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Abstract: We consider a jump Markov process X = (X;)»0, With values in a state space (E, &). We suppose
that the corresponding infinitesimal generator mg(x, dy), x € E, hence the law P,y of X, depends on
a parameter 6 € ©. We prove that several models (filtered or not) associated with X are linked, by their
regularity according to a certain scheme. In particular, we show that the regularity of the model
(1(x, dy))aco is equivalent to the local regularity of (Py,g)gco.

Keywords: Fisher information matrix, Hellinger integrals, infinitesimal generator, isomorphism, jump
Markov process, likelihood processes, local regularity, randomization, regularity of models

MSC 2020: 65C20, 62M20

1 Introduction and main results

Jump Markov processes, have found application in Bayesian statistics, chemistry, economics, information
theory, finance, physics, population dynamics, speech processing, signal processing, statistical mechanics,
traffic modeling, thermodynamics, and many others [1]. Regularity plays a significant role in the classical
asymptotic statistics for parametric statistical models for jump Markov processes; see [2-4] for recent
developments. Asymptotic normality or Bernstein-von Mises-type theorems impose several regularity con-
ditions so that their results hold rigorously. In this article, we focus on the regularity conditions of several
statistical models associated with a jump Markov process X with values E being an arbitrary space state,
endowed with a o-field €. Let Q be the canonical space of piecewise constant functions w : R, — E, right
continuous for the discrete topology. Let X = (X;)»o be the canonical process, ()0 the canonical filtra-
tion, and F = V;»o F¢. Let Ty = 0 and ()0 be the sequence of the jump times of X, which are almost surely
increasing to co. To each 8 € ® ¢ R? and x € E, we associate

Mg : E — (0, 00), an &-measurable function,
Qy(x, dy), aMarkov kernel (also called a transition probability) on E.

We assume that, under P, g, the process (X;)»o is Markovian, starts from x € E, is non-exploding, and
admits the infinitesimal generator

me(x, dy) = pg(x)Qo(x, dy).

The existence of the probabilities P, g is guaranteed by the boundedness of the function p, for instance.
The following facts clarify our focus on the different statistical models that will be presented later on:

e under Py, and conditionally to 77, ,, the distribution of T, — T,_; is exponential with parameter py(Xz, ,);
* Qp(x, dy) = Py o(Xy, € dy) is the transition probability of the embedded Markov chain (Xg,)ns0;

* Corresponding author: Wissem Jedidi, Department of Statistics & OR, King Saud University, College of Sciences, Riyadh 11451,
Kingdom of Saudi Arabia, e-mail: wjedidi@ksu.edu.sa

8 Open Access. © 2022 Wissem Jedidi, published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 International License.


https://doi.org/10.1515/math-2022-0482
mailto:wjedidi@ksu.edu.sa

912 —— Wissem Jedidi DE GRUYTER

3 @;‘ (x, dy, dt), k € N, is the distribution of (Xg, Tx) under Py g;
e The associated sub-Markovian transition kernels (PY).., satisfy the backward Kolmogorov equations:

%Ptg(x’ A) = J‘(Pte(y’ A) - P[B(X, A))ﬂe(Xy dy)a S, t> Oa X € Ea Acé. (1)
E

The Markov process X is simple if my(x, dy) is a Markov kernel, i.e., for every x € E, my(x, dy) is
a probability measure on (E, &). In this case, the transition functions are also Markov and satisfy the
Chapman-Kolmogorov equation

P8 (x,A) = Ipﬁ(y, APY(x,dx), xcE, AcE,
E

and
Py.o(Xs.¢ € A|F) = PY(X,, A), [P, g-almost surely,

cf. [5] for more account.
¢ The multivariate point process associated with the process (X¢)¢so is

A(-,dt, dy) = ZE( T Xr, )(dt, dy),
k>1

and its compensator, under P, g, is
VO, dt, dy) = mp(X;, dy)lg (t)dt.
Cf. Hopfner et al. [6] for instance. Note that in our study, we will not use the transition functions nor the

multivariate point process and its compensator. In fact, we aim to show that the regularity of each model for
the following statistical models is linked to the others, according to a certain scheme:

8)( = (Q’ 7_-’ (ﬁ)t?Oa (IPX,G)GGE'))

2
= the filtered model associated with (X;)¢so, @
EX = (E,S, (HG(X’ dY))Oee) (3)
= the model associated with the generator of (X;)ss0,
E, = (E,&, (Qo(x, dy))geo) )
= the model associated with the observation of Xz,
Ef=(E xR, &® Br.,(Q5(x, dy, d)eco) “

= the model associated with the observation of (XTk, Tk).

