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Abstract: Generalized Munn rings exist extensively in the theory of rings. The aim of this note is to answer
when a generalized Munn ring is primitive (semiprimitive, semiprime and prime, respectively). Sufficient
and necessary conditions are obtained for a generalized Munn ring with a regular sandwich matrix to be
primitive (semiprimitive, semiprime and prime, respectively). Also, we obtain sufficient and necessary
conditions for a Munn ring over principal ideal domains to be prime (semiprime, respectively). Our results
can be regarded as the generalizations of the famous result in the theory of rings that for a ring R, R is
primitive (semiprimitive and semiprime, respectively) if and only if so is M Rn( ). As applications of our
results, we consider the primeness and the primitivity of generalized matrix rings and generalized path
algebras. In particular, it is proved that a path algebra is a semiprime if and only if it is semiprimitive.

Keywords: generalized Munn ring, generalized path algebra, semiprimitive ring, semiprime ring, general-
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1 Introduction

Throughout this note, we shall use the standard notions and notations, and each of the considered rings is
associative but has possibly no identity.

The class of generalized matrix rings has been extensively studied. Examples of generalized matrix
rings include piecewise domains (see [1]), incidence algebras of directed graphs (see, [2,3]), structural
matrix rings (see [4] and subsequent papers), endomorphism rings, and Morita context rings. Sands [5]
observed that if S V W T, , ,[ ] is a Morita context, then

S V
W T

⎛
⎝

⎞
⎠

is a ring. These Morita context rings are precisely generalized matrix rings with idempotent sets E such that
E 2∣ ∣ = , and they have been widely studied. In particular, we note Amitsur’s paper [6], the survey paper [7],
McConnell and Robson’s treatment [8] and Müller’s computation of the maximal quotient ring [9]. Indeed,
cellular algebras, affine cellular algebras and standardly based algebras there exist some “local” structures
of generalized Munn algebras (for example, see [10–12]).

Brown [13] considered generalized matrix algebras of finite dimension over a field of characteristic 0.
He proved that such a generalized matrix algebra is either simple or nonsemisimple and simple modulo its
radical, and it is simple if and only if it possesses an identity. Sands [5] gave the prime radical of generalized
matrix rings with a finite idempotent set. Zhang [14] considered the prime radical of the general case.
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In 1989, Wauters and Jespers [15] determined when a generalized matrix ring with a finite idempotent set is
semiprime. Classical quotient rings of generalized matrix rings with finite idempotent sets had been
attracting due attention. There are a series of papers on this field (see [16–18]).

Indeed, any generalized matrix ring can be viewed as a subring of some generalized Munn ring. It is
natural to research generalized Munn rings. Li [19] considered the regularity of Munn rings. The main aim of
this study is to answer when a generalized Munn ring is semiprimitive (semiprime and prime, respectively).
A sufficient and necessary condition is established for a generalized Munn ring with a regular sandwich
matrix to be primitive (semiprimitive, semiprime and prime, respectively) (Theorems 2.5 and 2.7). Moreover,
we answer when a Munn ring over a principal ideal domain is semiprime (prime, respectively) (Proposition
2.11). In Section 3, we determine when a generalized matrix ring is primitive (semiprimitive, semiprime and
prime, respectively) (Theorems 3.2 and 3.3). Finally, we consider the primeness and the primitivity of
generalized path algebras. It is proved that for a quiver � and a field K , the path algebra K �( ) is semiprime

if and only if the path-connected quiver of PC
� is the disjoint union of complete quivers; if and only if K �( )

is semiprimitive (Theorem 4.9). And, K �( ) is prime if and only if PC
� is a complete quiver (Theorem 4.10).

2 Generalized Munn rings

The aim of this section is to consider the primeness and the primitivity of generalized Munn rings.

2.1 Regular sandwich matrices

To begin with, we give the notion of regular matrices.

Definition 2.1. Let � be a ring and X xim( )= be a generalized I M× matrix over � . A nonzero entry xim
of X is called a unit entry of X if there exists a nonzero idempotent e �∈ such that xim is a unit in e e� .

Notice that a group has exactly one idempotent, which is just the identity of the group. This means that
in Definition 2.1, the idempotent e is indeed unique. So, the unique idempotent e in Definition 2.1 is denoted
by xim

◇ .

Definition 2.2. Let � be a ring. An I M× matrix X xim( )= over � is said regular in � if the following
conditions hold:
(RM1) For any i I∈ , there exists m M∈ such that xim is a unit entry of X .
(RM2) For any n M∈ , there exists j I∈ such that xjn is a unit entry of X .
(RM3) If xi m0 0 is a unit entry of X , then

(i) x x xi m i m i m0 0 0 0=

◇ for any m M∈ ;

(ii) x x xim i m im0 0 0 0=

◇ for any i I∈ .

By definition, any m m× matrix without zero rows and zero columns are regular in the field � of
complex numbers. Also, for a ring � with unity, any I M× matrix over � , in which each row and each
column contains at least one unit of � , must be regular in � .

Let M I, be nonempty sets, and � an associative ring andQ qmi( )= a generalized M I× matrix over � .
Consider the set I M, ,M �( ) consisting of all generalized I M× matrices over � with only finite nonzero
entries, such an I M× matrix is usually said to be bounded. For C a D b I M, , ,im im M �( ) ( ) ( )= = ∈ , define

C D e e c d i I m M
C D CQD

λC λc λ R

, where for , ;
, where the product on the right side is the product of matrices;

for .

im im im im

im

( )

( )

+ = = + ∈ ∈

∘ =

= ∈

By definition, a routine calculation shows that with these operations, I M, ,M �( ) is an associative ring.
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Definition 2.3. The above ring I M, ,M �( ) is called a generalized Munn ring � with the sandwich matrixQ,
in notation, I M Q, , ;M �( ).

If I is finite, then we identity it with the set i1, 2, ,{ }… , where i is the cardinality of I , and we write
I M Q, , ;M �( ) as i M Q, , ;M �( ). Similarly, the notation I m Q, , ;M �( ) is used if M m∣ ∣ = < ∞. Denote by

Mm n, �( ) the set of all m n× matrices over � .
Recall from [20] that the generalized Munn ring m n Q, , ;M �( ) is called the Munn m n× matrix ring

over � with sandwich matrix Q. It is obvious that Mn �( ) is the Munn n n× matrix ring over � with
sandwich matrix Δ, where Δ is the unit matrix; that is, the diagonal matrix each of whose entries in the
diagonal positions is the unity of � .

Definition 2.4. Let � be a nonempty subset of I M, ,M �( ). An M I× matrix X xmi( )= over � is said to be
cancellable in � if for any nonzero elementY �∈ ,YX and XY are neither zero, whereYX and XY are usual
matrix products.

