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Abstract: Generalized Munn rings exist extensively in the theory of rings. The aim of this note is to answer
when a generalized Munn ring is primitive (semiprimitive, semiprime and prime, respectively). Sufficient
and necessary conditions are obtained for a generalized Munn ring with a regular sandwich matrix to be
primitive (semiprimitive, semiprime and prime, respectively). Also, we obtain sufficient and necessary
conditions for a Munn ring over principal ideal domains to be prime (semiprime, respectively). Our results
can be regarded as the generalizations of the famous result in the theory of rings that for a ring R, R is
primitive (semiprimitive and semiprime, respectively) if and only if so is M,(R). As applications of our
results, we consider the primeness and the primitivity of generalized matrix rings and generalized path
algebras. In particular, it is proved that a path algebra is a semiprime if and only if it is semiprimitive.
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1 Introduction

Throughout this note, we shall use the standard notions and notations, and each of the considered rings is
associative but has possibly no identity.

The class of generalized matrix rings has been extensively studied. Examples of generalized matrix
rings include piecewise domains (see [1]), incidence algebras of directed graphs (see, [2,3]), structural
matrix rings (see [4] and subsequent papers), endomorphism rings, and Morita context rings. Sands [5]
observed that if [S, V, W, T] is a Morita context, then

(w 1)

is a ring. These Morita context rings are precisely generalized matrix rings with idempotent sets E such that
|E| = 2, and they have been widely studied. In particular, we note Amitsur’s paper [6], the survey paper [7],
McConnell and Robson’s treatment [8] and Miiller’s computation of the maximal quotient ring [9]. Indeed,
cellular algebras, affine cellular algebras and standardly based algebras there exist some “local” structures
of generalized Munn algebras (for example, see [10-12]).

Brown [13] considered generalized matrix algebras of finite dimension over a field of characteristic 0.
He proved that such a generalized matrix algebra is either simple or nonsemisimple and simple modulo its
radical, and it is simple if and only if it possesses an identity. Sands [5] gave the prime radical of generalized
matrix rings with a finite idempotent set. Zhang [14] considered the prime radical of the general case.
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In 1989, Wauters and Jespers [15] determined when a generalized matrix ring with a finite idempotent set is
semiprime. Classical quotient rings of generalized matrix rings with finite idempotent sets had been
attracting due attention. There are a series of papers on this field (see [16-18]).

Indeed, any generalized matrix ring can be viewed as a subring of some generalized Munn ring. It is
natural to research generalized Munn rings. Li [19] considered the regularity of Munn rings. The main aim of
this study is to answer when a generalized Munn ring is semiprimitive (semiprime and prime, respectively).
A sufficient and necessary condition is established for a generalized Munn ring with a regular sandwich
matrix to be primitive (semiprimitive, semiprime and prime, respectively) (Theorems 2.5 and 2.7). Moreover,
we answer when a Munn ring over a principal ideal domain is semiprime (prime, respectively) (Proposition
2.11). In Section 3, we determine when a generalized matrix ring is primitive (semiprimitive, semiprime and
prime, respectively) (Theorems 3.2 and 3.3). Finally, we consider the primeness and the primitivity of
generalized path algebras. It is proved that for a quiver Q and a field K, the path algebra K(Q) is semiprime
if and only if the path-connected quiver of Q" is the disjoint union of complete quivers; if and only if K(Q)

is semiprimitive (Theorem 4.9). And, K(Q) is prime if and only if Q% isa complete quiver (Theorem 4.10).

2 Generalized Munn rings

The aim of this section is to consider the primeness and the primitivity of generalized Munn rings.

2.1 Regular sandwich matrices
To begin with, we give the notion of regular matrices.

Definition 2.1. Let A be a ring and X = (x;;;) be a generalized I x M matrix over A. A nonzero entry Xy
of X is called a unit entry of X if there exists a nonzero idempotent e € A such that x;, is a unit in eAe.

Notice that a group has exactly one idempotent, which is just the identity of the group. This means that
in Definition 2.1, the idempotent e is indeed unique. So, the unique idempotent e in Definition 2.1 is denoted
by x5.

Definition 2.2. Let A be a ring. An I x M matrix X = (x;,,) over A is said regular in A if the following
conditions hold:
(RM1) For any i € I, there exists m € M such that x;, is a unit entry of X.
(RM2) For any n € M, there exists j € I such that xj, is a unit entry of X.
(RM3) If Xjjm, is a unit entry of X, then
(i) XomXigm = Xiom for any m € M;

(ii) XimoXign, = Xim, for any i € I.

By definition, any m x m matrix without zero rows and zero columns are regular in the field C of
complex numbers. Also, for a ring A with unity, any I x M matrix over A, in which each row and each
column contains at least one unit of A, must be regular in A.

Let M, I be nonempty sets, and A an associative ring and Q = (gn;) a generalized M x I matrix over A.
Consider the set 9M(A, I, M) consisting of all generalized I x M matrices over A with only finite nonzero
entries, such an I x M matrix is usually said to be bounded. For C = (ajy,), D = (bin) € (A, I, M), define

C +D=(ey,), where ey, =Cm+dyy foriel,me M;
C - D=CQD, where the product on the right side is the product of matrices;
AC = (A¢y) for A € R.

By definition, a routine calculation shows that with these operations, (A, I, M) is an associative ring.
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Definition 2.3. The above ring 9(A, I, M) is called a generalized Munn ring A with the sandwich matrix Q,
in notation, M(A, I, M; Q).

If I is finite, then we identity it with the set {1, 2, ...,i}, where i is the cardinality of I, and we write
M(A, I, M; Q) as M(A, i, M; Q). Similarly, the notation 9(A, I, m; Q) is used if [M| = m < co. Denote by
M n(A) the set of all m x n matrices over A.

Recall from [20] that the generalized Munn ring (A, m, n; Q) is called the Munn m x n matrix ring
over A with sandwich matrix Q. It is obvious that M,(A) is the Munn n x n matrix ring over A with
sandwich matrix A, where A is the unit matrix; that is, the diagonal matrix each of whose entries in the
diagonal positions is the unity of A.