The model Ex is not a proper statistical model since (7rg(x, dy))sce is not a probability measure.
Nevertheless, the extension of the notion of regularity to models associated with families of finite positive
measures is also feasible and is described as follows. Let (Rg)gco be a family of finite positive measures in

(E, &). For 0, £ € ©, we denote by I1%¢ a measure that dominates R, Rg, and Ry, and by z%¢, z5:%, and 2%,
be Radon-Nikodym derivatives, respectively, of Ry and R; according to 1%¢ and of Ry according to R;. The
Lebesgue decomposition of Ry, with respect to R, is given by the pair (N%¢, Z%¢),

z04 . 0.
NOE = fu/z50u) = 0}, z%¢=15E8 outside N%5,
0, on N%¢,

We start by recalling the notion of “error functions” which was introduced in [6] as follows.

Definition 1. A function f: [0, c0) — [0, co) is called an error function, if lim,\ of (u) = 0. More generally,
an error function is any positive function f : E x (0, co) — [0, c0), such that
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f(, u) is &-measurable, VYu >0, and limf(x,u)=0, Vx¢€E.
u\.0

Definition 2. (Regularity of non-filtered models). The model (E, &, (Rg)gco) is regular at 6 = 0, if the random
function

® — IX(Ro)

0 — 200,

is differentiable at 6 = 0, i.e., there exists a random vector V = (V;);<i<4 and an error function f : [0, c0) —
[0, 00), such that
2

Re(N%©) + < 16 Pf(I6D. (6)

\Z8:0 —1—%V-9

’(Ro)

Note that if the regularity of the model (E, &, (Rg)gco) holds, then V is necessarily (Ry)-square inte-
grable. Furthermore, if (Rg)gco is a family of probability measures, then E (V) = 0. The Hellinger integral of

order % between the measures Rg and R;,, is defined by
HOE = T104(/206280)

and is independent of the dominating measure I[1%-¢. The regularity of the model (E, &, (Rg)¢co) is equivalent
to one of these two assertions:
(i) There exist an error function f; and a random vector V (the same as before), such that

HW_W_%WV.Q

0o, < |6lA(16)). %)

Aa?

(ii) There exists an error function f; and a matrix I = [I¥];; j<q, such that

‘HO’O S HOEHOS _pos_ Lo 1. ¢
4

< 10118123161 v [§D).

The matrix I is positive definite and is called the Fisher information matrix of the model at 8 = 0. It is
linked to the vector V by

I = Ro(ViV),
cf. [6,7].
Let (Q, ) be a sample space endowed with a filtration ()0, and a family of probability measures
(Pg)gco coinciding on Fy. The regularity of the statistical filtered model
(Q) 7:! (ﬁ)t?()’ ([PG)GEG) (8)

mimics the one in Definition 2 and is expressed in terms of likelihood processes [8,7]. For a clear presenta-
tion, we need to introduce the likelihood process of Py with respect to P, 6, { € ©, defined in Jacod and
Shiryaev’s book [9], by

706 _ APl
O dpyR

The process Zto’f is a positive (P, #;)-supermartingale and is a martingale if
1
Py < Py, (ie.if PolF; < Py|F7, Vi > 0).

For any probability measure K%¢, locally dominating Py and [P, the (K%¢, #)-martingales

0.6 _ dPg|F; 260 _ dP¢|F;
t - 0,¢ ’ t - 0,¢
dK %3 |7; dK%s|F;
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and the stopping times
708 = inf{t > 0 s.t. 224 =0}, 59 = inf{t >0 s.t. 2% = 0}

provide this version of Z%¢:

0,8
0.6 Zt—e, if t <795 A TS0
Zt’ = Zf’
0, if t>719A T8,

As for non-filtered models, we have the following definition.