Evidently, for a ring � with identity 1, the I I× unit matrix Δ is cancellable in any subset of I I, ,M �( ).
And, any invertible n n× matrix must be cancellable in Mn �( ), but not all of cancellable matrices in Mn �( )

are invertible in the matrix algebra.
Example. Let � be the ring of integers. It is easy to check that the matrix

A 2 0
0 4

⎛
⎝

⎞
⎠

=

is cancellable in the matrix ring M2 �( ). But A is not invertible in M2 �( ).
For convenience, we denote

a I M a i m
b b

a I M a i m i J
m N N n m N

m n I

: the generalized matrix with in the , position and 0 elsewhere;
: the set : for ;
: the generalized matrix with in the , position for ,

and 0 elsewhere. Especially, if , we simply write
as , and the similar sign for the case: 1.

rad : the Jacobson radical of the ring .

im

im im

im i J m N im,

� � � �

� �

( ) ( )

( ) {( ) }

( ) ( )

{ }

∣ ∣

( )

×

∈ ⊆

× ∈

∈ = ∈

= =

∈ ∈

We now arrive at our main results of this note.

Theorem 2.5. Let I M Q, , ;M M �( )= be a generalized Munn ring. If Q is regular in � , then I M Q, , ;M �( )

is semiprime (semiprimitive, respectively) if and only if the following conditions are satisfied:
(i) Q is cancellable in I M, ,M �( );

(ii) for any unit entries q q,mi nj of Q, if x is a nonzero element of q qmi nj�
◇ ◇, then q q x 0nj mi� ≠

◇ ◇ and

xq q 0nj mi� ≠

◇ ◇ ;

(iii) for any unit entry qmi of Q, q qmi mi�
◇ ◇ is semiprime (semiprimitive, respectively).

Proof. Let qmi be a unit entry of Q and denote by qmi
1− the inverse of qmi in q qmi mi�

◇ ◇ , obviously qmi =

◇

q q q qmi mi mi mi
1 1

=

− − . Then qmi im
1( )− is an idempotent of M, and

q q q qmi im mi im mi mi im
1 1M �( ) ( ) ( )∘ ∘ =

− − ◇ ◇ (2.1)

since qmi is a unit in q qmi mi�
◇ ◇ . A routine calculation shows that the mapping

ϕ x xq q q q q: is an isomorphism from onto .im mi mi mi im mi mi� �( ) ( )↦

◇ ◇ ◇ ◇ (2.2)

(2.5.1) The proof for the semiprime case. If M is semiprime, then by (2.1), q qmi mi im�( )◇ ◇ is semiprime, so

that byϕ is an isomorphism, q qmi mi�
◇ ◇ is semiprime. It results (iii). To see (i), assume on the contrary thatQ is

not cancellable in I M, ,M �( ), then there is a nonzero element X M∈ such that XQ 0= orQX 0= . Without
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loss of generality, let XQ 0= , so that X U X XQUQX 0∘ ∘ = = for any U M∈ , whence X X 0M∘ ∘ = ,
contrary to that M is semiprime. Thus, Q is cancellable in I M, ,M �( ).

We next verify (ii). To the end, we assume contrariwise that there exists a nonzero element x q qmi nj�∈

◇ ◇

such that xq q 0nj mi� =

◇ ◇ . Obviously, xq x q xnj mi= =

◇ ◇ , so that

x x x x xq q x x q q x 0,im im im nj mi im nj mi imM � � �( ) ( ) ( ) (( ) ( )) ( ( ) )∘ ∘ ⊆ = = =

◇ ◇ ◇ ◇

contrary to the hypothesis that M is semiprime. Therefore, xq q 0nj mi� ≠

◇ ◇ . Similarly, q q x 0nj mi� ≠

◇ ◇ . We have
now proved that (ii) is valid.

For the converse, we contrariwise let w wim( )= be a nonzero generalized I M× matrix in M such
that w w 0M∘ ∘ = . Because Q is cancellable, QwQ u 0mi m M i I,( )= ≠

∈ ∈
, and we assume that u 0m i0 0 ≠ .

If wQ vij i j I,( )=
∈
, then

u q v .m i
j I

m j ji0 0 0 0∑=

∈

(2.3)

When Q is regular, there is j I0 ∈ such that qm j0 0 is a unit entry of Q. It follows that q q qm j m j m j0 0 0 0=

◇ . Now by
(2.3),

u q q v q q v q u ,m i
j I

m j m j ji m j
j I

m j ji m j m i0 0 0 0 0 0 0 0 0 0 0 0 0 0
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑= = =

∈

◇ ◇

∈

◇

and similarly, there exists a unit entry qn i0 0 of Q such that u q um i n i m i0 0 0 0 0 0=

◇ . Therefore, u q qm i m j n i0 0 0 0 0 0�∈

◇ ◇ .
Furthermore, by (ii), there is x q qn i m j0 0 0 0

�∈

◇ ◇ such that u x q q0 m i m j m j0 0 0 0 0 0
�≠ ∈

◇ ◇ . Clearly,

q u x u x u x q .m j m i m i m i m j0 0 0 0 0 0 0 0 0 0( )= =

◇ ◇ (2.4)

It follows that

u q QwQ x

q u x

q u x

u x

q w x
0.

m j j m i m

m j j m m i m i i m

m j m i j m

m i j m

m j j m i m

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

( )

( )

( )

( )

( ) ( )

( )

( )

( )

≔

=

=

=

= ∘ ∘

≠

◇

◇

◇

◇

(2.5)

Now

u x q q u x u xq q u x

u x Q q q Q u x

u x Q Q u x

u x u x

q w x q w x

q w w x
0,

m i m j m j m i j m m i m j m j m i j m

m i j m m j m j j m m i j m

m i j m m i j m

m i j m m i j m

m j j m j m m j j m j m

m j j m j m

1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

M

M

M

M

� �

�

( ( ) ) ( ( ) )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

⋅ ⋅ = ⋅ ⋅

=

⊆

= ∘ ∘

= ∘ ∘ ∘ ∘ ∘ ∘

⊆ ∘ ∘ ∘ ∘

=

◇ ◇ ◇ ◇

− −

◇ ◇

◇

so that u x q q u x 0m i m j m j m i0 0 0 0 0 0 0 0�⋅ ⋅ =

◇ ◇ . This is contrary to that q qm j m j0 0 0 0
�

◇ ◇ is semiprime. Consequently,
M is semiprime.

(2.5.2) The proof for the semiprimive case. It is well known that for a semiprimitive algebra A and an
idempotent e A∈ , e eA is still semiprimitive. So, the same reason as in (2.5.1) shows that the “if” part is
valid. With notations in (2.5.1), if w rad \ 0M( ) { }∈ , then by (2.5), u x0 radm i j m0 0 0 0 M( )( )≠ ∈ . Notice that

qm j j m
1
0 0 0 0( )

− is an idempotent of M, we can obtain that
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u x q u xq

q u x q

q q

q q

q q

q q

by 2.3

rad

rad

rad

rad .

m i j m m j m i m j j m

m j j m m i j m m j j m

m j j m m j j m

m j j m m j j m

m j m j j m

m j m j j m

1 1

1 1

1 1

1 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

M

M

�

�

( )

( )

( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

( )

= ( )

= ∘ ∘

∈ ∘ ∘

= ∘ ∘

=

=

◇ ◇

− −

− −

− −

− −

◇ ◇

This means that q qm j m j j m0 0 0 0 0 0�( )

◇ ◇ is not semiprimitive. Now by (2.2), we observe that q qm j m j0 0 0 0
�

◇ ◇ is not
semiprimitive. This is contrary to the hypothesis. It results the “only if” part. □

Remark 2.6. Let us turn back to the proof of Theorem 2.5. In (2.5.1), the proof of Condition (i) in the direct
part has indeed proved that if I M Q, , ;M �( ) is semiprime, then Q is cancellable in I M, ,M �( ).

