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Abstract: In this article, we further study the filter theory of semihoops. Moreover, we use the prime
(maximal) filters to construct the prime (maximal) spectrum on semihoops, and prove that the prime
spectrum is a compact Ty topological space and that the maximal spectrum is a compact T, topological
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1 Introduction

It is well known that logic is not only an important tool in mathematics and information science but also a
basic technology. A host of logical algebras have been proposed as the semantical systems of non-classical
logic systems, for example, MV-algebras, BL-algebras, MTL-algebras, and residuated lattices. Semihoops
are the fundamental residuated structures and contain all logical algebras based on residuated lattices.
Semihoops are generalizations of hoops that were originally introduced by Bosbach under the name of
complementary semigroups. In recent years, many scholars have conducted research on semihoops. For
example, in 2015, Borzooei and Kologani [1] studied the relationships among various filters on semihoops.
In 2017, He et al. studied the states and internal states on semihoops [2]. In 2019, Niu and Xin further
studied the tense operators on bounded semihoops [3], and Zhang and Xin further studied the derivations
and differential filters on semihoops [4].

Algebra and topology are two basic fields in mathematics, which play complementary roles. Algebra
and topology are naturally related in some applications or higher mathematics, such as analytic functions,
dynamical systems, etc. The establishment of topological structures in logic algebra is always a hot topic in
mathematical research. Currently, there are three main construction methods of topologies on logic
algebra: First, the structure of the distance functions of the logic algebra is induced by filter theory to
define an open set and then the topological structure is established [5-7]; second, filter system induced by
filter theory is used to define open sets and then establish a topological structure [8,9]; finally, open sets are
defined by the family of prime (maximal) filters (or ideals) in logical algebra, and then topological struc-
tures (such topological structures are called spectra) are established. In 1980, Simmons defined the reti-
culation of a ring, and then it was extended by Belluce to non-commutative rings in 1991. As for the fuzzy
algebras, Belluce et al. constructed the reticulation of MV-algebras in 1994 [10]. In the twenty-first century,
Leustean defined the reticulations of BL-algebras [11]. In June 2021, Zhang and Yang discussed the reticula-
tions of EQ-algebras [12] and then Georgescu defined the reticulations of quantales [13]. However, we find
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that there is no research about the spectra and reticulations on semihoops, although semihoops are the
fundamental residuated structures.

Based on the above analysis and summary, on one hand, semihoops are the most basic residuated
structures, and the research results on topological structures can be extended to any residuated structure.
On the other hand, by studying the reticulations of semihoops, some questions of algebraic structures can
be transformed into questions of lattices to study, which can reduce the difficulty of the study. Therefore, we
will study the topological structures (spectra) of semihoops by giving the related concepts and proposing
propositions of semihoops.

This article is organized as follows: In Section 2, we give some basic facts on semihoops, which will be
used in the sequel sections. In Section 3, we study how to construct topological spaces (prime and maximal
spectrum) on semihoops A by using prime filters and maximal filters. And we prove that prime spectrum
Spec(A) is a compact T, topological space and maximal spectrum Max(A4) is a compact T, topological space.
In Section 4, we introduce reticulations of semihoops, obtain some relationships between semihoops and
bounded distributive lattices, and prove that the prime spectrum of semihoops is a homeomorphism of
topological.

2 Preliminaries
In this section, we recollect a few definitions and propositions, which will be used in the following sections.

Definition 2.1. [14] An algebra (4, @, —, A, 1) of type (2, 2,2, 0) is called a semihoop if it satisfies the
following conditions:

(D1) (A, A, 1) is a A-semilattice with upper bound 1;

(D2) (A4, ©,1) is a commutative monoid;

(D3) xoy) > z=x—> (y — 2), forall x, y, z € A (Galois connect).

Let A be a semihoop, we say that it is prelinear if for all a, b € A, 1 is the unique upper bound in A of the
set{a —» b, b — aj.

Example 2.2. [1] Let A = {0, a, b, 1} be a chain. We define ® and — on A as follows:

o)
0
a
b
1

Then (4, ®, —, A, 1) is a semihoop, where x A y = min{x, y}, for all x, y € A.
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Example 2.3. [1] Let A = {0, a, b, c, 1}. Define ® and — as follows:

Then (4, ®, —, A, 1) is a semihoop, where x Ay =x oy, for all x,y € A.
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Proposition 2.4. [14] Let A be a semihoop, then the following hold, for any x,y, z € A:
(1) xoy<zifandonlyifx<y — z;

(2) xoy<xy;

B)lox=x,x—>1=1;

(4) x" < x, for alln € N*;

B xox—-y)<y;

(6) ifx<y,thenxoz<yoz,y—oz<x—zandz->x<z-oY.