Definition 3. (Regularity of filtered models). Let T be a stopping time relative to (#¢)to. The model
Q, F, (F)e=0, (Pg)gce) is said to be regular (or differentiable) at time T and at 6 = 0, if the model
(Q, Fr, (Pg)gep) is regular in the sense of Definition 2. That means that there exists an Fr-measurable,

Po-square-integrable, and centered random vector V; = [Vi].;4 and two error functions f; 1, f5 7, such that
Ep[1 - Z7°] < 021, 7(16)) 9)

and
2
Epo[(\/ZﬁO -1- %9- VT) ] < |0Pf,r(16)). (10)

As in Definition 2 and according to [7, point 3.12], the regularity of the model is equivalent to the
existence of a positive definite d x d matrix Jr and of an error function f;, such that

1
\H{?" + HP® — HPO — HY - 0 g | < 1elgirael v gD,

where

HP* = Egosly 2027 %] = Epgly 2028 10,06

is the Hellinger integral of order %, at time T, and which is independent of the choice of the dominating
probability measure. The Fisher information matrix of the model is then

Jr = [Epo[ViVil1<i j<a-

It is worth noting that if the regularity at a time T implies the regularity at any stopping time S < T. In
particular, if the regularity holds along a sequence S,, p € N, increasing to infinity, then there exists a local
martingale (1})-0, locally square-integrable, null at zero, such that if T < S, for some p, then V1 is a version
of the random variable in (10). In particular, if (9) and (10) are satisfied for all t > 0, then (V});»¢ is a square-
integrable martingale, null at 0, cf. [7, Corollary 3.16].

We are now able to introduce the notion of local regularity, which is less restrictive than the pre-
ceding one.

Definition 4. (Local regularity of filtered models). A sequence (Sp)pen Of stopping times is called a localizing
sequence if it is Py-almost surely increasing to co. A localizing family is a sequence formed by the pair
(Sp> Sn,p)pen,n=1, Where (Sp)pen is a localizing sequence and (Sp,p)n>1 is @ sequence of stopping times, satis-
fying

Spp<S, and nllr{.lo Po(Sn,p < Sp) = 0. 11

The model (8) is said to be locally regular (or locally differentiable at 6 = 0), if there exists a right con-
tinuous, left limited process (V;);o on R4, such that, for all (8,, 0) satisfying

lim 6, =0 and lim On _ 0, (12)

R0 n—co O




DE GRUYTER Regularity of models associated with Markov jump processes =—— 915

there exists a localizing family (Sp, Sy p)pen,n>1, satisfying
Ep,[1 - Z&O]
lim — g, vp eN, (13)
n—o00 |9n|2

0,0 _
\ Zt/\Sn,p 1 2(Po) 1 (14)

— =0 Vmsp, asn— +o0o, VpeN, Vt>0.
|6xl 2

and

Note that if the model is regular along a localizing sequence, then it is necessarily locally regular.
By Theorem [7, Theorem 4.6], the process (V;)»o is a locally square-integrable (Py, ¥¢)-local martingale and
the Fisher information process (I;):»0, at @ = 0, is defined as the predicable quadratic covariation of (V})so:

I = [ i<ijea = KV Vi hicijea-

The local regularity does guarantee the integrability of I; however, it is the minimal condition we require to
obtain the property of local asymptotic normality (LAN) for statistical models. In this case, the Fisher
information quantities provide the lower bound of the variance of any estimator of the unknown parameters
intervening in the models, see [10—12] for instance.

According to [7, Theorem 6.2], the local regularity is equivalent to the two following conditions:

1 Var{ho’o +R0E R0 _pos _ g . 5} 20, as 6, &0, Vvt=0, (15)
61141 4 ¢
and forall t > 0,
6
A Py as -0, (16)
1612

where
o (Var{.}t)s0 is the variation process of {.}.

J (hf")tzo is a version of the Hellinger process of order % between Py and Py, i.e., is a predictable non-
decreasing process, null at zero, such that

V2925 + [Vz925] W04 isa (K¢, #;)-martingale. (17)

o (A9)0 is the predictable nondecreasing process intervening in the Doob-Meyer decomposition of the
supermartingale (Zto)tzo. Since Py and Py coincide on ¥, then necessarily Zg =1 and there exists
a (Po, 77)-local martingale (M?).», such that

Z%=1+M° - 4.