Definition 2.4. Let 7~ be a nonempty subset of M(A, I, M). An M x I matrix X = (x,;) over A is said to be
cancellable in 7 if for any nonzero element Y € 7, YX and XY are neither zero, where YX and XY are usual
matrix products.

Evidently, for a ring A with identity 1, the I x I unit matrix A is cancellable in any subset of (A, I, I).
And, any invertible n x n matrix must be cancellable in M,(A), but not all of cancellable matrices in M,(A)
are invertible in the matrix algebra.

Example. Let Z be the ring of integers. It is easy to check that the matrix

A5 4

is cancellable in the matrix ring M,(Z). But A is not invertible in My(Z).
For convenience, we denote

(@)im: the generalized I x M matrix with a inthe (i, m) position and 0 elsewhere;
(B)im: theset {(b)im : b € B} for B ¢ A;
(Gim)icj,men: the generalized I x M matrix with a;, in the (i, m) position for i € J,
m € N and O elsewhere. Especially, if N = {n}, we simply write m ¢ N
as m = n, and the similar sign for the case: |I| = 1.
rad(A): the Jacobson radical of the ring A.

We now arrive at our main results of this note.

Theorem 2.5. Let M = M(A, I, M; Q) be a generalized Munn ring. If Q is regular in A, then M(A, I, M; Q)
is semiprime (semiprimitive, respectively) if and only if the following conditions are satisfied:
(i) Q is cancellable in (A, I, M);
(ii) for any unit entries G, Gy of Q, if X is a nonzero element of gy Aqy, then gy Aqmx + 0 and
Xy Ay # 03
(iii) for any unit entry qm; of Q, g AgS: is semiprime (semiprimitive, respectively).

Proof. Let g,; be a unit entry of Q and denote by g, the inverse of gu; in gy Agyy;, obviously g =
iy = Giqmi- Then (q,Dim is an idempotent of 9, and
(@ndime M o Grdim = (AmAGmim @1
since g is a unit in g AgS. A routine calculation shows that the mapping
¢ : (X)im > Xqm; is an isomorphism from (g5AGS)im ONto GG AGS:. (2.2)

(2.5.1) The proof for the semiprime case. If M is semiprime, then by (2.1), (¢ AGS)im is semiprime, so

that by ¢ is an isomorphism, g5 Aq,; is semiprime. It results (iii). To see (i), assume on the contrary that Q is

not cancellable in (A, I, M), then there is a nonzero element X € Mt such that XQ = 0 or QX = 0. Without
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loss of generality, let XQ = 0, so that X o U o X = XQUQX = 0 for any U € 9, whence X o MM o« X =0,
contrary to that 90t is semiprime. Thus, Q is cancellable in 9(A, I, M).
We next verify (ii). To the end, we assume contrariwise that there exists a nonzero element x € q,ﬁfiﬂq,f]?

such that xg,; Agy; = 0. Obviously, Xg,; = X = gy, so that
Oime M o Xim € XA im = (X)) AGiX)im = X (G AGei)X)im = O,

contrary to the hypothesis that 91 is semiprime. Therefore, xq,; Ag,y; # 0. Similarly, g, Agyx # 0. We have
now proved that (ii) is valid.

For the converse, we contrariwise let w = (w;;,,) be a nonzero generalized I x M matrix in 9% such
that w o 9T o w = 0. Because Q is cancellable, QWQ = (Umi)mem,ic1 # 0, and we assume that up;, # O.
If WQ = (Vij)i,jel, then

Umgip = quojvﬁo' (2.3)
jel

When Q is regular, there is j, € I such that gn,;, is a unit entry of Q. It follows that qn?o jodmoj = dmoj- Now by
(2.3),

L= <& v =gl . v | =g . .
Umgig = qunojoqmolvﬂo - qmolo(zqmolvllo) - qmoloumolo’
jel jel

and similarly, there exists a unit entry gy, of Q such that tmyGnyi, = Umgi,- Therefore, umy, € Gy i Ao
Furthermore, by (ii), there is x € gy; Adyy,;, such that 0 # UnyX € G, ; Ady, ;.. Clearly,
qrgoioumoiox = UmgigX = (umoiox)qrgoio' (2.4)

It follows that

— <&
u:= (qmojo)iomo QWQ(X)lom()
— &
= (qmojo)iomo (umoio)moio(x)iomo
—(° cx ).
= (amstmicJimo 2.5)
= (umoiox)jomo
— &
= (qmo}'o)iomo oW o (Xigm,
#0.
Now
<& & _ . & . a< . . .
(umoiox : qmojoﬂqmojo : umoiox)fomo - (umoloxqmojo A qmojoumolox)]omo
_ . . -1 -1 X . .
= (umolox)lomOQ (QmojoﬂQmoio)]omc)Q (umolox)lomo
< (umoiox)jomo Qma (umoiox)jomo
= (umoiox)jomo oM o (umoiox)fomo
<& <
= (@5 )igmo oW © @jgme) @ M o (G )igmo W © (X jom,)
<&
c (qmoio)iomo o(W o Mo w)e (X)jm
= O’

SO that UnmgigX - Gy, A, - UmeiX = 0. This is contrary to that g, ; Agyy ; is semiprime. Consequently,
M is semiprime.