Theorem 2.7. Let I M Q, , ;M M �( )= be a generalized Munn ring. If Q is regular in � , then I M Q, , ;M �( )

is prime (primitive, respectively) if and only if the following conditions are satisfied:
(i) Q is cancellable in I M, ,M �( );

(ii) for any unit entries q q q q, , ,mi nj rk sl of Q, if x and y are nonzero elements of q qmi nj�
◇ ◇ and q qrk sl�

◇ ◇,

respectively, then xq q y 0nj rk� ≠

◇ ◇ ;

(iii) for any unit entry qmi of Q, q qmi mi�
◇ ◇ is prime (primitive, respectively).

Proof. (2.7.1) The proof for the prime case. IfM is prime, then by (2.1), q qmi mi im�( )◇ ◇ is prime, so that byϕ is an
isomorphism, q qmi mi�

◇ ◇ is prime. By Remark 2.6, Q is cancellable in I M, ,M �( ).

We next verify (ii). We contrariwise let x q q y q q\ 0 , \ 0mi nj rk sl� �{ } { }∈ ∈

◇ ◇ ◇ ◇ such that xq q y 0nj rk� =

◇ ◇ . Then,

xq xnj =

◇ and q y yrk =

◇ . Moreover,

x y x y x q q y 0 0.im im im nj rk im imM � �( ) ( ) ( ) ( ) ( )∘ ∘ = = ⋅ ⋅ = =

◇ ◇

It is contrary to the hypothesis that M is prime. We have now proved the necessity.
To see the converse part, we assume conversely that there exist nonzero elements A B, M∈ such that

A B 0M∘ ∘ = . It is not difficult to see that Condition (ii) in Theorem 2.7 implies Condition (ii) in Theorem
2.5. Indeed, by (ii), for any x q qmi nj�∈

◇ ◇, xq q x 0nj mi� ≠

◇ ◇ , so that xq q 0nj ni� ≠

◇ ◇ ; similarly, q q x 0nj mi� ≠

◇ ◇ , and it
results immediately in Condition (ii) in Theorem 2.5. Now by (2.5.1) (precisely, see (2.4) and (2.5)), there are
m n M j k I, , ,∈ ∈ and C C D D, , ,1 2 1 2 M∈ such that
(a) q q,mj nk are unit entries of Q; and

(b) C A D a jm1 1 ( )∘ ∘ = and C B D b kn2 2 ( )∘ ∘ = , where a and b are nonzero elements in q qmj mj�
◇ ◇ and

q qnk nk�
◇ ◇ , respectively.

Furthermore by (ii), we have u q qmj nk�∈

◇ ◇ such that aub 0≠ . Obviously, q u u uqmj nk= =

◇ ◇ .
Compute

aub aub aq ub auq b

aq q ub auq q b

a q ub auq b
a b

C A D C B D
C A B D
0.

jn jn mj jn nk jn

mj mj jn nk nk jn

jm mj jn nk jn kn

jm kn

1 1

1 1

1 1 2 2

1 2

M M

M

M

M

M

M

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

∘ ∘ = ∘ ∘

= ∘ ∘

= ∘ ∘ ∘ ∘

⊆ ∘ ∘

= ∘ ∘ ∘ ∘ ∘ ∘

⊆ ∘ ∘ ∘ ∘

=

◇ ◇

− −

− −

(2.6)
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This shows that M is not a semiprime ring. But by Theorem 2.5, M is semiprime. It is a contradiction.
Therefore, M is prime.

(2.7.2) The proof for the primitive case. By the well-known result (for example, see [21, Ex. 10, p. 339]): for
any primitive algebra A and any idempotent e in A, e eA is still primitive, and since any primitive algebra is
prime, a similar argument as in (2.5.1) can verify the “if” part. For the converse, if given conditions hold,
then by (2.7.1),M is prime. The rest follows from a famous result of Lanahi et al. [22] showed that for a prime
ring R, if e is a nonzero idempotent in R, then R is primitive if and only if eRe is primitive. □

Based on Theorems 2.5 and 2.7, we may prove the following proposition.

Proposition 2.8. Let I M Q, , ;M �( ) be a generalized Munn ring. Assume that
(1) � has a unity;
(2) each row and each column of Q contains at least one unit of � .

Then I M Q, , ;M �( ) is prime (semiprime, primtive and semiprimitive, respectively) if and only if the following
conditions are satisfied:
(i) Q is cancellable in I M, ,M �( );
(ii) � is prime (semiprime, primtive and semiprimitive, respectively).

Proof. By definition, qmi
◇ is the unity of � for any unit entry qmi of Q satisfying Condition (2); in this case,

q qmi mi� �=

◇ ◇ . Obviously, Q is regular in � .
Let qmi be an arbitrary unit entry ofQ. By Condition (2), there is an entry qmi0 ofQ such that qmi0 is a unit

in � . But Q is regular in � , so q q qmi mi mi0 0=

◇ , and it follows that qmi
◇ must be the unity of � . We have now

proved that any unit entry ofQ is a unit in � . This shows that Condition (ii) in Theorem 2.5 are satisfied and
that Condition (ii) in Theorem 2.7 is satisfied whenever � is prime.

The rest follows immediately from Theorems 2.5 and 2.7. □

For a ring � with unity, denote by Δ the generalized I I× matrix over � each of whose entries in the
diagonal positions is the unity of � and 0 elsewhere. Obviously, Δ is cancellable in I I, ,M �( ). It is easy to
see that the following corollary is an easy consequence of Proposition 2.8.

Corollary 2.9. Let � be a ring with unity. Then � is prime (semiprime, primitive and semiprimitive, respec-
tively) if and only if for any [for some] nonempty set I , I I, , ; ΔM �( ) is prime (semiprime, primtive and
semiprimitive, respectively).

Let us turn back to the proof of Theorem 2.7. Assume now that M is semiprime and the condition:
(PM) If q q,mj nk are unit entries of Q, then aq q b 0mj nk� ≠

◇ ◇ for any nonzero elements a q q ,mj mj�∈

◇ ◇

b q qnk nk�∈

◇ ◇ .

In this case, u in (2.5) exists inM. Moreover, we can derive Conditions (a) and (b) in the proof of Theorem 2.7,
and whence (2.6). So, we have indeed proved the following theorem.

Theorem 2.10. Let I M Q, , ;M �( ) be a generalized Munn ring. If Q is regular in � , then M is prime if and
only if M is semiprime and (PM) is satisfied.