On a semihoop A, we define x < y if and only if x — y = 1. It is easy to check that < is a partial order
relation on A.

Definition 2.5. [1] Let A be a semihoop and F be a non-empty subset of A. Then F is said be a filter of 4, if it
satisfies:

(F1) xoy e F,forany x,y € F;

(F2) x<yand x € F imply y € F, for any x, y € A.

A filter F of A is called proper filter if F #+ A. We can see that {1} and A are filters of A. We call they are
ordinary filters. And we denote the set of all filters of A by F(A).

Lemma 2.6. (MP rule) Let A be a semihoop and F be a non-empty subset of A. Then F € ¥(A) if and only if
leFandifx,x >y eF, forsomex,y €A, theny €F.

Let A be a semihoop and X ¢ A. We denote by (X) the filter generated by X that is the intersection of all
filters of A that contain X. If X = {x}, then the filter generated by X will be denoted by (x).

Lemma 2.7. [1] Let A be a semihoop and x € A. Then {x) = {a € A|x" < a, 3n € N*},
Corollary 2.8. [1] Let A be a semihoop, F € F(A),andx € A. Then(F U {x}) ={a € Aly o x" < a,3dn e N*,y € F}.

Definition 2.9. [1] A proper filter F of semihoop A is called a maximal filter of A, if it is not properly
contained in any other proper filters of A.

We consider Max(A) the set of all maximal filters of semihoop A.

Lemma 2.10. [1] Let A be a semihoop and F be a proper filter of A . Then the following conditions are
equivalent:

(1) F € Max(A).

(2) ifx ¢ F, then(F U {x}) = A.

Definition 2.11. [1] A proper filter F of semihoop A is called prime filter of A, if any H, G € ¥(A) such that
HNnGcF,thenHCcForHCF.

Lemma 2.12. [1] Let A be a semihoop and for any x,y € A,wedefine:x vy =[(x - y) - y] A [(y = x) - x].
Then the following conditions are equivalent:

(1) V is an associative operation on A;

(2 x<yimplyxvz<yvVvzforalx,y,zeA;

B) xviyAz)<(xVvy)A(xVz),foralx,y,zeA;

(4) V is the join operation on A.

Lemma 2.13. [1] A semihoop is a V-semihoop if it satisfies one of the equivalent conditions of Lemma 2.12.
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Definition 2.14. [1] Let A be a vV-semihoop and F be a proper filter of A. Then the following conditions are
equivalent:

(1) F is a prime filter.

(2) ifx vy, forsome x,y e A, thenxe ForyeF.

We shall denote the set of all prime filters of A by Spec(A).

A semihoop A is bounded if there exists an element 0 € A such that O < x for all x € A. In a bounded
semihoop A, we define the negation’ on A by x' = x — 0, for all x € A. If x" = x, for any x € A, then the
bounded semihoop A is said to have the double negation property (DNP).

Definition 2.15. [15] In a bounded semihoop A, the binary operation & is defined by x ® y = X’ — y, for any
X,y €A.

Lemma 2.16. [15] Let A be a bounded semihoop, then the following hold, for any x,y, z € A:
1) ifx<y,thenxoz<yoz;

2 x,y<xey;

3B) xex' =1,

(4) xey=1ifandonly ifx' <y.

In a bounded semihoop A with DNP, the operation & is commutative and associative.

3 Prime and maximal spectra of semihoops
Proposition 3.1. Let A be a vV-semihoop. Then A satisfiesx © (y Vz) = (x oy) V (x @ 2), for any x, y, z € A.

Proof. Forany x, y, z € A. Clearly, y,z<y v z, thatis, x oy, x0z<xo (yvz).Then(xoy) V(x © 2) <
x © (y vV z). Conversely, since xoy, xoz< (xoy)V (x © z), by Gaolis Connect, we obtain y, z < x —
[(xey)vixoz)lthatis,yvz<x - [(xoy)V (x©z)]. Then, weobtainxo (yvz)<(xoy) Vv ((xoz).

O

Proposition 3.2. Let A be a v-semihoop and F be a proper filter of A. Suppose that x,y € A, and x,y ¢ F,
then(F U {x}) n (FU {y}) = (FU {x v y}.