(2.5.2) The proof for the semiprimive case. It is well known that for a semiprimitive algebra 2( and an
idempotent e € 2, efle is still semiprimitive. So, the same reason as in (2.5.1) shows that the “if” part is
valid. With notations in (2.5.1), if w € rad(9)\{0}, then by (2.5), 0 # (Umyi,X)j,m, € rad(9M). Notice that

(q,;l}) io) jomo 1S an idempotent of 9, we can obtain that
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(umo,-OX),-Om0 = (qrﬁojoumoioxq"?oio)iomo (by (23))
e (s ()i
€ (@l )igmo 1A o (@i Yigmo
= rad((qr)j )igmo ° M © (G igmo)
= 1ad((Gomp oAb, )jomo)
= racl((q,ﬁf0 oA, jo)jomo)'

This means that (g, ; Adm,;,)jom, is NOt semiprimitive. Now by (2.2), we observe that gy, ; #Agy, ; is not
semiprimitive. This is contrary to the hypothesis. It results the “only if” part. O

Remark 2.6. Let us turn back to the proof of Theorem 2.5. In (2.5.1), the proof of Condition (i) in the direct
part has indeed proved that if 9(A, I, M; Q) is semiprime, then Q is cancellable in 9(A, I, M).

Theorem 2.7. Let 0 = M(A, I, M; Q) be a generalized Munn ring. If Q is regular in A, then M(A, I, M; Q)
is prime (primitive, respectively) if and only if the following conditions are satisfied:
(1) Q is cancellable in M(A, I, M);
(i) for any unit entries Gmi, Gnj> Grk> 41 Of Q, if X and y are nonzero elements of q,ﬁfiﬂq,if and q{AqS,
respectively, then xq AqRy + O;
(iii) for any unit entry qp; of Q, g5 AqS: is prime (primitive, respectively).

Proof. (2.7.1) The proof for the prime case. If 0 is prime, then by (2.1), (¢ AqS)im is prime, so that by ¢ is an
isomorphism, g AgS is prime. By Remark 2.6, Q is cancellable in 9U(A, I, M).

We next verify (ii). We contrariwise let x € g5 Ags\{0}, ¥ € ¢t AqT\{0} such that xg,;Agzy = 0. Then,
xqy; = x and gy = y. Moreover,

Oime M o (V)im = XAY)im = X - G AGE - ¥)im = (0)im = 0.

It is contrary to the hypothesis that 9t is prime. We have now proved the necessity.

To see the converse part, we assume conversely that there exist nonzero elements A, B € 9t such that
A o 9t o B = 0. It is not difficult to see that Condition (ii) in Theorem 2.7 implies Condition (ii) in Theorem
2.5. Indeed, by (ii), for any x € g Agy;, Xqy Agmix # 0, so that xg,; Agy; # 0; similarly, g, Agmyx # 0, and it
results immediately in Condition (ii) in Theorem 2.5. Now by (2.5.1) (precisely, see (2.4) and (2.5)), there are
m,n € M, j, k €I and Cy, G, Dy, D, € 9 such that
(@) qmj> gnk are unit entries of Q; and
(b) Cio Ao D;=(a)y and G o B o D, = (b)n, where a and b are nonzero elements in gy Agy,; and

43 AGS, respectively.

Furthermore by (ii), we have u € g5 Ags such that aub # 0. Obviously, gsu = u = ugyy.
Compute

(aub)jpo M o (aub)jy = (agmub)jno M o (aUqib)jn
= (AGmigmpub)in © M o (QUGrGrcD)in
= (@jm° (Guub)jne M o (augyjn° (b)in
C(@jmeo M o (bn
=CioAoD oMoCoBoD,

CCioAoIMoBoD,
=0.

(2.6)
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This shows that 9t is not a semiprime ring. But by Theorem 2.5, 9t is semiprime. It is a contradiction.
Therefore, 90t is prime.

(2.7.2) The proof for the primitive case. By the well-known result (for example, see [21, Ex. 10, p. 339]): for
any primitive algebra 2( and any idempotent e in 2, ele is still primitive, and since any primitive algebra is
prime, a similar argument as in (2.5.1) can verify the “if” part. For the converse, if given conditions hold,
then by (2.7.1), 91 is prime. The rest follows from a famous result of Lanahi et al. [22] showed that for a prime
ring R, if e is a nonzero idempotent in R, then R is primitive if and only if eRe is primitive. O

Based on Theorems 2.5 and 2.7, we may prove the following proposition.

Proposition 2.8. Let (A, I, M; Q) be a generalized Munn ring. Assume that
(1) A has a unity;
(2) each row and each column of Q contains at least one unit of A.

Then M(A, I, M; Q) is prime (semiprime, primtive and semiprimitive, respectively) if and only if the following
conditions are satisfied:

(i) Q is cancellable in M(A, I, M);

(ii) A is prime (semiprime, primtive and semiprimitive, respectively).

Proof. By definition, g is the unity of A for any unit entry g,,; of Q satisfying Condition (2); in this case,
g Age = A. Obviously, Q is regular in A.

Let g, be an arbitrary unit entry of Q. By Condition (2), there is an entry g,,;, of Q such that gp;, is a unit
in A. But Q is regular in A, S0 g5Gmi, = dmi,» and it follows that g5 must be the unity of A. We have now
proved that any unit entry of Q is a unit in A. This shows that Condition (ii) in Theorem 2.5 are satisfied and
that Condition (ii) in Theorem 2.7 is satisfied whenever A is prime.

The rest follows immediately from Theorems 2.5 and 2.7. O

For a ring A with unity, denote by A the generalized I x I matrix over A each of whose entries in the
diagonal positions is the unity of A and 0 elsewhere. Obviously, A is cancellable in (A, I, I). It is easy to
see that the following corollary is an easy consequence of Proposition 2.8.

Corollary 2.9. Let A be a ring with unity. Then A is prime (semiprime, primitive and semiprimitive, respec-
tively) if and only if for any [for some] nonempty set I, (A, I, I; A) is prime (semiprime, primtive and
semiprimitive, respectively).

Let us turn back to the proof of Theorem 2.7. Assume now that 9t is semiprime and the condition:
(PM) If G, gnk are unit entries of Q, then aguAgyb # 0 for any nonzero elements a € g Agyy,

b € ¢4 AGS.

In this case, u in (2.5) exists in 2t. Moreover, we can derive Conditions (a) and (b) in the proof of Theorem 2.7,
and whence (2.6). So, we have indeed proved the following theorem.