Comparing with Theorem 2.10, it raises a natural conjecture as follows:

Conjecture 2.11. Let I M Q, , ;M �( ) be a generalized Munn ring, and assume that Q is regular in � . Then the
following conditions are equivalent:
(i) M is primitive;
(ii) M is semiprimitive and (PM) is satisfied;
(iii) M is both semiprimitive and prime.
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2.2 Principal ideal domains

In this subsection, we study the primeness of Munn rings over a principal ideal domain. We first provide one
property of cancellable matrices over a principal ideal domain.

Lemma 2.12. Let � be a principal ideal domain, and Q a m n× matrix over � . Then Q is cancellable in
n m, ,M �( ) if and only if m n rQ= = , where rQ is the rank of Q.

Proof. (Necessity). Assume that Q is cancellable in I M, ,M �( ). We suppose contrariwise that m n rQ= =

is not valid. By [23, Proposition III.2.11], there exist invertible matrices U V, such that

UQV D 0
0 0 ,⎛

⎝
⎞
⎠

=

where D is a diagonal r rQ Q× matrix with nonzero diagonal entries. So, there exists a nonzero matrix A22 over
� such that

A UQV0 0
0 0.

22
⎛
⎝

⎞
⎠

=

Moreover,

A UQ0 0
0 0,

22
⎛
⎝

⎞
⎠

=

so that

A
0 0
0 0

22
⎛
⎝

⎞
⎠

=

since, by hypothesis, Q is cancellable in I M, ,M �( ). It follows that A 022 = . It is a contradiction.
Thus, m r nQ= = .

(Sufficiency). If m r nQ= = , then by [23, Proposition III.2.11], there exist invertible matrices U V, such
that UQV d d ddiag , , , m1 2( )= … , where d 0i ≠ for i m1, 2, ,= … . For any X x Mij n �( ) ( )= ∈ , we have

XQ XU UQV y d XU y
y d i j n
y i j n
XU
X

0 0, where ;
0 for , 1, 2, , ;

0 for , 1, 2, , ;
0;

0,

ij j ij

ij j

ij

1 1

1

( ) ( ) ( )= ⇔ = = =

⇔ = = …

⇔ = = …

⇔ =

⇔ =

− −

−

and similarly, QX 0= if and only if X 0= . Therefore, Q is cancellable in m n, ,M �( ). □

Proposition 2.13. Let m n Q, , ;M �( ) be a Munn ring. If � is a principal ideal domain with unity 1, then the
following conditions are equivalent:
(i) M is semiprime;
(ii) m r nQ= = ;
(iii) M is prime.

Proof. (i) ⇒ (ii). By Remark 2.6, Q is cancellable in m n, ,M �( ). Now Lemma 2.12 results (ii).
(ii) ⇒ (iii). Let A1 and A2 be an arbitrary nonzero n n× matrices over � . By [23, Proposition III.2.11],

there exist invertible matrices U V i, , 1, 2i i = such that

U A V d d ddiag , , , , 0, ,0 ,i i i
i i

m
i

1 2 i
( ) ( ) ( )

( )= … …
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where d 0k
i( )

≠ for any k m1 i≤ ≤ . Let U and V be invertible matrices such that Q U c c c Vdiag , , , n1 2( )= … ,
where c 0j ≠ for j n1, 2, ,= … . Because

V U x VU y,ij ij1
1

2
1( ) ( )= =

− −

are both invertible, there exist j i n1 ,0 0≤ ≤ such that x y0, 0j i1 10 0
≠ ≠ . Compute

U A QV U QA V U A V V U c c U QV VU U A V

d d x c c c

c c c y d d

d x c c y d

1 1 1 1 diag , , 1 1

1 diag , , , 0 , 0 diag , , ,

1 diag , , , diag , , , 0 , 0 1

0,

j i n j i

m ij n

j i n ij m

j j i i

11 1 1
1 1

2 2 11 11 1 1 1 1
1

1
1 1

2
1

2 2 2 11

11 1
1 1

1 2

1 2 1
2 2

11

1
1

1 1 1
2

11

0 0 0 0

1

0 0 2

0 0 0 0

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )( )( )

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

( )

= …

= … ⋯ …

⋅ … … ⋯

=

≠

− − − − − −

so that the entry in the 1, 1( ) position of

U A QV U QA V U A V U A V1 1j i j i1 1
1 1

2 2 1 1
1 1

2 20 0 0 0( ) ( )= ∘ ∘

− − − −

is equal to the nonzero element d x c c y dj j i i1
1

1 1 1
2

0 0 0 0
( ) ( ). It follows that A V U A1 0j i1

1 1
20 0( )∘ ∘ ≠

− − since � is

a principal ideal domain, giving d x c c y d 0j j i i1
1

1 1 1
2

0 0 0 0
( ) ( )

≠ . Thus, A A 01 2M∘ ∘ ≠ and whence M is prime.
(iii) ⇒ (i). It is obvious. □

Notice that for a principal ideal domain, the unity is the only nonzero idempotent. We observe that a
generalized matrix over a principal ideal domain is regular if and only if each of its rows and each of its
columns contain at least one unit. By Propositions 2.8 and 2.13, the following corollary is immediate from
that any domain is prime.

Corollary 2.14. Let m n Q, , ;M �( ) be a Munn ring. If
(1) � is a principal ideal domain;
(2) Q is regular in � ,

then M is prime if and only if m r nQ= = .

3 Generalized matrix rings

In this section, we shall consider the primeness and the primitivity of generalized matrix rings. We first
recall the definition of generalized matrix rings.

Let I be a nonempty set. For any i j l I, , ∈ , let Aii be a ring with identity 1i, and Aij a unitary
A A,ii jj( )-bimodule. Assume that there is a module homomorphism μ A A:ijl ij jl× into Ail, written μ x y xy,ijl( ) = ,

for any i j l I, , ∈ . If the following conditions hold:
(G1) x y z xz yz w x y wx wy,( ) ( )+ = + + = + ;
(G2) w xz wx z( ) ( )= ,

for any x y A z A w A, , ,ij jl li∈ ∈ ∈ , then the triple A I μ, ,ij ijl( ) is called a Γ-system with index I .
Given a Γ-system A I μ, ,ij ijl( ), let A I μ, ,ij ijl�� �� ( )= be the external direct sum of A i j I: ,ij{ }∈ .

We shall use xij{ } to denote the external direct sum of xij with i j I, ∈ . Now we define the multiplication
in �� as

xy x y ,
k

ik kj
⎧

⎨
⎩

⎫

⎬
⎭

∑=
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where x xij{ }= and y yij{ }= . It is easy to check that �� is a ring (possibly without unity). We call ��

a generalized matrix ring, or a gm ring for short, written A I μ, ,ij ijk�� ( ) or �� for short. If eii is a nonzero
element of Aii satisfying that e x x xeii jj= = for all x Aij∈ , then the set e i I:ii{ }∈ is called a generalized matrix
unit of the Γ-system A I μ, ,ij iju( ) (for example, see [14]).