The results that we obtain complete those of Hopfner et al. [6], who proved that if (7my(x, dy))gco is
regular and if the process X satisfies a condition of positive recurrence (resp. null recurrence), then the
model (Py,g)pco localized around the parameter 8 = O is or locally asymptotically normal or is locally
asymptotically mixed normal. The main result is as follows.

Theorem 5. The model &, is locally regular for all x € E, if, and only if, E, is regular for all y € E.

Models (2)—(5) are described in depth in Section 2. We also provide a full scheme linking them by their
regularity, see Theorems 6—-8 and 10. The proofs are given in Section 3.

2 Additional regularity properties

Our notations and the calculus of the Hellinger integrals and of the likelihood processes are borrowed from
Hopfner [13] and Hopfner et al. [6]. For x € E and 6, ¢ € 6, the following measures will be used in the sequel.
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(a) M%%(dy) is a measure dominating 7p(x, dy), 1s(x, dy), and my(x, dy). Thus, I1%*(dy) also dominates
Qo(x, dy), Qs (x, dy), and Qo(x, dy);

(b) Q%%(dy,dt) is a transition probability on E x R, dominating Qu(x, dy, dt), Q¢(x, dy, dt), and
Qo(x, dy, dt);

(c) K%¢ is a probability measure, locally dominating Py g, Pys, and Py o;

(d) mi(dy) = I2°(dy), Q¥dy, dt) = P%°(dy, dt), and K§ = KE°.

The Radon-Nikodym derivatives are denoted by

_ dﬂe(X, ) _ dQG(X’ ) _ dQ_B(X’ "')
Xe,.{(X, )= W’ Pe,g(x, )= W’ Pgl,s(X, ) = W

XoOG ) = Xo 006 )y P, ) = P, )y P, h0) = Py (X, +50)
XO(X, ) :XO,G(X9 '); rhOO(X9 ) = pO,O(X’ '), PS(X, ',') :P&Q(X, 'y')'

If we choose

NY(dy) = ma(x, dy) + 7e(x, dy) + 7o(x, dy),
and if [Kg’f is the probability under which the canonical process (X;)¢o, starts from x, and has the infini-
tesimal generator I1%¢(dy), then we have

loc loc loc
Peo < K%, P <K and P < KY%.

With the convention [, = 1, a version of the likelihood processes of Py, with respect to K% and
to (Fo)eso0, is given in [6] by

t

dP, ¢|F;

206 _ % AT o (1,0 %) expjj(l = X, )Xo, YIIE(dy)ds.
dK 3 |Fe j21:Tist o E

With the notations

2l =200 20 =2 and 1%=infit>0/z =0}

a version of the likelihood processes of [Py g, relative to Py, and (#¢)s0, is explicitly given by

t
z?  |exp .[(HO - u)Xds | ] ?(XTH,XT].), ift<1OA T8
0

0 _ “t _
Zi = 0~ j=1:T<t A0

2t
0, if t >710A 70,

The Hellinger integral of order % between mmy(x, dy) and m1;(x, dy) is then

H00 = [ Xog 0o 0TI,
E

and the Hellinger integral of order % at time t between P,y and P, relative to the filtration (9o,
is expressed by
H(x) = Eesl 2252591 (18)

We also consider the quantities

(X)) + .u.f(x) ~

H%(x) = 5

H%4(x),

which are used to define the Hellinger process (hte’f)tzo, of order %, between P, g and P, ¢, and relative to
(Fo)ezo0- It is expressed by
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t
o - J,I-_IG”’((XS)ds. (19)
0

Finally, we define the function
1

g(X’ 0’ é‘) =T

61181

where I(x) is the Fisher information matrix of the model E, at 8 = 0, whenever it is regular. Consequently,
H%%(x) is expressed by

(Ho’f’(x) + A% 00 - A% () - %9 100 5), (20)

A%9(x) = %9 TG00 + %|9|2g(x, 0, 0). 1)

Observe that the function g in (20) is such that the function

f(x,u) = sup |g(x,0,¢&)|, xc¢eE,
161,18]<u

is nondecreasing in u, satisfies |g(x, 8, &)| < f(x, |6] v |]). Thus, f has the vocation to be an error function.
We can now state a first technical but intuitive result.