Theorem 2.10. Let M(A, I, M; Q) be a generalized Munn ring. If Q is regular in A, then M is prime if and
only if M is semiprime and (PM) is satisfied.

Comparing with Theorem 2.10, it raises a natural conjecture as follows:

Conjecture 2.11. Let M(A, I, M; Q) be a generalized Munn ring, and assume that Q is regular in A. Then the
following conditions are equivalent:

(i) M is primitive;

(ii) 90t is semiprimitive and (PM) is satisfied;
(iti) M is both semiprimitive and prime.
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2.2 Principal ideal domains

In this subsection, we study the primeness of Munn rings over a principal ideal domain. We first provide one
property of cancellable matrices over a principal ideal domain.

Lemma 2.12. Let A be a principal ideal domain, and Q a m x n matrix over A. Then Q is cancellable in
M(A, n, m) if and only if m = n = 1y, where 1, is the rank of Q.

Proof. (Necessity). Assume that Q is cancellable in 9(A, I, M). We suppose contrariwise that m = n =ry
is not valid. By [23, Proposition II1.2.11], there exist invertible matrices U, V such that

(D 0
UQV‘(O 0)’

where D is a diagonal rp x 1y matrix with nonzero diagonal entries. So, there exists a nonzero matrix A,, over
A such that

0 O

(0 AZZ)UQV—O.
Moreover,

0 O

(0 2)oa-o
so that

0 O

(6 )=

since, by hypothesis, Q is cancellable in 9(A, I, M). It follows that A, = 0. It is a contradiction.
Thus, m =1y = n.

(Sufficiency). If m = ry = n, then by [23, Proposition II1.2.11], there exist invertible matrices U, V such
that UQV = diag(d,, dy, ...,dm), where d; # 0 fori = 1, 2,..., m. For any X = (x;) € Mp(A), we have

XQ = 0 & (XUHUQV = (y;dj) = 0, where XU = (y;);
<:>Yijdj =0 fori,j=1,2,...,n;
©y;=0 fori,j=1,2,...,m
& XU =0;
©X=0,

and similarly, QX = O if and only if X = 0. Therefore, Q is cancellable in 9{(A, m, n). O

Proposition 2.13. Let M(A, m, n; Q) be a Munn ring. If A is a principal ideal domain with unity 1, then the
following conditions are equivalent:
(i) 9M is semiprime;
(i) m=r=n;
(iii) 9 is prime.

Proof. (i) = (ii). By Remark 2.6, Q is cancellable in 91(A, m, n). Now Lemma 2.12 results (ii).
(ii) = (iii). Let A; and A, be an arbitrary nonzero n x n matrices over A. By [23, Proposition II1.2.11],
there exist invertible matrices U;, V;, i = 1, 2 such that

UA;Y; = diag(d{, d{’,...,dD, 0, ...,0),
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where d,Ei) + 0 for any 1 < k < m;. Let U and V be invertible matrices such that Q = Udiag(q, ¢,...,cn)V,
where ¢; # O for j = 1, 2,..., n. Because

ViU = (x), VU, = (y;)
are both invertible, there exist 1 < ji, io < n such that x;, # 0, y;, # 0. Compute
MnUAQV(1),;, U QA Va(D1 = (Mu(Uiy V)(V; 'U)diag(c, ~--,Cn)(l)joio(U_IQV_I)(VUfl)(UzAz )(Du
= (Dudiag(d®,...,dP, 0 -, 0)(xy)diag(c, ¢ ..., Cn)
(D)j,diag(cr, 6, ..., ) yij)diag(dl(z), ... ,d,%), 0--, O)(l)ll
= (A}, €5,CioYipd™
#0,

so that the entry in the (1, 1) position of

Ui QV(1);,1,U QA Vs = Uiy o V(1)U o ArV

is equal to the nonzero element d{"x;; c; i . It follows that A; o V-'(1);;, U™ o A, # O since A is

a principal ideal domain, giving dl(l)xljocjocioyioldfz) # 0. Thus, A; o M o A, # 0 and whence 9 is prime.
(iii) = (i). It is obvious. O

Notice that for a principal ideal domain, the unity is the only nonzero idempotent. We observe that a
generalized matrix over a principal ideal domain is regular if and only if each of its rows and each of its
columns contain at least one unit. By Propositions 2.8 and 2.13, the following corollary is immediate from
that any domain is prime.

Corollary 2.14. Let M(A, m, n; Q) be a Munn ring. If
(1) A is a principal ideal domain;
(2) Q is regular in A,

then 9 is prime if and only if m =y = n.

3 Generalized matrix rings

In this section, we shall consider the primeness and the primitivity of generalized matrix rings. We first
recall the definition of generalized matrix rings.

Let I be a nonempty set. For any i,j,l €1, let A; be a ring with identity 1;, and A; a unitary
(Aii, Ajj)-bimodule. Assume that there is a module homomorphism p;; : Aj x Ay into Ay, written py(x, y) = xy,
for any i, j, I € 1. If the following conditions hold:

(Gl) x+y)z=xz+yz, wXx+y)=wx+wy;
(G2) w(xz) = (wx)z,

for any x, y € Ay, z € Ay, w € Ay, then the triple (4, I, yiﬂ) is called a I'-system with index I.
Given a I'-system (4y, I, yiﬂ), let GM = GM(4y, 1, yiﬂ) be the external direct sum of {4; :i,j € I}.
We shall use {x;} to denote the external direct sum of x; with i, j € I. Now we define the multiplication

in GM as
Xy = {zxikykj}a
k
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where x = {x;} and y = {y;}. It is easy to check that GM is a ring (possibly without unity). We call G M
a generalized matrix ring, or a gm ring for short, written G M (4y, I, yijk) or GM for short. If ¢;; is a nonzero
element of A; satisfying that e;x = x = xej; for all x € Ay, then the set{e;; : i € I} is called a generalized matrix
unit of the I'-system (4y, I, p;,) (for example, see [14]).

