0<x<1, t>0,

u(x,y,0) =0, 0<x<1,y=0,

* Corresponding author: Wei Cheng, College of Science, Henan University of Technology, Zhengzhou 450001, P. R. China,
e-mail: chwei2007@163.com

Yi-Liang Liu: School of Air Transport and Engineering, Nanhang Jincheng College, Nanjing, 211156, P. R. China,

e-mail: 542967565@qq.com

Qi Zhao: College of Science, Henan University of Technology, Zhengzhou 450001, P. R. China, e-mail: zhaoqi155155@163.com

a Open Access. © 2022 Wei Cheng et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 International License.


https://doi.org/10.1515/math-2022-0489
mailto:chwei2007@163.com
mailto:542967565@qq.com
mailto:zhaoqi155155@163.com

DE GRUYTER A posteriori regularization method for the two-dimensional IHCP =— 1031

where g denotes the temperature history at fixed x = 0. We want to recover the temperature distribution
u(x, -,-) for 0 < x < 1 from temperature measurement g%(y, t). In this article, we will apply a quasi-boundary
value method to solve the problem (1.1) and provide a Holder-type error estimate between the approximate
solution and its exact solution.

The quasi-boundary value method is a regularization technique that replaces the boundary condition
or final condition with a new approximate condition. This regularization method has been used for solving
the backward heat conduction problem [24-27], the Cauchy problem for elliptic equations [28,29], the IHCP
[30], and the inverse source identification problem [31,32]. In this article, we will use a quasi-boundary
value method to solve the ill-posed problem (1.1).

Kurpisz and Nowak [33] used the boundary element method for solving the two-dimensional IHCP.
Qian and Fu [34] applied a quasi-reversibility method and a Fourier method to solve the two-dimensional
IHCP (1.1) and gave some quite sharp error estimates for the regularized solution. A differential-difference
regularization method was used to deal with the two-dimensional IHCP (1.1) [35]. Wei and Gao [36] solved a
two-dimensional IHCP by a meshless manifold method, which is based on the moving least-square method
and the finite cover approximation theory in the mathematical manifold. Bergagio et al. [37] used the
iterative finite-element algorithm to solve two-dimensional nonlinear IHCPs. It is worth noting that most
of the aforementioned works apply a priori regularization parameter choice rule, which usually depends on
both the noise level and the a priori bound. In practice, the an a priori bound cannot be known exactly. In
this article, we will apply a quasi-boundary value method combined with a posteriori regularization param-
eter choice rule to solve the ill-posed problem (1.1).

Some researchers are dealing with the error estimate under an a posteriori parameter choice strategy.
Engl and Gfrerer [38] applied the a posteriori parameter choice for general regularization methods to solve
linear ill-posed problems. Shi et al. [39] gave a posteriori parameter choice strategy for the convolution
regularization method. Adler et al. [40] used an a posteriori parameter choice strategy for the weak Galerkin
least squares method. Trong and Hac [41] applied a modified version of the quasi-boundary value method
with a priori and a posteriori parameter choice strategies to solve time-space fractional diffusion equations.
Duc et al. [42] gave a posteriori parameter choice strategy for the Tikhonov-type regularization to deal with
the backward heat equations with a time-dependent coefficient.

The widely used method for the a posteriori parameter choice is Morozov’s discrepancy principle, i.e.,
matching the error of the approximate solution with the accuracy of the initial data of the ill-posed problem.
This discrepancy principle is first seen in [43]. Then the discrepancy principle has been used for solving
different problems. Scherzer [44] used it for the Tikhonov regularization for the nonlinear ill-posed pro-
blems. Bonesky [45] applied it to select the regularization parameter for the Tikhonov regularization
method for the linear operator equation. Fu et al. [46] considered it for the Cauchy problem for the
Helmholtz equation with application to the Fourier regularization method. Feng et al. [47] investigated
a backward problem for a time-space fractional diffusion equation, and obtained the order optimal con-
vergence rates by using Morozov’s discrepancy principle and an a priori regularization parameter choice
rule. In this article, we will use Morozov’s discrepancy principle to select the regularization parameter for
a quasi-boundary value regularization method.