Theorem 6. Let x € E. Then the following assertions are equivalent.
(1) E, is regular;

(2) E, is regular and u(x) is differentiable at 8 = 0;

(3) E! is regular;

(4) &y is regular at time T,.

In the three following theorems, we complete our results by studying the regularity of the filtered model
&y, at fixed times t > 0, or at the jump times Ti, k € N. In this direction, we obtain only partial results
appealing to some additional conditions of integrability.

Theorem 7. Let t > 0. For all x € E, assume the following.

Condition A.(x). There exists u; > 0, an error function f; and a measurable function f, : E — [0, c0),
satisfying the following:
A% () <10 - EPH0O,  if 161, 1¢] < u,
and
t
E el ilXs, u)’lds < +oo, I[E[Kg‘g[fz(Xs)z]ds < +00.
0

O e ~

Then, &, is regular at the time ¢, forall y € E.
Theorem 8. For all x € E, assume the following. The model E, is regular, and

Condition B(x). The error function f in (7), associated with the model E}, satisfies the following.
There exists r > 0 such that

QUFENI0 = | £ Qx dy, doy < +oo, iF 161 <.
ExR,
Then, the model E)’,‘ isregular forall y € E, and all k € N,

Remark 9.
(i) The control in the first integral in condition A(x) is exactly the required condition for E, to be regular.
The finiteness of the second integral will ensure integrability conditions in the proof of Theorem 7.
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(ii) Equivalently, we could replace the error function in condition B(x) by the one in (6). The integrability
condition becomes

Qol 1100 = j £y, NQo(x, dy, de) < +co,

EXR

and the only difference is that we would have to check two inequalities instead of one.
We conclude with our last result.

Theorem 10. 1. Let x € E. If &, is regular at a time t > 0, then E, is regular.
2. Furthermore, if E is regular at a timet > 0, for all x € E, then, &, is locally regular, for all y € E.

3 Proofs of the theorems

We will sometimes use the notion of isomorphism between two statistical models. Referring to Strasser’s
book [14], we say that two models G = (4, A, (Py)geo) and H = (B, B, (Qg)gco) are isomorphic if they are
randomized of each other. To illustrate this notion, assume for instance that G and H are, respectively,
dominated by P and Q. Then, the model H is randomized from G, if there exists a Markovian operator
M : L°(A, A, Py) — L=(B, B, Qg), such that

% =M %, Vo € 0.

dQ dp
The models G and H are randomized of each other if they are mutually exhaustive, which is always the
case in our study, each time an isomorphism holds, cf. [14, Lemma 23.5 and Theorem 24.11]. When com-
puting expectations, these isomorphisms allow us to handle at our convenience, one of the two likelihoods
of the models G and H . The latter is justified by the fact that they have the same law under the respective
probability quotient.

Proof of Theorem 6. (1) = (2): (a) By (7), the regularity of E, at 6 = 0 is equivalent to the existence of
a random vector V(x, -) € I*(mo(x, dy)), and of an error function f, such that

2
hx, 6) = j(m(x, V) = K0 - 5 )6 Ve y)) I(dy) < 10 Pf, (x, 16D). @)
E

The latter implies

[ 60y = ol ) micay) <16 {25 x 16D + 2 [ IVex, )P, d2) )
E

E
=16lfy(x,16])) and f, isan error function.

(b) The implication “E, is regular at 6 = 0 = u(x) is differentiable at 6 = 0” is shown in [6], using the fact
that the differentiability of \/xy(x, -) in I? implies the differentiability of Xo(x, -) in I1. Furthermore,
the derivative at 6 = 0 of u(x) is

jV(x, 2)o(x, d2) = Ho(x) f V(x, 2)Qolx, d2),
E E

which gives,

Ho(X)
Up(X)

—1- %9 ~IV(X, 2)Qo(x, dz) + 8- F(x, 0), (24)
E
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where

fu(x, u) = sup|F,(x, 0)| is an error function
|0|<u

(c) Let us define

2
W06 0) = [(0a060 1) = JPol6 ) — ~ a0 116 Vi, ) | (),
2

E

where the function

V) = Vi y) - [V 2)Qr, d2) € Z(Qolr, dy)) 25)
E

satisfies

f V'(x, y)Qolx, dy) = 0.
E

Then, we can write

2
Xo(6, y) Xo(X»)’) 1 Xo(X’Y) 0
W(x, 6) = - _1 6-V'(x,y) | mody),
®9 ! (\/ eS J 100 zJ w0y )) (@)

and use (24) and (25) to obtain

1
Ho(x)

H(x, 6) = j[m(x, V) - XG50 18- Vix,y)
E

2

- %[9- IV(x, z)Qo(x, dZ)}{\/xg(x, Y) = XG0} + 60 Ex, 0)Jxo(x, y) | Ti(dy)
E

2

21
+_
4

9. j V(x, 2)Qo(x, dz)
Ko )