In what follows, we still write the element x = {x;} satisfying that x;; = 0 if i # iy, j # j, and x;,j, = u as
{u}i,;,» especially, write {1 }is, = 1;,. Also, we use {A}; to stand for the set {{a}; : a € A}. And, we write
X = {Xjj}ica,jep if x; = 0 wheneveri € I\A or j € I\B. It is easy to check that the set{l; : i € I} is a generalized
matrix unit of the I'-system (4y, I, yi]-u).

Proposition 3.1. The generalized matrix ring G M(Ay, I, W) is a subring of the generalized Munn ring
M(GM, 1,1; E), where E is the generalized I x I matrix in which any entry in the (i, 1) position is 1;,
for anyi € I, and O elsewhere.

Proof. Consider the mapping
¢:GM - MGM, 1, 1; E); {x53} — Z(Xij)ij-

A routine calculation shows that ¢ is an injective homomorphism, and here, we omit the detail. O
We can now describe the main results of this section.

Theorem 3.2. Let GM = GM (4, I, yiﬂ) be a generalized matrix ring. Then G M is semiprime (semiprimitive,
respectively) if and only if the following conditions are satisfied:

(i) foranyi,j €1, if x is a nonzero element in A, then xA; # 0 and Ajx # 0;

(ii) for anyi € I, A; is semiprime (semiprimtive, respectively).

Proof. A routine calculation shows that {1;}; is an idempotent, for alli € I, and the mapping ¢ : {x}; — x
is an isomorphism from {A;}; onto A;. Compute
{13aG M{}i = {Au}a.
So,
{1} M{Li}i = A, (3.1

(3.2.1) The proof for the semiprime case. If G M is semiprime, then as for alli € I, {1;}; is an idempotent
in G M, we obtain that {1;};G M{1;};; is semiprime, so that by (3.1), A; is semiprime.

We contrariwise let i, j, € I such that A;j; # O but A;; = 0. Pick a nonzero element a in A;,.
Of course, {a};,j, is a nonzero element in G M. Compute

{a}i, ;G Midiyj, = {a}iojo{Ajoio}joio{a}iojo = {aAjoioa}iojo c {Ajoio}iojo =0, (3.2)
contrary to the hypothesis that GM is semiprime. Therefore we have now proved that for any i, j € I,

A #0 e A; £0. (3.3)

To see (i), we assume contrarily that x is a nonzero element in A; ;, such that xA;; = 0. By (3.2), we have
{x}i,,G M{x}ij, = {xA;ix};,j, = O, contrary to the hypothesis that GM is semiprime. So, xA;; # 0. Dually,
we may prove that A;x # 0.

For the converse, assume that given Conditions (i) and (ii) hold. We oppositely let u = {u;} be a nonzero
element in GM such that uGMu = 0. Notice that
— Eis regular in GM and cancellable in M(GM, I, I);

- {1i}4, 1 € I are all unit entries of E. Obviously, {1;}{ = {1;}; and furthermore, {1;}sG M{1;}; = {A;};;. Together
with Condition (i), it is easy to see that Condition (ii) in Theorem 2.5.
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By Theorem 2.5, the generalized Munn ring (G M, I, I; Z) is semiprime. Denote

J={kel:w;+0 forsomejel, or uy#O forsomeicl}

It is not difficult to check that
(@) €=}, ](1i)ii is an idempotent. Moreover, eM(GM, I, I; E)e is semiprime.
(b) ep(u) = p(u) = p(u)e, where ¢ has the same meanings as in the proof of Proposition 3.1.

Moreover,
PW)(EMGM, I, I; E)e)p(u) < p)P(GM)Pw) = p(ugMu) = 0,

contrary to the foregoing proof that e9(GM, I, I; E)e is semiprime. Therefore u = 0 and whence GM
is semiprime.

(3.2.2) The proof for the semiprimitive case. Similar as (3.2.1), we may prove the necessity.

For the converse, we contrariwise assume that u is a nonzero element in rad(GM). With notations in
(3.2.1), we denote X = {{X;i}icjjes} € GM. It is easy to see that
(a) X is a subalgebra of GM;
(b) T= ziel{li}ﬁ is an idempotent in GM. Moreover, ¢(1) = €, Tu = u = ut and TGM1 = X;

(©) ¢X) =eMGM, I, I; E)e.

Therefore u € rad(tGMr) = rad(X). Notice that ¢ is an injective homomorphism. We observe that
eMGM, I, I; E)e is isomorphic to X. It follows that

¢ € rad(eM(GM, I, I; Ee),

so that eM(GM, I, I; E)e is not semiprimitive. Indeed, by the proof of the converse part in (3.2.1), we can
obtain that M(GM, I, I; E) is semiprimitive if for anyi € I, A;; is semiprimtive. In this case, e9(GM, I, I; E)e
is semiprimitive, contrary to the foregoing proof that eM(GM, I, I; E)e is not semiprimitive. Consequently,
G M is semiprimitive. O

Theorem 3.3. Let GM = GM(4Ay, I, uy) be a generalized matrix ring. Then G M is prime (primitive, respec-
tively) if and only if the following conditions are satisfied:

(i) foranyi,j, k,1¢1,if x and y are respectively nonzero elements in A; and in Ay, then xAjy + 0O;

(ii) for anyi € I, A; is prime (primtive, respectively).

Proof. (3.3.1) The proof for the prime case. Similar as in (3.2.1), we may prove the necessity.