In what follows, we still write the element x xij{ }= satisfying that x 0ij = if i i j j,0 0≠ ≠ and x ui j0 0 = as

u i j0 0{ } , especially, write 1 1i i i i0 0 0 0{ } = . Also, we use A ij{ } to stand for the set a a A:ij{{ } }∈ . And, we write

x xij i A j B,{ }=
∈ ∈

if x 0ij = whenever i I A\∈ or j I B\∈ . It is easy to check that the set i I1 :i{ }∈ is a generalized
matrix unit of the Γ-system A I μ, ,ij iju( ).

Proposition 3.1. The generalized matrix ring A I μ, ,ij ijk�� ( ) is a subring of the generalized Munn ring
I I, , ; ΞM ��( ), where Ξ is the generalized I I× matrix in which any entry in the i i,( ) position is 1i,

for any i I∈ , and 0 elsewhere.

Proof. Consider the mapping

ϕ I I x x: , , ; Ξ ; .ij ij ijM�� ��( ) { } ( )∑→ ↦

A routine calculation shows that ϕ is an injective homomorphism, and here, we omit the detail. □

We can now describe the main results of this section.

Theorem 3.2. Let A I μ, ,ij ijl�� �� ( )= be a generalized matrix ring. Then �� is semiprime (semiprimitive,
respectively) if and only if the following conditions are satisfied:
(i) for any i j I, ∈ , if x is a nonzero element in Aij, then xA 0ji ≠ and A x 0ji ≠ ;
(ii) for any i I∈ , Aii is semiprime (semiprimtive, respectively).

Proof. A routine calculation shows that 1i ii{ } is an idempotent, for all i I∈ , and the mapping φ x x: ii{ } ↦

is an isomorphism from Aii ii{ } onto Aii. Compute

A1 1 .i ii i ii ii ii��{ } { } { }=

So,

A1 1 .i ii i ii ii��{ } { } ≅ (3.1)

(3.2.1) The proof for the semiprime case. If �� is semiprime, then as for all i I∈ , 1i ii{ } is an idempotent
in �� , we obtain that 1 1i ii i ii��{ } { } is semiprime, so that by (3.1), Aii is semiprime.

We contrariwise let i j I,0 0 ∈ such that A 0i j0 0 ≠ but A 0j i0 0 = . Pick a nonzero element a in Ai j0 0.

Of course, a i j0 0{ } is a nonzero element in �� . Compute

a a a A a aA a A 0,i j i j i j j i j i i j j i i j j i i j0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0��{ } { } { } { }{ } { } { }= = ⊆ = (3.2)

contrary to the hypothesis that �� is semiprime. Therefore we have now proved that for any i j I, ∈ ,

A A0 0.ij ji≠ ⇔ ≠ (3.3)

To see (i), we assume contrarily that x is a nonzero element in Ai j1 1 such that xA 0j i1 1 = . By (3.2), we have
x x xA x 0i j i j j i i j1 1 1 1 1 1 1 1��{ } { } { }= = , contrary to the hypothesis that �� is semiprime. So, xA 0ji ≠ . Dually,
we may prove that A x 0ji ≠ .

For the converse, assume that given Conditions (i) and (ii) hold. We oppositely let u uij{ }= be a nonzero
element in �� such that u u 0�� = . Notice that
– Ξ is regular in �� and cancellable in I I, ,M ��( );

– i I1 ,i ii{ } ∈ are all unit entries of Ξ. Obviously, 1 1i ii i ii{ } { }=

◇ and furthermore, A1 1i ii j jj ij ij��{ } { } { }= . Together
with Condition (i), it is easy to see that Condition (ii) in Theorem 2.5.
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By Theorem 2.5, the generalized Munn ring I I, , ; ΞM ��( ) is semiprime. Denote

J k I u j I u i I: 0 for some , or 0 for some .kj ik{ }= ∈ ≠ ∈ ≠ ∈

It is not difficult to check that
(a) ε 1i J i ii( )= ∑

∈

is an idempotent. Moreover, ε I I ε, , ; ΞM ��( ) is semiprime.

(b) εϕ u ϕ u ϕ u ε( ) ( ) ( )= = , where ϕ has the same meanings as in the proof of Proposition 3.1.

Moreover,

ϕ u ε I I ε ϕ u ϕ u ϕ ϕ u ϕ u u, , ; Ξ 0,M �� �� ��( )( ( ) ) ( ) ( ) ( ) ( ) ( )⊆ = =

contrary to the foregoing proof that ε I I ε, , ; ΞM ��( ) is semiprime. Therefore u 0= and whence ��

is semiprime.
(3.2.2) The proof for the semiprimitive case. Similar as (3.2.1), we may prove the necessity.
For the converse, we contrariwise assume that u is a nonzero element in rad ��( ). With notations in

(3.2.1), we denote X xij i J j J, ��{{ } }= ⊆
∈ ∈

. It is easy to see that
(a) X is a subalgebra of �� ;
(b) τ 1i J i ii{ }= ∑

∈

is an idempotent in �� . Moreover, ϕ τ ε( ) = , τu u uτ= = and τ τ X�� = ;

(c) ϕ X ε I I ε, , ; ΞM ��( ) ( )= .

Therefore u τ τ Xrad rad��( ) ( )∈ = . Notice that ϕ is an injective homomorphism. We observe that
ε I I ε, , ; ΞM ��( ) is isomorphic to X . It follows that

ϕ u ε I I εrad , , ; Ξ ,M ��( ) ( ( ) )∈

so that ε I I ε, , ; ΞM ��( ) is not semiprimitive. Indeed, by the proof of the converse part in (3.2.1), we can
obtain that I I, , ; ΞM ��( ) is semiprimitive if for any i I∈ , Aii is semiprimtive. In this case, ε I I ε, , ; ΞM ��( )

is semiprimitive, contrary to the foregoing proof that ε I I ε, , ; ΞM ��( ) is not semiprimitive. Consequently,
�� is semiprimitive. □

Theorem 3.3. Let A I μ, ,ij ijl�� �� ( )= be a generalized matrix ring. Then �� is prime (primitive, respec-
tively) if and only if the following conditions are satisfied:
(i) for any i j k l I, , , ∈ , if x and y are respectively nonzero elements in Aij and in Akl, then xA y 0jk ≠ ;
(ii) for any i I∈ , Aii is prime (primtive, respectively).

Proof. (3.3.1) The proof for the prime case. Similar as in (3.2.1), we may prove the necessity.
For the sufficiency, we contrarily assume that u uij{ }= and v vkl{ }= are nonzero elements in �� such

that u v 0�� = . Obviously, there are i j k, ,0 0 0, and l I0 ∈ such that ui j0 0 and vk l0 0 are neither equal to 0.
Further, by Condition (i), there is x Aj k0 0∈ such that u xv 0i j k l0 0 0 0 ≠ . By the same reason, we have y Al i0 0∈

such that u xv yu xv 0i j k l i j k l0 0 0 0 0 0 0 0 ≠ . So that u xv y A0 i j k l i i0 0 0 0 0 0≠ ∈ . Compute

u xv y A u xv y u xv y u x v y

u v y

u v y

u v y

y

1 1 1 1

1 1

1 0 1 0.

i j k l i i i j k l i i i j i j k l j i i j i k k l k l l i

i j i j k l k l l i

i i i j j j k k k l l l l i

i i i l l l l i

i i i l l l l i

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

��

��

��

��

{ }

{ }

{ }

{ }

{ }

{ } { } { } { } { }

{ } { }

({ } { } ) ({ } { } )

{ } { }

{ } { }

⋅ ⋅ =

⊆

=

⊆ ⋅ ⋅

= ⋅ ⋅ =

It follows that u xv y A u xv y 0i j k l i i i j k l0 0 0 0 0 0 0 0 0 0⋅ ⋅ = . This means that Ai i0 0 is not semiprime, contrary to Condition
(ii). Therefore, �� is prime.