In order to use the Fourier transform technique, we extend the functions u(x, -,-,), g(-,-), g%(-,-), to be
whole real (y, t) plane by defining them to be zero everywhere in (y, t), y < 0, t < 0. We assume that these
functions are in L?(R?) and wish to determine the temperature distribution u(x, -,-) € L*(R?) for0 < x < 1
from the temperature measurement go(-,-) € I2(R%). We also use the corresponding L2 norm as follows:

1
2

Il = ftf(y, pRdydt | . (1.2)
[RZ

Let

gm) = - [ by, e @ modyae
T
[RZ
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be the Fourier transform of function h(y, t) € L*(R?). Using Fourier transform on both sides of (1.1) with
respect to the variable y and t, we can obtain the formal solution of problem (1.1) in the frequency domain as:

u(x, §,m) = &(&, n) cosh(x9(&, n), (1.3)

then using the inverse Fourier transform on (1.3), we have the formal solution of problem (1.1):

u(x, y, t) = % jef<fy+nf>§<s, n) cosh(x9(&, n))déd, (1.4)

[RZ

where ¢ and 5 are the variables of Fourier transform on y and ¢, respectively, and

I, n) =& +in. (1.5)

(&) = ngzgzzgj+mgmm Jlgzgizgl (1.6)

Due to the Parseval formula and (1.3), we have

From (1.5), we obtain

1
2

lux, -l = lacx, -l = JICOSh(X3(§, )P 18, mPFdédn | . .7
[RZ

Note that, for fixed 0 < x < 1, | cosh(x9(¢, n))| tends to infinity when || — co or || — co. Formula (1.7)
implies a rapid decay of g(¢, n) at high frequencies. But such decay is not likely to occur in the measured
noisy data g%(y, t) at x = 0. Therefore, small perturbation of g(y, t) in high-frequency components can
blow up and completely destroy the temperature u(x, y, t), i.e., problem (1.1) is severely ill-posed. So an
effective regularization method is necessary for solving the problem (1.1).

In fact, in practice the data function g(y, t) is given only by measurement and measurement errors exist
in g(y, t). We assume that the exact data g(y, t) and the noisy data g%(y, t) satisfy the following noise level:

lg - g°ll < 6. (1.8)

The constant 6 > 0 denotes a bound on the measurement error.
We also assume that there exists an a priori condition for problem (1.1):

1

W@,m@@, nPdédn| <E, (1.9)

[RZ

where E > 0 is constant.

The main aim of this article is to solve the two-dimensional IHCP (1.1) by using the a posteriori quasi-
boundary value method. This article is organized as follows. In Section 2, we provide a quasi-boundary
value regularization method to formulate a regularized solution and give a posteriori choice strategy of
regularization parameter based on Morozov’s discrepancy principle. In Section 3, a Hoélder-type error
estimate between the approximate solution and its exact solution is presented under the a posteriori
regularization parameter choice rule. The article ends with a brief conclusion in Section 4.

2 An a posteriori parameter choice strategy for a quasi-boundary
value method and some auxiliary results

In this section, we solve the ill-posed problems (1.1) by a quasi-boundary value method and give some
auxiliary results under an a posteriori regularization parameter choice strategy.
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The quasi-boundary value method is a regularization technique by replacing the boundary condition or
final condition with a new approximate condition. So we add a perturbation term in the boundary condition
and consider the following boundary conditions instead:

u(0,y,t) + au(l,y, t) = g%y, t), y>0, t>0, @1

where a plays a role of regularization parameter and the noisy data g? are the measured data of functions g.
Let uS(x, y, t) be the solution of the following regularized problem:

2 2
a_vza_era_v, O<x<l1l, y>0, t>0,
ot  x? 9y’
v(0,y,t) + av(l,y, t) = g%(y,t), y=0, t>0,
1 (2.2
a—V(O,y,t)=0, y>0, t>0,
ox
v(x,0,t) =0, 0<x<1, t=0,
v(x,y,0) =0, 0<x<1, y>0.