Proof. Let a € (F U {x}) n (F U {y}). Hence, by Corollary 2.8, there exist f;, 5 € F, nj, n € Z* such that
a>fioxm, a>f, oy® Take f=fi ®f,, n = max{n, n,}, then we obtain a > fo x", a > fo y". With
Proposition 3.1, a=avaz=fo (x"vy") =(fox") Vv (feym". Since (x vV y)™ < x* v y", then we obtain
a>fo(xvy)y>n It follows that a € (F U {x v y}). Conversely, suppose that b € (F U {x vV y}), then there
existt € F,s € Z* suchthatb > t ® (x v y)S. Obviously,b > t ® xSand b > t ® ys. It follows that b € (F U {x})
and b € (F U {y}), thatis, b € (FU {x}) n (F U {y}). O

Proposition 3.3. Let A be a Vv-semihoop and M € Max(A), then M is a prime filter of A.

Proof. Let A be a vV-semihoop and M € Max(A). Suppose that H, G € ¥(A) suchthat HN G < M.IfH,G ¢ M,

then there exist x € H, y € G such that x,y ¢ M. By Lemma 2.10, we have (M U {x}) = (M U {y}) = A.

Moreover, since x,y < x V y, so we have x Vy € Hn G € M. By Proposition 3.2, A = (M U {x}) n (M U {y}) =
O

(M u {x v y}) = M, which is a contradiction. Therefore, M is a prime filter.

Lemma 3.4. Let A be a semihoop, then the union of any chain of proper filters of A is a proper filter of A.
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Proof. Let F = U{F|F, ¢ F, ¢ --- € K}, 1 <i < s. It is the union of any proper filters of A. Since any F is a
proper filter of A, then {1} € F, = {1} ¢ F # &. Suppose thatx € F,y € A, and x < y. Since x € F, there exists
t such that x € F.. Hence, y € E, that is, y € F. Finally, suppose that x, y € F, then there exist 1 < m and
n < ssuch that x € F,, y € E,. Without losing generality, assume E, € E,. If F is a chain, then x, y € E,. Since
F, is proper, then x © y € F,, and we obtain x © y € F. In summary, F is a proper filter of A. O

Proposition 3.5. Let A be a V-semihoop and a € A, a #+ 1. Then there exists a prime filter P of A such
that a ¢ P.

Proof. Suppose that a € A and a # 1, let ¥(a) = {F|F € ¥(A)}, F be a proper filter of A, and a ¢ F. Since
a + 1, then {1} € ¥(a) + &. Applying Lemma 3.4 and Zorn’s lemma on (¥(a), ), we obtain a maximal
element P on (¥(a), <). That means P is a maxmial filter of A with a ¢ P. By Proposition 3.3, then P is
a prime filter of A. O

Proposition 3.6. Let A be a VV-semihoop and F be a proper filter of A, then F = n{P € Spec(A)|F < P}.

Proof. Obviously, F ¢ n {P € Spec(A)|F < P}. Suppose that a ¢ F, a + 1. By Proposition 3.5, there exists
a prime filter P such thata ¢ P and F ¢ P. It follows that n{P € Spec(A)|F < P} C F. O

Lemma 3.7. If A is a V-semihoop, then every proper filter F of A is contained in a maximal filter.
Corollary 3.8. If A is a VV-semihoop, then every proper filter F of A is contained in a prime filter.

Proof. It directly follows Propositions 3.5 and 3.6. O
Corollary 3.9. Any semihoop has a maximal, prime filter.

In the sequel, we study the prime spectrum Spec(4) and maximal spectrum Max(A) of a semihoop.
Given a semihoop A and X ¢ A, we define E(X) = {P € Spec(A4)|X < P}.

Proposition 3.10. Let A be a V-semihoop. The following propositions hold:
(1) if X< YCA, then E(Y) € E(X) < Spec(A);

(2) E(0}) = @, E(@) = E({1}) = Spec(A);

(3) E(X) = E({X)), for any X C A;

4) EX)=0 o (X)=A4;

(5) E(X) =Spec(4d) & X=Cor X ={1};

(6) if {Xi}ics is a family of subsets of A, then E(Uje(X;) = NiectE(X;);

(7) if X,YC A, then E(X) U E(Y) = E(X) n (Y));

(8) if X,YCA, then(X) = (Y) if and only if E(X) = E(Y);

(9) if F, G are filters of A, then F = G if and only if E(F) = E(G).

Proof. (1), (2), and (3) are obviously established.