E

* WX (6 ¥) = KOG ¥ B+ 18R (£ulx, 16D)%Kp (x, ¥) [T5(Ay).

Finally, according to (22) and (23), we have

2

3

W(x, ) < o 16 Pfr(x, 16]) +

% £10618) + pp0010 PCEK, 162
0

0. IV(X, 2)0y(x, dz)
E

=10 [*f,(x, |0]), where f, is an error function.

(2) = (1): (a) Under the condition of differentiability of u(x) at 0, we obtain

1500 = g0 [1 + %9. z Og;] +0-Flx, 0), (26)
0

where

f(x, u) = supjgi<ulFy(x, 6)| is an error function.
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(b) According to (7), the regularity of Ej, at 6 = 0, is equivalent to the existence of a centered vector
V'(x, -) € I(Qo(x, dy)), and of an error function f, such that

2
n(x, 0) = j(m)(x, V) = o) = 3\pol 8- V(. y)) I(dy) < 16 Pf,Cx, 16)).

E

The vector V(x, -) is defined by

Ho(X)
Ho(X) ’

V(X’ J’) = VI(X’ )’) +

which belongs to L%(my(x, dy)) and satisfies

Uo(X) = JV(x, 2)mo(x, dz).
E

(c) Let us define

2
) = | (m(x, V) = a0y - K00 Vex, y)) né(dy). -

E

By (26), we have

h(x, 0) = IHI . %9- IV(X, 2)Qo(x, dz) + 8- E}(x, 9)}\/y0(x)p6(x, Y) = VR0 )
E E

2
—% Ho(OPy(x, ¥) 0 - V(x, y)] 9(dy)

= HO(X)I[\/pe(X, Y) = P y) - %\/po(x, o -V'(x,y)
E

2
1 ]
+20- _[V(x, 2)Qo(x, d2){{Jp(x, ¥) = Jpo (6, ) } + 6+ Fi(x, 6)Jpy(x; y)] T(dy).
E
With the same arguments as in (1) = (2) (c), we retrieve

2
h(x, 0) < 30| 16 Pfo(x, 16]) + %{9 'J-V(X’ 2)Qo(x, dz)} x [ZIG Pfo(x, 16]) + %f|9~ V(x, 2)P Qo(x, dz)}
E E

6P .
—f(x, 10D |.
+ ye(x)fy(x 161)

Consequently, there exists an error function f, such that
h(x, ) < 10 fy(x, 10]).
(2) = (3): Let x € E. Since
Qo(x, dy, dt) = Qa(x, dy)pg(x)e #o™ g (t)dt
is the tensorial product of two probability measures, then E; is statistically isomorphic to E, x EJ, where

E! = (R, Br,, (u()e#elg (t)dt )oco ). (28)
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The differentiability of u(x), at 6 = 0, is equivalent to the differentiability of the model E,'. The assertion is
then a consequence of [15, Corollary 1.7.1] in Ibragimov and Has’minskii’s book.

(3) = (2): As in the proceeding implication, observe that E| is statistically isomorphic to E, x EJ,
and the result becomes a simple consequence of [15, Theorem 1.7.2].

(3) & (4): This equivalence is deduced from the fact that Qg(x, dy, dt) is the distribution of (Xr, Ty),

then Qqg(x, dy, dt) is identified with P, restricted to the o-field #7. Thus, E! and (Q, 7, (Pe)eco)
are statistically isomorphic. O

Proof of Theorem 5. (1) For the necessity condition, we will check (15) and (16), as it was done for the
Markov chains in [7]. For fixed x € E, we choose the dominating probability K%¢, the one for which the
process (X¢)¢=0 has the generator

%4(dy) = me(x, dy) + ms(x, dy) + mo(x, dy).