By taking Fourier transform on both sides of (2.2) with respect to the variable y and t, we can obtain the
following form:

cosh(x9(¢, n))

56
1+ acosh(9(¢, n))g & n). 23

ﬁg(X, 5’ )’l) =

Comparing formula (1.3) for the exact solution with formula (2.3) for its quasi-boundary value approx-
imation, we can see that the regularization procedure consists in replacing g(¢, n) with an appropriately
filtered Fourier transform of noisy data g%(y, t). The filter in (2.3) attenuates the high frequencies in g%(¢, ).

! with another filter !

S S —— _ and introduce a
1+ a cosh(9(¢, ) 1+ a [cosh(9(&, n))|

From this, we can replace the original filter
new approximation u,f, (x, y, t) of problem (1.1)

cosh(x9(¢, )
1 + a| cosh(9(¢, )|

ﬁo‘?,*(x’ {’ T’[) = gﬁ(‘f’ T’l) (2.4)
We call ulf, (%, y, t) given by (2.4) a quasi-boundary value approximation of the exact solution u(x, y, t).

We define an operator K, : u(x, -,-) — g(-,-), x € [0,1). Then problem (1.1) can be rewritten as the
following operator equation:

Kulx,y, t) =g(y,t), xe€][0,1), (2.5)
with a linear operator K, € £L(L*(R?), L*(R?)). From (1.3) and (2.5), we have
Kau(x, &, n) = 8(&, n) = a(x, &, mcosh(xI(&, M), x € [0, 1). (2.6)

We apply Morozov’s discrepancy principle as a posteriori regularization parameter choice rule. Recalling
the definition of Morozov’s discrepancy principle, the classical Morozov’s discrepancy principle chooses the
regularization parameter a > O such that [43,48]

IKag . - g°ll = 6. 2.7)

Scherzer [44] extended Morozov’s discrepancy principle and chose the regularization parameter « > 0 such
that

IKul, - g°ll = 16, 2.8)

where 7 > 1 is a constant. In this article, we select the regularization parameter a > 0 satisfied equation
(2.8), because equation (2.7) will not fit in our framework.

In order to establish the existence and uniqueness of the solution of equation (2.8), the following
lemma is needed.
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Lemma 2.1. Let d(a) = [|Kul, - g%]. Iflg®ll > 6 > 0, then the following results exist:
(1) d(a) is a continuous function;

(2) lim,_od(a) = O;

(3) limg,ood(@) = lIg°;

(4) d(a) is a strictly increasing function over (0, co).

Proof. Due to the Parseval formula and (2.4), (2.6), we have

(@) = I

[RZ

2 2

al cosh(9(¢, )| |§6(§ 71)|2d€drl

1 + a| cosh(9(¢, )|

From the above expression, the results of Lemma 2.1 are straightforward. O

Lemma2.2. ForO<a<1,0<x<1,9(¢&,n) = &2 + in, then there holds

cosh(x9(¢, n))
1 + a|cosh(9(¢, )|

< (ca)™. (2.9)

¢.meRr?

Proof. Using the inequality |cosh(z)| < cosh(|z]), Vz € C, we have

x|9(5,m)| ~x[9(5,m)I
| cosh(xd(&, )| < cosh(x|9(E, ) = < ;e < eI, (2.10)

From Lemmas 2.1 and 2.2 in [49], we know there exists a positive constant ¢ such that

] coshd(§,m) | _ o leoshGdG, )l (0 e¥em O
@mer? |1+ alcosh(I(&, M)l|  @merz 1+ cael®En! @mer2 1 + caeldénl )

3 Error estimate for the a posteriori quasi-boundary value method

In this section, we will give a Holder-type error estimate between the exact solution of temperature and its
regularized solution by using an a posteriori choice rule for the regularization parameter.