For the sufficiency, we contrarily assume that u = {u;} and v = {v;3} are nonzero elements in G M such
that ug Mv = 0. Obviously, there are i, j,, ko, and Iy € I such that u;,;, and vy, are neither equal to 0.
Further, by Condition (i), there is x € A;, such that w;j; xvi,, # 0. By the same reason, we have y € Ay,
such that u;, j XV iUy j XV, # 0. SO that 0 # u;,j XViay € Ajg,- Compute

{uiojokaol VAo * Uigj Vil oy}ioio = {”io fo}io 0 {XVkolo)’}ioioQM {uio ;Ox}ioko{Vkozo}kolo{)’}loio
< {utinj Foio G M {Vikto Fato IV Hoio
= ({1 Froiott {1 Hioso ) M ({16 FrokoV {0 }1eto ) €930
c {11'0}1'01'0 -ugMyv '{110}1010{)’}101‘0
= {11'0}101'0'0 -{110}1010{)/}101'0 = 0.
It follows that w;y; XV - Aig,

(ii). Therefore, GM is prime.
(3.3.2) The proof for the primitive case. It follows from the proof in (2.5.2). O

“ Ujpj XVioly = 0. This means that A;j, is not semiprime, contrary to Condition
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4 Generalized path algebras

In this section, we consider the primeness and the primitivity of generalized path algebras. We first provide
some results on quivers.

4.1 Quivers

We start with the basic definitions. A quiver Q = (V, E) is an oriented graph, where V is the vertex set and
E is the arrow set. We denote by & : E — V and ¥ : E — V the mappings, where &(a) =i and %(a) = j
when a : i — j is an arrow from i to j. A path in the quiver Q is an ordered sequence of arrows p = a,, --- &
with %(a;) = &(ay,1) for 1 < 1 < n, or the symbol e; for i € V. We call the path e; trivial path and define
&(e;) =i = %(g). For a nontrivial path p = a,, --- a1, we define &(p) = &(a,) and T(p) = T(a;). A nontrivial
path p = a,, --- o4 is said to be

(i) an oriented cycle if S5(p) = T(p);

(ii) aloop fromitoiifn=1and &S(p)=i=%(p).

Definition 4.1.

(i) A quiver G with vertex set V is said to be a complete quiver if for any a, b € V with a # b, there are one
arrow from a to b and one arrow from b to a.

(ii) Let G; and G, be quivers with vertex set V; and arrow set Ej, and with vertex set I, and arrow set E,,
respectively. A quiver G is said to be a union of G; and G, if the vertex set of G is V; u 15 and the arrow set
of G is E; U E,. If, in addition, both V; U V5 and E; U E, are disjoint unions, then we shall call G to be
a disjoint union of G; and G.

By an empty graph, we mean a graph without arrows. Obviously, we have the following observations:
(OB1) The empty graph is a complete quiver if and only if it it has exactly one vertex.

Also,
(OB2) LetQ = (V, E) be a quiver without loops. Q is a disjoint union of complete quivers if and only if for
any a, b € V with a # b, if there is a path from a to b, then there is one arrow from b to a.

Indeed, by definition, the necessity is evident. Conversely, we define a relation on the vertex set V as
follows:

a®Db if a = b; or there is a path from a to b.

It is not difficult to see that D is an equivalence on V. Consider the quotient V /D = {V, : a € A} and for V,,
construct a subquiver Q, = (V,, E,) of Q as follows: for a, b € V,,
there is an arrow from a to b in Q, if and only if there is an arrow from a to b in Q.
It follows that Q is a disjoint union of the quivers Q, with a € A. We next prove that each Q, is
a complete quiver. We consider the following two cases:
- If Q, has exactly one vertex, then Q, is an empty graph because it has no loops; thus, Q, is a complete
quiver.
- If Q, has more than two vertices, then for any two vertices u, v of @,, there is a path from u to v, and
furthermore by hypothesis, there is an arrow from v to u in Q. Therefore, there is an arrow from v to u in
Qg and by definition, Q, is a complete quiver.

However, @, is a complete quiver. Consequently, Q is a disjoint union of complete quivers.

Definition 4.2. Let Q = (V, E) be a quiver with vertex set V and arrow set E. Construct a quiver Q" with
vertex set V and in which foru, v € V, there is an arrow from u tov in Q" ifu # v and there is a path from u
to v in Q. The quiver Q¢ is called the path-connected quiver of Q, written Q°°.
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By definition, it is easy to know that the path-connected quiver of a quiver always has no loops.

4.2 Generalized path algebras

We recall the definition of generalized path algebras.

Let I be a nonempty set and K a field. For any i, j, u, v € I, A; is a vector space over the field K, and
there, exists K-linear mapping Hiju from Aj; @k Aj, into A;,, written yil-u(x ® y) = xy, such that x(yz) = (xy)z
forany x € Ajj, y € A, z € Ay, then the set {4, I, yiju} is aI'-system with index I over the field K. Similar to
the generalized matrix ring, we obtain a K-algebra, called a generalized matrix algebra, or a gm algebra in
short, and written as G MA(4y, I, yiju), or GMHA in short.

Assume that D = (V, E) is a quiver (possibly an infinite quiver and also not a simple graph) with vertex
setV and arrow set E. Let Q = GMA(Q;, V, yiju) be a generalized matrix algebra over the field K satisfying
the following conditions:

(01) Q has a generalized matrix unit {e; : i € V}.
(02) Q5 =0foranyi,je V withi#j.

The sequence x = a;X;;,ai X, - Xi, ,i,di, is called a generalized path, or an Q-path, from i, to i, via arrows
Xigis Xisips -+ » Xiy_sipy Where O # @; € Qiji, for p=0,1,2,...,n. In this case, n is called the length of x,
written I(x).

For two Q-paths x = @iXig@iXigi, *** Xi i, a0A Y = bjy; by, -+ y; ; bj with iy = jo, we define the

multiplication of x and y as follows:
XY = @igXii@iXisy  Xin i @1D1)Yi D3+ Vi i B (4.1)

Denote by A,-;- the vector space over the field K with basis consisting of all Q-paths from i to j with length >1.
Let B; be the subspace spanned by all elements:

n n
QigXioinAirXii *** Xi“ik(zai(k’)]xik+lik+z * Xiai @i — Zaioxioilailxiliz Xik—likaig)xikﬂikﬂ i @iy (4:2)
r=1 r=1

where iy =1, i, = j, ai(k’) € Q4 and x;; ., is an arrow, p =0, 1,...,m — 1. Let 4; = Ai}/Bi,- when i #j and
Ay = (A} + Qy)/ By, written [a] = a + Bj; for any generalized path a from i to j. We can obtain a K-linear
mapping k;, from Aj; ®k Aj, to Ay, induced by (4.1). We write a instead of [a] when a € Q. So, (4;, V, K} is
a I'-system. It is not difficult to know that e;x; = x;; = x;¢; for any x; from i to j. Moreover, {e; : i € V} is
a generalized matrix unit of the I'-system (4;, V, x.).