(4) (=) Let E(X) = @. Suppose that (X) # A, namely (X) is a proper filter of A. Applying Corollary 3.8,
there exists a prime filter P such that X ¢ (X) ¢ P, that is, P € E(X) + &, which is a contradiction.
Therefore, (X) = A.

(&) By (2) and (3), we have E(X) = E((X)) = E(A) = @.

(5) Let E(X) = Spec(A). Suppose that X # & and X # {1}. It means that there exists a # 1 € X, by
Proposition 3.5, there exists a prime filter P such thata ¢ P, which is a contradiction. Conversely, it directly
follows from (2).

(6) Clearly, X; € Ujer X;, by (1), it follows that E(UierX;) € E(X;). Thus, E(UierX;) € Nie; E(X;). Conversely,
suppose that P € nictE(X;), then X; ¢ P for any i € I. Therefore, we obtain Uje;X; € P, that is, P € E(UjerX;).
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(7) First, (X) n (Y) < (X), (Y), by (1) and (3), then we obtain E(X) u E(Y) € E({(X) n (Y)). Conversely,
suppose that P € E((X) n (Y)), that is, (X) n (Y) c P. If P ¢ E(X) U E(Y), then P ¢ E(X) = E({X)) and
P ¢ E(Y) = E|Y)). It follows that (X) ¢ P and (Y) ¢ P. Thus, there exist x € (X) and y € (Y) such that
x ¢ P and y ¢ P. Moreover, x,y < x Vy, since (X) and (Y) are filters, so x Vy € (X) n (Y) € P. Since
P e Spec(A), we have x € P or y € P, which is a contradiction. Hence, E({X) n (Y)) ¢ E(X) u E(Y).

(8) (=) Let (X) = (Y). Applying (3), it directly follows that E(X) = E(Y).(<) Suppose that E(X) = E(Y).
First, if 0 € (X), then E(Y) = E(X) = E(A) = &. By (4), we obtain (X) = (Y) = A. Moreover, if (X) is a proper
filter of A, by Proposition 3.6, then (X) = n{P € Spec(A)|{X) € P} = n{P € Spec(A)|P € E({(X)) = EX)} =
N{P € Spec(A)|P € E(Y) = E({Y))} =n{P € Spec(A)|{Y) ¢ P} = (Y).

(9) It follows by (8). O

By Proposition 3.10 (2), (6), and (7), it follows that the family {E(X)}xc4 of subsets of Spec(A) satisfies the
axioms for close sets in a topological space, which is called Zarkiski topology and topological space Spec(A)
is called the prime spectrum of A.

In the following, we consider the form of open sets of this topology. For any X < A, let us denote the
complement of E(X) by D(X). Thus, D(X) = {P € Spec(4)|X ¢ P}. By duality, from Proposition 3.10
we obtain the following.

Proposition 3.11. Let A be a V-semihoop. The following propositions hold:
(1) if X< YCA, then D(X) ¢ D(Y) < Spec(A);

(2) D({0}) = Spec(4), D(@) = D{1}) = &

(3) D(X) = D({X)), for any X € A;

4) DX)=0 © X=gorX=1{1};

(5) D(X) = Spec(A) & (X) =A4;

(6) if {Xi}ic1 is a family of subsets of A, then D(Uie1X;) = UierD(X;);

(7) if X, Y C A, then DIX) u D(Y) = D({X) u (Y));

(8) if X,YC A, then (X) = (Y) if and only if D(X) = D(Y);

(9) if F, G are filters of A, then F = G if and only if D(F) = D(G).

Foranya € A, let us denote E({a}) by E(a) and D({a}) by D(a). It follows that E(a) = {P € Spec(A)|a € P}
and D(a) = {P € Spec(A)|a ¢ P}.

Proposition 3.12. Let A be a v-semihoop and a, b € A. The following statements hold:
(1) D(a) = Spec(A) if and only if (a) = A;

(2) D(a) =D ifand only ifa = 1;

(3) D(a) = D(b) if and only if (a) = (b);

(4) ifa < b, then D(b) < D(a);

(5) D(a) n D(b) = D(a v b);

(6) D(a) u D(b) =D(a A b) =D(a o b).

Proof. By Proposition 3.11 (4), (5), and (8), we know (1), (2), and (3) hold obviously.

(4) Leta < b. Suppose that P € D(b), thenb ¢ P.If P ¢ D(a), thena € P and froma < b, we haveb € P,
which is a contradiction.