Theorem 3.1. Suppose that the noise assumption (1.8) and the a priori condition (1.9) hold. If the regulariza-
tion parameter a > 0 is chosen by Morozov discrepancy principle (2.8), then we have the following error
estimate:

lug 06 5) = ulx, ) < (T + DI + (c(r - D) MEXS ™. G

Proof. Using the Parseval formula and the triangle inequality, we have

||u(f,*(xa "') - u(X’ -,-)”: ”a(f,*(xa '7') - ﬁ(X, a)”

Iy ) A A (3.2)
<l (X, +5) = Tg 06 -l + g (X, -,-) = 4, -,

We first give an estimate for the second term.
From (1.3), (2.4), and (2.10), with the Holder inequality, we obtain

2

cosh(x9(:,-))

1+ af cosh(3(','))|§(.") — cosh(x9(,-))8 (")

”ﬁa,*(xy ';') - ﬁ(X, .’.)"2 = H
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2

—a| cosh(9(-,-))|cosh(x3(:,-)) 5C.")
1+ alcosh@C, ) o

alcosh(9(, )| [ )
= | cosh(x9(&, n)I? 1€, pIPdédn
= 1 + al cosh(9(¢, )|

alcosh@& M)l [ voemnais
< T+ alcosh(d(E, m) (eXew)2g(&, mPdgdn
R
(| _alcosh@&E M [ 12 s oo isemiss o
= |1+ alcosh(a(E, n 18(&, P2 e!=Dig(&, n)[*dédn
R

2(1-x)

< || -21coshE. M|z, rm] |elPEDIg(E, mPxdédn
5l 1 + alcosh(I(&, n)I

a| cosh(9(&, )|
1 + a| cosh(9(¢, n))|

)

) (1-x) X
d¢ dn] [fle's“’m'g(& , P dn) .
[RZ

{1

From (2.4) and (2.8), we obtain

a) cosh(9(-,-))|
1 + a] cosh(9(,-))|

— 6 N N
T6 = ”Kxug,* - g6" = ||I<Xua,* - g5" = H ga("')H) (3-3)

with the noise assumption (1.8) and the a priori condition (1.9), we have

(1-x)

a) cosh(9(-, )| Ex

1 + a| cosh(9(-,-))|

”ﬁa,*(x, ':') - ﬁ(X’ "’)"S H g(’)

(1-0(3.4)
J|| @ cosh@@C D o s al cosh(9C, Dz
<E [ T+ alcosh(d(, | 5070 ~8°C ))H | T+ acosh3C, 8 )‘ }
< EIIEC,-) - 8°C, Il + 18107 < EX[(T + 1)6]4.
Now we give the bound for the first term. Due to (2.4) and (2.9), we have
20 (o) — i () = || COshOIC D) se .
g, «(x, -5-) = Ua, (X, ’)”_H1+a|cosh(9(~,~))|‘g(’) 8¢, ))H
cosh(x9(¢, n)) (3.5)

|I§5(’) - g(!)“

(&,m)eR? 1+ a| COSh('g(‘f’ rl))l
< (ca)™é.
From (3.3) and (1.9), we know
_||_alcosh(§(, )l 5,
Ta“ T+ alcosh@dC, )5 7 ‘
<| AL gt - | + | AL g,

1 + a] cosh(9(,-))| 1 + a] cosh(9(,-))|

56(. .Y — &(. .- @ NS
<|I8°C,) = G, + ‘ T a cosh(S(-,-))llCOSh(s(’ NIEC, )H

<6 + alll cosh(IC, NI, )l < 6 + allel®ig(, ||
<6 + aE.

This yields

a> %(T -1). (3.6)
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Substituting (3.6) into (3.5), we have
128 .0, 1) = DX, )l < (T = D)) ¥EX6'*. (3.7)

Combining (3.2), (3.4), and (3.7), we obtain the error estimate (3.1). O

Estimate (3.1) is a Holder-type stability estimate, and the error bounds in (3.1) are similar to error
bounds in (4.14) of Theorem 4.2 in [46].

4 Conclusion

In this article, we investigate a two-dimensional IHCP, which determines the surface temperature distribu-
tion from measured data at the fixed location. We propose a quasi-boundary value method for obtaining
a regularized solution. The Holder-type error estimate between the approximate solution and its exact
solution is obtained under Morozov’s discrepancy principle. Error analysis shows that our regularization
method is effective.
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