The notion of generalized path algebras is originally defined in [24]. For generalized path algebras, also
see [25].

Definition 4.3. The aforementioned generalized matrix algebra G MA (A, V, K;;,) is called the generalized
path algebra of the quiver D over the generalized matrix algebra Q, or the Q-path algebra, written K(D, Q).
If, in addition, Q; = Ke; for any i € V, then K(D, Q) is called a path algebra of the quiver D over the field K,
written K(D).

It is worthy to record here that for a generalized path algebra K(D, Q), by (4.2), it follows that for any
nonzero elements,

X = AiXigiy Qi Xig, *** Xy in@ins ¥ € KD, Q),

1oy
we have

(E1) x = 0 if and only if a;, = O for some O < r < m;

(E2) [x] = [y] in K(D, Q) if and only if x = y regarded as sequences.
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LetGM = GM(4y, 1, pyy) be a generalized matrix ring, and construct a quiver Q(G M) with vertex set I
and in which there is an arrow from i to j if and only if i # j and A; # 0. We call the quiver Q(GM) the
I'-quiver of the generalized matrix algebra G M (4y, I, ijz)- Obviously, Q(GM) is a quiver without loops.

We next establish the relationship between a quiver and the I'-quiver of its generalized path algebra.

Lemma 4.4. Let D = (V, E) be a quiver. If K(D, Q) is a generalized path algebra of D over the generalized
matrix ring Q, then

(i) QK(D, Q)) is just the path connected quiver DF¢ of D.
(if) Foranyi,j,u € V, if x is a nonzero element of Aj;, then xA;, # O whenever Aj, # 0.

Proof. (i). Notice that Q(K(D, Q)) and D’° have the same vertex set. So, we need only to see whether
Q(K(D, Q)) and D€ have the same arrow set. It follows from the following implications: There is an arrow
from u to v in Q(K(D, Q)) if and only if u # v and A,, # @; if and only ifu # v and A, # &; if and only if
there is a Q-path a; X ,i,ai X, -+ Xi, i,ai,, Where ip = u, i, = v; if and only if there is a Q-path ey Xiy,€i X,
-+ Xi,_i.Cii» Whereiy = u, iy = v; if and only if there is a path x; X, - X;, ,i,, where iy = u, i, = v; if and only
if there is an edge from u to v in D*°.

(ii). Let X = aj Xiiy@iXisi, *** Xi,_4i, i, Where X, Xiiy .5 Xy 4i, € E,ig = 1,1, = jand 0 # a;, forp=0,1,2,...,
n — 1. Obviously, y = joiYioiCiiVig, yerjne,-njn,wherej0 =j,jp = uandy]-pjw1 eEforp=0,1,...,n-1,isa

nonzero element of A;,. Then,

XY = QigXigiyAiyXigiy *** Xin-lin(ainejojo))’jo i€, YinainEinn

= QigXii AirXisiy *** Xi @i joj €3 iy~ Vipsin€iha T 05

which results (ii). O
By Theorem 3.2 and Lemma 4.4, we may prove the following theorem.

Theorem 4.5. Let K(D, Q) be a generalized path algebra. Then K(D, Q) is semiprime (semiprimitive, respec-
tively) if and only if

(i) D¢ of D is a disjoint union of complete quivers;

(ii) for anyi e V, A is semiprime (semiprimitive, respectively).

Proof. Suppose that K(D, Q) is semiprime (semiprimitive, respectively). Theorem 3.2 immediately results
(ii). Notice that A; # 0 if and only if there is a Q-path from i to j; if and only if there is a path fromi to j in the
quiver D; if and only if there is an arrow from i to j in D, We can observe that if in D¢, there is a path
ip > i »— iy, then A;;,, #0 fori=1,2,...,n -1, so that by Lemma 4.4, A;;Ai -+ Ai, 4, # 0. This
means that there is a Q-path from i to i,. It follows that A;;, # 0. By (3.3) in the proof of Theorem 3.2,
this implies that A; ; # 0, thereby there is an arrow from i, to i; in Q(K(D, Q)). It follows from Lemma 4.4 (i)
that there is an arrow in D¥“. Now by (0B2), D* is a disjoint union of complete quivers.

Conversely, assume that given conditions hold. For a nonzero element x € A;;, we have 4; # 0, so that

iy

there is a path fromi to j in D €. it follows from (OB2) that there is an arrow from jtoiinDP €, thus A; # 0.
Again by Lemma 4.4, xA;; # O and similarly, A;x # 0. Now by Theorem 3.2, K(D, Q) is semiprime (semi-
primitive, respectively). O

Also, by Theorem 3.3 and Lemma 4.4, we have

Theorem 4.6. Let K(D, Q) be a generalized path algebra. Then K(D, Q) is prime (primitive, respectively)
if and only if

(i) D€ is a complete quiver;

(ii) for anyi e V, A; is prime (primitive, respectively).
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Proof. For the necessity, it suffices to verify that D' is a complete quiver.

- If|I] = 1, then Q(K(D, Q)) is an empty graph since it has no loops, and by Lemma 4.4, D PC is a complete
quiver.

— Assume that |I| > 2. For any i, j € I with i # j, by definition, 4; # 0 and Aj; # 0, and by Theorem 3.3 (i),
A;iAA; # 0. 1t follows that A; + 0, so that there is an arrow form i to j in Q(K(D, Q)). Similarly, we may
prove that there is an arrow form j toi in Q(K(D, Q)). Therefore, Q(K(D, Q)) is a complete quiver, and by
Lemma 4.4 (i), D' is a complete quiver.