(5) For any prime filter P of A, wehavea v b ¢ Piffa ¢ Pandb ¢ P.Thus,P € D(a Vv b)iffa v b ¢ P iff
a¢ Pand b ¢ Piff P € D(a) and P € D(b) iff P € D(a) n D(b).

(6) Sinceao b <aAb<a,b, by (4), it follows that D(a © b) 2 D(a A b) 2 D(a) u D(b). Conversely,
suppose that P € D(a ® b), that is, a ® b ¢ P. Since P is a filter, we can obtain a ¢ P or b ¢ P. Thus,
D(a) u D(b) 2 D(a © b). O

Proposition 3.13. Let A be a V-semihoop. Then family {D(a)},c4 is a basis for the topology of Spec(A).
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Proof. Let X ¢ A. Then D(X) = D(Ugex{a}) = UsexD(a) by Proposition 3.11(6). Hence, any open subset
of Spec(A) is the union of subsets from the family {D(a)|a € A}. O

The sets {D(a)|a € A} will be called basic open sets of Spec(A4).
Proposition 3.14. Let A be a v-semihoop. Then for any a € A, D(a) is compact in Spec(A).

Proof. Obviously, we can obtain any cover of D(a) with basic open sets containing a finite cover of D(a).
Suppose that D(a) = Uic1D(a;), by Proposition 3.11 (6), we have D(a) = Uje;D(a;) = D(Uier{a;}). According to
Proposition 3.11(8), then(a) = (Uicr{a;}), soa € (Ujer{a;}). By the definition of generated filter, there aren > 1
and i,..., i, € I such that a; © - © a;, < a. We should prove that D(a) = D(a; © --- © a;,). Applying
Proposition 3.12 (4) and (6), we have D(a) € D(a; © ‘- © a;,) = D(a;,) U---U D(a;,). The other inclusion is
clear, since D(a;) U---U D(a;,) € Uies D(a;) = D(a). O

Proposition 3.15. Spec(A) is a Ty topological space.

Proof. It remains to prove that for any different prime filters P # Q € Spec(A), there exists an open set U
such that Qe U, P¢ U, or Q ¢ U, P € U. Since P # Q, we obtain P ¢ Q or Q ¢ P. There is no loss of
generality in assuming P ¢ Q, then there exists a € A such that a € P and a ¢ Q. Take U = D(a). Then
QeUandP¢ U. O

In the sequel, let A be a V-semihoop. By Proposition 3.3, we obtain Max(A) < Spec(A4). Now we consider
a new topology space induced by Zariski topology on Max(A4), which is called the maximal spectrum of A.

For any X € A and a € A, let us define: Ey.x(X) = E(X) N Max(4) = {M € Max(A)|X € M}, Dyx(X) =
D(X) n Max(A) = {M € Max(A)|X ¢ M}, and Eyax(a) = E(a) N Max(A) = {M € Max(A)|a € M}, Dyax(a) =
D(a) n Max(A) = {M € Max(A)|a ¢ M}.

It follows that the family {Eyax(X)}xca is the family of closed sets of the maximal spectrum, the family
{Dmax(X)}xca is the family of open sets of the maximal spectrum, and the family {Dyax(@)}sca is a base for
topology of Max(A).

Proposition 3.16. Let A be a v-semihoop, X, Y € A, {X;}ic; be a family of subsets of A and a, b € A. Then:
(1) if X < Y C A, then Dyax(X) € Dyax(Y) € Max(A);
2 DMaX(O) = MaX(A), DMax(g) = DMaX(l) = J;

(3) Dmax(X) = Max(A) if and only if (X) = A;

(4) Dyax(UierXi) = UierDymax(X0);

(5) Dmax(X) = Dyax({X));

(6) DMaX(X) U Dymax(Y) = Dpax({X) U (Y));

(7) Dmax(a) = Max(A) if and only if (a) = A;

(8) if a < b, then Dyax(b) € Dyax(a);

(9) Dumax(a@) N DMax(b) = Dyax(a v b),
(10) DMaX(a) U DMax(b) = DMax(a A b) = DMax(a o b)

Proof. We only prove (3), and other statements are immediate consequences of Proposition 3.11.

(3) Let Dyax(X) = Max(A). If (X) + A, then (X) is a proper filter of A, by Lemma 3.7, there exists a maximal
filter M of A such that (X) ¢ M. Thus, M ¢ Dy,x(X). This is a contradiction. Conversely, let (X) = A.
By Proposition 3.11 (5), we have D(X) = Spec(A). Therefore, Dyx(X) = D(X) N Max(A) = Max(A). O

Proposition 3.17. If A is a V-semihoop with negation, then Max(A) is a compact space.