(3.3.2) The proof for the primitive case. It follows from the proof in (2.5.2). □
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4 Generalized path algebras

In this section, we consider the primeness and the primitivity of generalized path algebras. We first provide
some results on quivers.

4.1 Quivers

We start with the basic definitions. A quiver V E,� ( )= is an oriented graph, where V is the vertex set and
E is the arrow set. We denote by E V:S → and E V:T → the mappings, where α iS( ) = and α jT( ) =

when α i j: → is an arrow from i to j. A path in the quiver � is an ordered sequence of arrows p α αn 1= ⋯

with α αl l 1T S( ) ( )=
+

for l n1 < < , or the symbol ei for i V∈ . We call the path ei trivial path and define
e i ei iS T( ) ( )= = . For a nontrivial path p α αn 1= ⋯ , we define p αnS S( ) ( )= and p α1T T( ) ( )= . A nontrivial

path p α αn 1= ⋯ is said to be
(i) an oriented cycle if p pS T( ) ( )= ;
(ii) a loop from i to i if n 1= and p i pS T( ) ( )= = .

Definition 4.1.
(i) A quiver G with vertex setV is said to be a complete quiver if for any a b V, ∈ with a b≠ , there are one

arrow from a to b and one arrow from b to a.
(ii) Let G1 and G2 be quivers with vertex set V1 and arrow set E1, and with vertex set V2 and arrow set E2,

respectively. A quiverG is said to be a union ofG1 andG2 if the vertex set ofG isV V1 2⊔ and the arrow set
of G is E E1 2⊔ . If, in addition, both V V1 2⊔ and E E1 2⊔ are disjoint unions, then we shall call G to be
a disjoint union of G1 and G2.

By an empty graph, we mean a graph without arrows. Obviously, we have the following observations:
(OB1) The empty graph is a complete quiver if and only if it it has exactly one vertex.

Also,
(OB2) Let V E,� ( )= be a quiver without loops. � is a disjoint union of complete quivers if and only if for

any a b V, ∈ with a b≠ , if there is a path from a to b, then there is one arrow from b to a.

Indeed, by definition, the necessity is evident. Conversely, we define a relation on the vertex set V as
follows:

a b a b a bif ; or there is a path from to .� =

It is not difficult to see that � is an equivalence onV . Consider the quotientV V α A:α� { }/ = ∈ and forVα,
construct a subquiver V E,α α α� ( )= of � as follows: for a b V, α∈ ,

there is an arrow from a to b in α� if and only if there is an arrow from a to b in .�

It follows that � is a disjoint union of the quivers α� with α A∈ . We next prove that each α� is
a complete quiver. We consider the following two cases:
– If α� has exactly one vertex, then α� is an empty graph because it has no loops; thus, α� is a complete

quiver.
– If α� has more than two vertices, then for any two vertices u v, of α� , there is a path from u to v, and

furthermore by hypothesis, there is an arrow from v to u in � . Therefore, there is an arrow from v to u in

α� , and by definition, α� is a complete quiver.

However, α� is a complete quiver. Consequently, � is a disjoint union of complete quivers.

Definition 4.2. Let V E,� ( )= be a quiver with vertex set V and arrow set E. Construct a quiver PC
� with

vertex setV and in which for u v V, ∈ , there is an arrow from u to v in PC
� if u v≠ and there is a path from u

to v in � . The quiver PC
� is called the path-connected quiver of � , written PC

� .
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By definition, it is easy to know that the path-connected quiver of a quiver always has no loops.

4.2 Generalized path algebras

We recall the definition of generalized path algebras.
Let I be a nonempty set and K a field. For any i j u v I, , , ∈ , Aij is a vector space over the field K , and

there, exists K-linear mapping μiju from A Aij K ju⊗ into Aiu, written μ x y xyiju( )⊗ = , such that x yz xy z( ) ( )=

for any x A y A z A, ,ij ju uv∈ ∈ ∈ , then the set A I μ, ,ij iju{ } is a Γ-system with index I over the field K . Similar to

the generalized matrix ring, we obtain a K-algebra, called a generalized matrix algebra, or a gm algebra in
short, and written as A I μ, ,ij iju�� �( ), or �� � in short.

Assume that D V E,( )= is a quiver (possibly an infinite quiver and also not a simple graph) with vertex
setV and arrow set E. Let V μΩ Ω , ,ij iju�� �( )= be a generalized matrix algebra over the field K satisfying

the following conditions:
(O1) Ω has a generalized matrix unit e i V:ii{ }∈ .
(O2) Ω 0ij = for any i j V, ∈ with i j≠ .

The sequence x a x a x x ai i i i i i i i in n n0 0 1 1 1 2 1= ⋯
−

is called a generalized path, or an Ω-path, from i0 to in via arrows
x x x, , ,i i i i i in n0 1 1 2 1…

−

, where a0 Ωi i ip p p≠ ∈ for p n0, 1, 2, ,= … . In this case, n is called the length of x,
written l x( ).

For two Ω-paths x a x a x x ai i i i i i i i im m m0 0 1 1 1 2 1= ⋯
−

and y b y b y y bj j j j j j j j jn n n0 0 1 1 1 2 1
= ⋯

−

with i jm 0= , we define the

multiplication of x and y as follows:

xy a x a x x a b y b y y b .i i i i i i i i i j j j j j j j j jm m m n n n0 0 1 1 1 2 1 0 0 1 1 1 2 1( )= ⋯ ⋯
−

−

(4.1)

Denote by Aij′ the vector space over the field K with basis consisting of all Ω-paths from i to j with length 1≥ .
Let Bij be the subspace spanned by all elements:

a x a x x a x x a a x a x x a x x a ,i i i i i i i i
r

n

i
r

i i i i i
r

n

i i i i i i i i i
r

i i i i i
1 1

k k k k k m m m k k k k k m m m0 0 1 1 1 2 1 1 2 1 0 0 1 1 1 2 1 1 2 1⎜ ⎟
⎛

⎝

⎞

⎠

( ) ( )
∑ ∑⋯ ⋯ − ⋯ ⋯

= =

− + + − − + + −

(4.2)

where i i i j a, , Ωm i
l

i i0 k k k
( )

= = ∈ , and xi ip p 1+

is an arrow, p m0, 1, , 1= … − . Let A A Bij ij ij= ′ / when i j≠ and
A A BΩii ii ii ii( )= ′ + / , written α α Bij[ ] = + for any generalized path α from i to j. We can obtain a K-linear
mapping κiju from A Aij K ju⊗ to Aiu induced by (4.1). We write a instead of a[ ] when a Ω∈ . So, A V κ, ,ij iju( } is
a Γ-system. It is not difficult to know that e x x x eii ij ij ij jj= = for any xij from i to j. Moreover, e i V:ii{ }∈ is
a generalized matrix unit of the Γ-system A V κ, ,ij iju( ).