To verify the sufficiency, we consider the following two cases:

- If [I| =1, then Q(K(D, Q)) is an empty graph, and K(D, Q) = A;;, and this means that Condition (i) in
Theorem 3.3 holds since each A; has a unity. It follows that K(D, Q) is prime.

— Assume that |I| > 2. In this case, by Q(K(D, Q)) is a complete quiver, there is an arrow from j to k in
Q(K(D, Q)) for any j, k € I. This shows that Ay # 0. By Lemma 4.4, xAyy + O for any i, j, k,l € I and
nonzero elements x € A, y € Ay. Now by Theorem 3.3, K(D, Q) is prime.

However, K(D, Q) is prime. Similarly, we may verify the primitive case. We complete the proof. O
We may now prove the following proposition.

Proposition 4.7. Let K(D, Q) be a generalized path algebra andi e V.
(i) If D has no paths fromi toi, then A;; is prime (primitive, semiprime and semiprimitive, respectively) if and
only if so is Q;.
(it) If D has paths from i to i, then the following conditions are equivalent:
(1) Aj; is semiprime;
(2) anne(Q;) = 0 and ann,(Q;;) = 0, where anny(X) (ann,(X)) is the left (right) annihilator of X;
(3) Aj is prime.

Proof. (i). If D has no paths fromi to i, then A} = 0 and so 4; = [Q;]. It follows that A; is isomorphic to Q;,
which results (i).

(ii). Assume that D has paths from i to i. We need only to verify that (1) = (2) and (2) = (3) since
a prime ring is semiprime.

(1) = (2). Suppose that A; is semiprime. We assume contrariwise at least one of anng(Q;) # 0 and
ann,(Q;) # 0 holds. Without loss of generality, we let anny(Q;) # 0 and u € ann,(Q;), so that uQ; = 0.
Consider the generalized path

X = AioXigiy Qi Xisiy =+ Xigy_sih
via arrows Xig,, Xiy ---» Xi, 4i, With ip = i = iy, and for any generalized path,
Y =biYiibiVig, - Vi ibin
via arrows y; 5, ¥j j---» ¥;,_j, With jo =i = j,. Obviously, bj, € Qj. Therefore,
XY = QioXigi iy Xiyi - Xim—lim(ubjo)yfohbjlyjlfz yjn—ljnbj"
= @ioXioi @iXiiy "+ Xin- 10O} 0335, = V5, .03 = 05
and hence, xbj, = 0, thereby by the arbitrariness of b;, xAf; = 0. It follows that x4;x = 0, contrary to the

hypothesis that A; is semiprime. It results (2).
(2) = (3). Assume that (2) is satisfied. We let contrarily w, z € K(D, Q)\{0} such that

WAiiZ =0. (43)
Letw =), wcand z = Y;_ z, where wy, 2 are generalized paths, and

— lw) > Mwp)z---= 1wy);
- Uz1) 2 (z)=--2 U(z5);
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- w ¢ Qiw Qs for2 <k <r;
- z1 ¢ QuzQ; for2 <1 < s.

The equality (4.3) can derive that wQ;z = 0, so that for any d € Q;,
widz, + widz, + -+ wdzs = 0,
and hence, by (E2) and comparing the lengths of generalized paths w;dz;, widz; = 0. It follows that
0 = wiQiz1 = QiXigi@ilXisiy *** Xipy_inUQVIY; ;D5 5, Vi i Dins (4.4)

where wy = a; X, Qi Xii, -+ Xi, iU and z = vy;, jlb,-lyj1 B Vi fnb j,- Again by (E1), the equality (4.4) can imply
that uQ;v = 0. We have uQ; = 0 and Q;;v = 0 by picking u = 1; or v = 1;. This is contrary to (2). Therefore, Aj;
is prime. O

Lemma 4.8. Let Q be a quiver and K a field. Then the following statements are true for the path algebra K(Q):
(i) If Q has no paths fromi to i, then A; = K.
(ii) If Q has paths fromi to i, then A; is semiprimitive.

Proof. (i). If Q has no paths from i to i, then A; = [Q;i] = [Ke;] = Ke;. But Ke; = K, so A; = K.

(ii). We assume on the contrary that A; is not semiprimitive. With notations in the proof of (2) = (3) in
Proposition 4.7, assume that w is a nonzero element in radA;;, and further, let z be a nonzero element of A;
such that wz + w + z = 0. Without the loss of generality, we let z = ZLle’ and each z; has the same
properties as (2) = (3) in Proposition 4.7. So,

WiZy + o+ WZs+ 21+ + Zs Wi+ W= WZ+ W+ 2=0. (4.5)
Consider that the length of wyz; is bigger than those of w; and zj, equation (4.5) derives that wyz; +---+
w,zs = 0. Notice that the length of wiz is maximum among all wizj, and this equation implies that wyz; = 0.
It follows that w; = O or z; = O since w; and z; are both Q-paths from i to i. Now by the maximality of I(w)

and I(zy), all w; are zero or all z; are zero. Therefore, w = 0 or z = 0, contrary to that w, z are neither zero
elements. Consequently, each Aj; is semiprimitive. O

For a path algebra K(Q), by Lemma 4.8, each Q; is semiprimitive and of course, semiprime. Now,
the following theorem is an immediate consequence of Theorem 4.5.

Theorem 4.9. Let Q be a quiver and K a field. Then, the following conditions are equivalent:
(i) K(Q) is semiprime;
(i) QFC is the disjoint union of complete quivers;

(iii) K(Q) is semiprimitive.

By Proposition 4.7 and since a field is prime, each A; of the path algebra K(Q) is prime. Theorem 4.6
results in the following theorem.

Theorem 4.10. Let Q be a quiver and K a field. Then K(Q) is prime if and only if Q° Cisa complete quiver.
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