Proof. Since there exists {a;};c; € A such that Max(A4) = UietDpax(a;), then by Proposition 3.16 (4), we have
Max(A) = Dyax(Uier{a;}). And applying Proposition 3.16 (3), we obtain A = (Uics{a;}) with negation, so
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0 € Ujer{a;}. It follows that there are n>1 and i,...,i, € I such that a; © --- ® a;, = 0. According to
Proposition 3.16 (2), we obtain Max(A) = Dyax(0) = Dyax(ay, © -+ @ @) = U§':1DMax(ai,-)- Therefore, Max(A)
is compact. O

Proposition 3.18. If A is a prelinear v-semihoop, then Max(A) is a Hausdor(f space.

Proof. Suppose that M, N are different maximal filters of A. Since M # N, then there exist x € M\N and
ye N\M.Takea=x - y,b=y > x.Ifae M,thenxo (x > y) =xo a € M,sowehavey € M, whichisa
contradiction. Thus, a ¢ M and b ¢ N, that is, M € Dyax(a) and N € Dyax(b). Since A is prelinear, then
Diax(@) N Dytax(b) = Dyax(a Vv b) = Dyax(1) = @. Therefore, Max(A) is a Hausdorff space. O

4 Reticulation of semihoops
In this section, we give a definition of the reticulation of semihoops.
Lemma 4.1. The map f: X — Y is surjective if and only if f : P(Y) — P(X) is injective.

Definition 4.2. Let A be a bounded semihoop, L be a bounded distributive lattice, and A : A — L be a map.
A reticulation of A is a pair (L, A), which satisfies the following conditions:

(R1) A is isotone and surjective;

(R2) A(a © b) = A(a) A A(Db), for any a, b € A;

(R3) A(a @ b) = A(a) v A(b), for any a, b € A;

(R4) A(0)=0,A01) =1;

(R5) A(a) < A(b) if and only if 3 n € N* such that a" < b.

Example 4.3. Let A = {0, a, b, 1} be a chain. We define ®, —, and & on A as follows:

©/0ab1 —-]0ab1
00 00O o|j1 111
al0 a a a alb 111
b|0O a b b bla a1l 1
1/0 a b1 1/0a b1

Then (4, @, —>, A,0,1) is a bounded semihoop with (DNP), where x A y = min{x, y} for all x,y € A.
Moreover, we define L = {0, 1} is a bounded distributive lattice and the map A : A — L as follows:

0 x=0

One can easily check that (L, A) is a reticulation of bounded semihoop A with DNP.

Example 4.4.Let A ={0,a, b, c,d, 1} withO < b,d <a < 1,0 <d < c < 1, wherea and c are incomparable,
b and d are incomparable. Define operations ® and — on A as follows:

©|0abcdi1 —|0 a b cd 1
0|0 00O O0O0OO o1 11111
al0 b bdoOa ald1acc1
b|Ob b OOD blc11cc 1
c|l0d O cdc clbablal
djo 0 0odod dla1la1ll.1
110 a b cd 1 110 a bcdi1
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Define x Ay =x o (x — y), for any x,y € A. We can see (4, ©, —, A, 0, 1) is a bounded semihoop with
DNP. Moreover, we define L = {0, 1} is a bounded distributive lattice and the map A : A — L as follows:

Then we can easily see that (L, A) is a reticulation of bounded semihoop A with DNP.

Example 4.5. Let A = {0, a, b, c, d, 1}. Define operations ® and — on A as follows:

A(x) = {?

x=0,¢d
x=a,b,l.

Second, we study a reticulation of semihoop A without DNP.

|0 abcdil —|0a b cd 1
0(0 0O0OO0OOO oj1 11111
al0 accda al01bbdi
b|0O c b cdb b|0alad1
c|l0Occcdc c|0111d1
d|o0dddod djd11111
110 a b cd 1 1/0a b cd

If xANy=x0(x—y), then A with these operations is a bounded semihoop without (DNP). Moreover,

we define L = {0, 1} is a bounded distributive lattice and the map A : A — L as follows:

A(x) = 0 x=0,d
1 others.

Then we can easily check that (L, A) is a reticulation of bounded semihoop A without (DNP).