The notion of generalized path algebras is originally defined in [24]. For generalized path algebras, also
see [25].

Definition 4.3. The aforementioned generalized matrix algebra A V κ, ,ij iju�� �( ) is called the generalized
path algebra of the quiver D over the generalized matrix algebra Ω, or the Ω-path algebra, written K D, Ω( ).
If, in addition, KeΩii ii= for any i V∈ , then K D, Ω( ) is called a path algebra of the quiver D over the field K ,
written K D( ).

It is worthy to record here that for a generalized path algebra K D, Ω( ), by (4.2), it follows that for any
nonzero elements,

x a x a x x a y K D, , Ω ,i i i i i i i i im m m0 0 1 1 1 2 1 ( )= ⋯ ∈
−

we have
(E1) x 0= if and only if a 0ir = for some r m0 ≤ ≤ ;
(E2) x y[ ] [ ]= in K D, Ω( ) if and only if x y= regarded as sequences.

Generalized Munn rings  1077



Let A I μ, ,ij ijl�� �� ( )= be a generalized matrix ring, and construct a quiver Q ��( ) with vertex set I
and in which there is an arrow from i to j if and only if i j≠ and A 0ij ≠ . We call the quiver Q ��( ) the
Γ-quiver of the generalized matrix algebra A I μ, ,ij ijl�� ( ). Obviously, Q ��( ) is a quiver without loops.

We next establish the relationship between a quiver and the Γ-quiver of its generalized path algebra.

Lemma 4.4. Let D V E,( )= be a quiver. If K D, Ω( ) is a generalized path algebra of D over the generalized
matrix ring Ω, then

(i) K D, ΩQ( ( )) is just the path connected quiver D PC of D.
(ii) For any i j u V, , ∈ , if x is a nonzero element of Aij, then xA 0ju ≠ whenever A 0ju ≠ .

Proof. (i). Notice that K D, ΩQ( ( )) and D PC have the same vertex set. So, we need only to see whether

K D, ΩQ( ( )) and D PC have the same arrow set. It follows from the following implications: There is an arrow
from u to v in K D, ΩQ( ( )) if and only if u v≠ and Auv ≠ ∅; if and only if u v≠ and Auv′ ≠ ∅; if and only if
there is a Ω-path a x a x x ai i i i i i i i in n n0 0 1 1 1 2 1⋯

−

, where i u i v, n0 = = ; if and only if there is a Ω-path e x e xi i i i i i i i0 0 0 1 1 1 1 2

x ei i i in n n n1⋯
−

, where i u i v, n0 = = ; if and only if there is a path x x xi i i i i in n0 1 1 2 1⋯
−

, where i u i v, n0 = = ; if and only

if there is an edge from u to v in D PC.
(ii). Let x a x a x x ai i i i i i i i in n n0 0 1 1 1 2 1= ⋯

−

, where x x x E, , ,i i i i i in n0 1 1 2 1… ∈
−

, i i i j, n0 = = and a0 ip≠ for p 0, 1, 2, ,= …

n 1− . Obviously, y e y e y y ej j j j j j j j j j j jn n n n0 0 0 1 1 1 1 2 1
= ⋯

−

, where j j j u, n0 = = and y Ej jp p 1
∈

+

for p n0, 1, , 1= … − , is a

nonzero element of Aju. Then,

xy a x a x x a e y e y y e
a x a x x a y e y y e 0,

i i i i i i i i i j j j j j j j j j j j j

i i i i i i i i i j j j j j j j j j j

n n n n n n n

n n n n n n n

0 0 1 1 1 2 1 0 0 0 1 1 1 1 2 1

0 0 1 1 1 2 1 0 1 1 1 1 2 1

( )= ⋯ ⋯

= ⋯ ⋯ ≠

−

−

−

−

which results (ii). □

By Theorem 3.2 and Lemma 4.4, we may prove the following theorem.

Theorem 4.5. Let K D, Ω( ) be a generalized path algebra. Then K D, Ω( ) is semiprime (semiprimitive, respec-
tively) if and only if

(i) D PC of D is a disjoint union of complete quivers;
(ii) for any i V∈ , Aii is semiprime (semiprimitive, respectively).

Proof. Suppose that K D, Ω( ) is semiprime (semiprimitive, respectively). Theorem 3.2 immediately results
(ii). Notice that A 0ij ≠ if and only if there is aΩ-path from i to j; if and only if there is a path from i to j in the

quiver D; if and only if there is an arrow from i to j in D PC. We can observe that if in D PC, there is a path
i i in1 2→ →⋯→ , then A 0i ik k 1 ≠

+

for i n1, 2, , 1= … − , so that by Lemma 4.4, A A A 0i i i i i in n1 2 2 3 1⋯ ≠
−

. This
means that there is a Ω-path from i1 to in. It follows that A 0i in1 ≠ . By (3.3) in the proof of Theorem 3.2,
this implies that A 0i in 1 ≠ , thereby there is an arrow from in to i1 in K D, ΩQ( ( )). It follows from Lemma 4.4 (i)
that there is an arrow in D PC. Now by (OB2), D PC is a disjoint union of complete quivers.

Conversely, assume that given conditions hold. For a nonzero element x Aij∈ , we have A 0ij ≠ , so that

there is a path from i to j in D PC, it follows from (OB2) that there is an arrow from j to i in D PC, thus A 0ji ≠ .
Again by Lemma 4.4, xA 0ji ≠ and similarly, A x 0ji ≠ . Now by Theorem 3.2, K D, Ω( ) is semiprime (semi-
primitive, respectively). □

Also, by Theorem 3.3 and Lemma 4.4, we have

Theorem 4.6. Let K D, Ω( ) be a generalized path algebra. Then K D, Ω( ) is prime (primitive, respectively)
if and only if

(i) D PC is a complete quiver;
(ii) for any i V∈ , Aii is prime (primitive, respectively).
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Proof. For the necessity, it suffices to verify that D PC is a complete quiver.

– If I 1∣ ∣ = , then K D, ΩQ( ( )) is an empty graph since it has no loops, and by Lemma 4.4, D PC is a complete
quiver.

– Assume that I 2∣ ∣ ≥ . For any i j I, ∈ with i j≠ , by definition, A 0ii ≠ and A 0jj ≠ , and by Theorem 3.3 (i),
A A A 0ii ij jj ≠ . It follows that A 0ij ≠ , so that there is an arrow form i to j in K D, ΩQ( ( )). Similarly, we may

prove that there is an arrow form j to i in K D, ΩQ( ( )). Therefore, K D, ΩQ( ( )) is a complete quiver, and by

Lemma 4.4 (i), D PC is a complete quiver.
To verify the sufficiency, we consider the following two cases:

– If I 1∣ ∣ = , then K D, ΩQ( ( )) is an empty graph, and K D A, Ω ii( ) ≅ , and this means that Condition (i) in
Theorem 3.3 holds since each Aii has a unity. It follows that K D, Ω( ) is prime.

– Assume that I 2∣ ∣ ≥ . In this case, by K D, ΩQ( ( )) is a complete quiver, there is an arrow from j to k in
K D, ΩQ( ( )) for any j k I, ∈ . This shows that A 0jk ≠ . By Lemma 4.4, xA y 0jk ≠ for any i j k l I, , , ∈ and

nonzero elements x A y A,ij kl∈ ∈ . Now by Theorem 3.3, K D, Ω( ) is prime.

However, K D, Ω( ) is prime. Similarly, we may verify the primitive case. We complete the proof. □

We may now prove the following proposition.

Proposition 4.7. Let K D, Ω( ) be a generalized path algebra and i V∈ .
(i) If D has no paths from i to i, then Aii is prime (primitive, semiprime and semiprimitive, respectively) if and

only if so is Ωii.
(ii) If D has paths from i to i, then the following conditions are equivalent:

(1) Aii is semiprime;
(2) ann Ω 0ii( ) =

ℓ
and ann Ω 0r ii( ) = , where Xann ( )

ℓ
( Xannr( )) is the left (right) annihilator of X;

(3) Aii is prime.

Proof. (i). If D has no paths from i to i, then A 0ii′ = and so A Ωii ii[ ]= . It follows that Aii is isomorphic to Ωii,
which results (i).

(ii). Assume that D has paths from i to i. We need only to verify that 1 2( ) ( )⇒ and 2 3( ) ( )⇒ since
a prime ring is semiprime.

1 2( ) ( )⇒ . Suppose that Aii is semiprime. We assume contrariwise at least one of ann Ω 0ii( ) ≠
ℓ

and
ann Ω 0r ii( ) ≠ holds. Without loss of generality, we let ann Ω 0ii( ) ≠

ℓ
and u ann Ωii( )∈

ℓ
, so that uΩ 0ii = .

Consider the generalized path

x a x a x x ui i i i i i i im m0 0 1 1 1 2 1= ⋯
−

via arrows x x x, , ,i i i i i in n0 1 1 2 1…
−

with i i im0 = = , and for any generalized path,

y b y b y y bj j j j j j j j jn n n0 0 1 1 1 2 1
= ⋯

−

via arrows y y y, , ,j j j j j jn n0 1 1 2 1
…

−

with j i jn0 = = . Obviously, b Ωj ii0 ∈ . Therefore,

xy a x a x x ub y b y y b
a x a x x y b y y b0 0,

i i i i i i i i j j j j j j j j j

i i i i i i i i j j j j j j j j

m m n n n

m m n n n

0 0 1 1 1 2 1 0 0 1 1 1 2 1

0 0 1 1 1 2 1 0 1 1 1 2 1

( )= ⋯ ⋯

= ⋯ ⋯ =

−

−

−

−

and hence, xb 0j0 = , thereby by the arbitrariness of b j0, xA 0ii′ = . It follows that xA x 0ii = , contrary to the
hypothesis that Aii is semiprime. It results 2( ).

2 3( ) ( )⇒ . Assume that 2( ) is satisfied. We let contrarily w z K D, , Ω \ 0( ) { }∈ such that

wA z 0.ii = (4.3)

Let w wk
r

k1= ∑

=

and z zk
s

k1= ∑

=

, where w z,k k are generalized paths, and

– l w l w l wr1 2( ) ( ) ( )≥ ≥⋯≥ ;
– l z l z l zs1 2( ) ( ) ( )≥ ≥⋯≥ ;
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– w wΩ Ωii k ii1 ∉ for k r2 ≤ ≤ ;
– z zΩ Ωii l ii1 ∉ for l s2 ≤ ≤ .

The equality (4.3) can derive that w zΩ 0ii = , so that for any d Ωii∈ ,

w dz w dz w dz 0,r s1 1 1 2+ + ⋯+ =

and hence, by (E2) and comparing the lengths of generalized paths w dzi j, w dz 01 1 = . It follows that

w z a x a x x u v y b y y b0 Ω Ω ,ii i i i i i i i i ii j j j j j j j j1 1 m m n n n0 0 1 1 1 2 1 0 1 1 1 2 1
( )= = ⋯ ⋯

−

−

(4.4)

where w a x a x x ui i i i i i i i1 m m0 0 1 1 1 2 1= ⋯
−

and z vy b y y bj j j j j j j j1 n n n0 1 1 1 2 1
= ⋯

−

. Again by (E1), the equality (4.4) can imply
that u vΩ 0ii = . We have uΩ 0ii = and vΩ 0ii = by picking u 1i= or v 1i= . This is contrary to (2). Therefore, Aii
is prime. □

Lemma 4.8. Let � be a quiver and K a field. Then the following statements are true for the path algebra K �( ):
(i) If � has no paths from i to i, then A Kii ≅ .
(ii) If � has paths from i to i, then Aii is semiprimitive.

Proof. (i). If � has no paths from i to i, then A Ke KeΩii ii ii ii[ ] [ ]= = ≅ . But Ke Kii ≅ , so A Kii ≅ .
(ii). We assume on the contrary that Aii is not semiprimitive. With notations in the proof of 2 3( ) ( )⇒ in

Proposition 4.7, assume that w is a nonzero element in radAii, and further, let z be a nonzero element of Aii

such that wz w z 0+ + = . Without the loss of generality, we let z zk
s

k1= ∑

=

, and each zk has the same
properties as 2 3( ) ( )⇒ in Proposition 4.7. So,

w z w z z z w w wz w z 0.r s s r1 1 1 1+ ⋯+ + + ⋯+ + + ⋯+ = + + = (4.5)

Consider that the length of w zi j is bigger than those of wi and zj, equation (4.5) derives that w z1 1 + ⋯+

w z 0r s = . Notice that the length of w z1 1 is maximum among all w zi j, and this equation implies that w z 01 1 = .
It follows that w 01 = or z 01 = since w1 and z1 are both Ω-paths from i to i. Now by the maximality of l w1( )

and l z1( ), all wi are zero or all zj are zero. Therefore, w 0= or z 0= , contrary to that w z, are neither zero
elements. Consequently, each Aii is semiprimitive. □

For a path algebra K �( ), by Lemma 4.8, each Ωii is semiprimitive and of course, semiprime. Now,
the following theorem is an immediate consequence of Theorem 4.5.

Theorem 4.9. Let � be a quiver and K a field. Then, the following conditions are equivalent:
(i) K �( ) is semiprime;

(ii) PC
� is the disjoint union of complete quivers;

(iii) K �( ) is semiprimitive.

By Proposition 4.7 and since a field is prime, each Aii of the path algebra K �( ) is prime. Theorem 4.6
results in the following theorem.

Theorem 4.10. Let � be a quiver and K a field. Then K �( ) is prime if and only if PC
� is a complete quiver.
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