Example 4.6. (1) Let Godel t-norm:A = [0, 1], then we define: x © y = min{x, y},

and

{1 X<y
X—-y=

y{

y others

y x=0
1 x+1

for any x,y € A. Then (4, @, —, A, ®,0,1) is a bound semihoop, where x A y = min{x, y}. Moreover,

we define L = {0, 1} is a bounded distributive lattice and the map A; : A — L as follows:

Then we can easily see that (L, A) is a reticulation of bounded semihoop A.
(2) Let us define product t-norm: A = [0, 1], then we define: x © y = xy,

and

1 x+0.

M) = {0 o

y/x others

{1 X<y
X—y=

x@yz{

y x=0
1 x#1
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for any x,y € A. Then (4, ©, —, A, ®,0,1) is a bound semihoop, where x A y = min{x, y}. Moreover,
we define L = {0, 1} is a bounded distributive lattice and the map A, : A — L as follows:

0 =0

Therefore, we can easily see that (L, A;) is a reticulation of bounded semihoop A.

Remark 4.7. Through Example 4.6 (1) and (2), we can know different semihoops may have the same
reticulation.

Proposition 4.8. If 1 : A — L satisfies conditions (R1), (R2), and (R3), then
(1) Ala A b) =A(a) AA(D) forany a, b € A;

(2) if x v y exists, then A(a v b) = A(a) v A(b) for any a, b € A;

(3) A(a™) = A(a) for any a € A, n € N*,

Proof.

(1) Ya, b€ A,a A b < a, b. Since A is isotone, then A(a A b) < A(a), A(b), that is, A(a A b) < A(a) A A(D).
Andao b <a,b, it follows that a © b < a A b = Ala © b) < A(a A b). Applying condition (R2), then
we obtain A(a) A A(b) < A(a A b).

(2) Suppose that x v y exists, since a, b <a Vv b and A is isotone. Then A(a), A(b) < A(a Vv b), that is,
Aa)vAb) <Alavhb). And a, b<ae b, we obtain avb<ae b= AlaV b) <A(a ®b). Applying
condition (R3), we obtain A(a v b) < A(a) v A(b).

(3) Suppose that a€ A, neN*, by (1) and condition (R2), we have A({@)=Aaoa-- oa)=
Aana- Aa)=Aa). O

Proposition 4.9. If F is a filter of L, then A"X(F) is a filter of A.

Proof. Since F is a filter of L, then 1€ F+ &, we have A'{(F) + &. Let a, b € A'\(F), then A(a),
A(b) € F = A(a) A A(b) € F. By condition (R2), we obtain A(a © b) € F, then a ® b € A"\(F). Suppose that
a,b e A,a € A'\(F),and a < b. Since A is isotone, then A(a) < A(b). By A(a) € F and F is a filter of L, we have
A(b) € F = b € I"I(F). Therefore, A"\(F) is a filter of A. O

Proposition 4.10. If A is a bounded v-semihoop and P is a prime filter of L, then A"X(P) is a prime filter of A.

Proof. By Proposition 4.9, we obtain A"(P) is a filter of A. Since P # L and the fact that A™! is injective, we
have A-'(P) # A. Suppose that a, b € A such that a @ b € A"(P). Applying Proposition 4.8(2), we obtain
A(@) v A(b) = A(a @ b) € P. Since P is prime, it follows that A(a) € P or A(b) € P,soa € A"\(P) or b € A"I(P).
Therefore, A"}(P) is a prime filter of A. O

Lemma 4.11. Let F be a filter of A and a, b € A such that A(a) = A(b), thena € F if and only if b € F.

Proof. Let a, b € A such that A(a) = A(b). Suppose that a € F, by condition (R5), since A(a) < A(b), there
existsn € N* such thata" < b. And a € F, soa" € F, thatis, b € F. Using A(b) < A(a), one obtains the proof
of the converse implication. O

Lemma 4.12. For any a, b € A, A(a) = A(b) if and only if (a) = (b).

Proof. Let Va, b € A such that A(a) = A(b). Since A(a) < A(b), by condition (R5), there exists n € N* such
that a" < b, so (b) ¢ (a). Similarly, since A(b) < A(a), we obtain {a) < (b). Thus, (a) = (b). Conversely, let
(a) = (b), then b € {a), by the definition of generated filter, a” < b, we obtain A(a") < A(b), that is,
A(a) < A(b). Similarly, by a € (b), we obtain A(b) < A(a). Therefore, A(a) = A(b). O
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Lemma 4.13. Let F be a filter of A and a € A, then A(a) € A(F) if and only ifa € F.

Proof. Suppose that F is a filter of A and a € A. Let A(a) € A(F), then there exists b € F such that
A(a) = A(b). Applying Lemma 4.11, we obtain a € F. The converse implication is obvious. O

Lemma 4.14. Let F be a filter of A, then A7'A(F) = F.
Proof. By Lemma 4.13 and condition (R1), it follows thata € F & A(a) e A(F) © ac AXAF)=F. 0O
Proposition 4.15. If F is a filter of A, then A(F) is a filter of L.

Proof. Since F is a filter of A, then 1 € F. Applying condition (R1), it follows that 1 = A(1) € A(F) # <. Let
X,y € A(F), then there exista, b € F such that x = A(a), y = A(b). Since F is a filter of A, wehavea © b € F.
By condition (R2), we obtain x Ay = A(a) A A(b) = A(a © b) € A(F). Let z € L such that x < z. Since A is
surjective, there exists ¢ € F such that A(c) = z. Thus, A(a) < A(c), by condition (R5), there exists n € N*
such that a" < c. By a € F, we have a" € F, then ¢ € F. Therefore, z = A(c) € A(F). O

Proposition 4.16. If A is a bounded V-semihoop and Q is a prime filter of A, then A(Q) is a prime filter of L.

Proof. According to Proposition 4.15, we obtain A(Q) is a filter of L. Since Q # A, there exists a € A such that
a € Q. By Lemma 4.13, we obtain A(a) ¢ A(Q), so A(Q) is a proper filter of L. Suppose that u, v € L such that
u v v € A(Q). Using condition (R3), there exist a, b € A such that A(a) = u, A(b) = v. Thus, A(a) v A(b) € A(Q),
by condition (R3), it follows that A(a @ b) = A(a) v A(b) € A(Q). Since A is surjective, there exists ¢ € Q such
that A(a @ b) = A(c). By Lemma 4.11, we have a vV b € Q. Since Q is prime, then a € Q or b € Q. Thus,
A(a) € A(Q) or A(b) € A(Q), that is, u € A(Q) or v € A(Q). Therefore, A(Q) is a prime filter of L. O

Proposition 4.17. The map A™! : Spec(L) — Spec(A) is bijective.
Proof. Let Q € Spec(A). By Proposition 4.9, we have A(Q) € Spec(L) and according to Lemma 4.14,

we obtain A'A(Q) = Q. Therefore, Al is surjective. By Lemma 4.1, A"! is injective, so A™! is a bijective map.
O

Proposition 4.18. The map A : Spec(L) — Spec(A) is continuous and open.

Proof. Let ac A, we obtain (A1) Y(D(a)) = {P € Spec(L)|]A"{(P) € D(a)} = {P € Spec(L)|a ¢ A"{(P)} =
{P € Spec(L)|A(a) ¢ P} = D(A(a)). Thus, A is continuous. Let u € L. Since A is surjective, there exists
a € A such that A(a) = u. So A'Y(D(w)) = A} (DA(a))) = {AYP € D(A(a))} = {A"YP € Spec(L), A(a) ¢ P} =
{AYP € Spec(L), a ¢ A'Y(P)} = {Q € Spec(A)|a ¢ Q} = D(a). Therefore, ! is open. O

Theorem 4.19. If A : A — L satisfying conditions, then the map A™!: Spec(L) — Spec(A) is a homeo-
morphism of topological spaces.

Proof. It directly follows from Propositions 4.17 and 4.18. O

5 Conclusion

In the first part of this article, we first presented the proof process that maximal filters in vV-semihoops are
prime filters, and got some conclusions about prime filters and maximum filters on semihoops. Second, we
constructed the prime spectra (maximal spectra) on semihoops by defining the open sets by prime filters
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(maximal filters). Finally, it is proved that prime spectra is a compact T, topological space and maximal
spectra is a compact T, topological space. In the second part, we first defined the concept of bounded
semihoops and give some examples. The relationship between the filters of bounded semihoops and
bounded distributive lattices is presented. It turns out that the map A™! : Spec(L) — Spec(A) is a homeo-
morphism of topological spaces.

As far as we know, L-algebras is a kind of logical algebra with quantum properties. Therefore, the study
of L-algebras can better show the relationship between topology and quantum algebras and we also can
enrich the research of topological structure in different logic algebras. Hence, we will devote ourselves to
the study of the spectra and reticulation on L-algebras in future work.
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