(1)(a) Using the function g in (20), we have
t
hO + h0S - nP€ - - [0 100 £ds = 1ol¢l X, 6, £)c

Then, the convergence (15) holds if A«(y) is true for all y € E, which, by Remark 9, is equivalent to the
regularity of E,, which is regular for all y € E.
(1)(b) The Doob-Meyer decomposition of the supermartingale Z? asserts that

Z9=1+M°%- 49,

where M? is a local martingale and 4 is a predictable nondecreasing process. Since the jump times of the
process (X;);so are totally inaccessible, then Z? is left-quasi continuous and A? has necessarily continuous
paths, cf. [16, Theorem 14]. From the decomposition of the additive functional logZ? on the event
(t < 7 A 79), into a local martingale N, and a process with finite variation B? (see [5, p. 40]), we may
write Z¢ in the form

z} = { X0 (X4, XT)}EXPJ(HO o) (X)ds = eNi+EY,
i>1, i<t A0

where,

t
Ne=1 Y togfe(x,,x)} - jjlog@ Xs, y)o(Xs, dy)ds,
s<t.Xs2Xs.  XO 0y X0

j j (1 - —(Xs> v logX X, )’))ﬂo(xsa dy)ds.

Applying Ito’s formula to the semimartingale Z¢, we obtain

t t
zZP=1+ JZGdNG IZQdBe + Zz"(eANs - 1-ANY)

O 0 s<t

_1+JZedN9 J.ZedBe S z 1(X9(XT I,XT)—l—logXG(XT I,XT))

i>1, i<t
=1+Mt —At,

where
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t t
e~ [ ziang + | Zf(%(xs, y)-1- log%xs, y))(u ~ V) ds, dy),
0 0 E 0 0

t t
A=~ [ziapl - | Zi(%(xs, Y -1- 1og§(xs, y))v°<~,ds, dy).
0 0
0 0 E

Then, we may write
t
Af = jnye(Xs)I(l - %(Xs, y))Qo(Xs, dy)ds.
o
0 E

Using [7, point 7.5], we retrieve that there exists an error function f(z, -), z € E, such that

0< j 1- 22, 9) |aotz dy) < 10 P, 16D)
Po

E

Af
ﬁ <Fl=Y! sup z8, Y0 kzo(r,ﬁl At = T A Opg (X5 )f (X7 161). (29)

Then, observing that Yf(a)), w € Q, is a finite sum, that 8 — p,(-) is continuous at 8 = 0 and using the fact
that f is an error function, we deduce that for all t > 0,

Y? — 0, Po-as., as—O0. (30)
On the other hand, the Doob inequality for positive supermartingales yields

6
Pe.o((Z9); = A) < [E"#[ZO] = %, forall t>0, A>0, and 6¢®.

We deduce that if 6, is a sequence going to 0 and if € > 0, then

Peo(F > €) =Py o((Z0); Y > &, (20); > A) + Pyo((20): Y > &, (2%); < A)

< [PX,O((Z"n)t > A) + [PX,O(Y;Q" > %) < % + [PX,O(Yte" > %)

Since A may be chosen arbitrarily big, then the latter and (30) show that for all t > 0,

Fte" &» 0, asn— +oo,
which, by (29), gives (16).
(2) For the sufficient condition, we write the conditions of local regularity, then we express them at the
time T,.
(2)(a) The local regularity of &, at 6 = 0 implies that there exists a (Py,0, #z)-local martingale (/):0,
locally square-integrable, null at zero, satisfying (14) and represented by

t
v = f ju(s, YA - VO, ds, dy), 31)
0 E

where the function v : Q x R, x E — R¥ is predictable and satisfies
t

Ijlu(s, WIA + vO)(-,ds, dy) < +oo, [Py - a.s., forall t>0.
0 E

Let (6y, ), satisfy (12), and (Sp, Sp,p)pen,n>1 be the corresponding localizing family. By [7, Theorem 4.6],
we obtain that for all p € N:
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2

zZpd -1

Aon

lim E,ofsup | ——2— — -0V, =0.
n=+00 0 tz(I)) |6nl 2 "

Furthermore, we can choose (Sp,),<y independent of (6,,),en and Sy, < p (this is what we will do in the sequel).

We deduce that
2
[76m0
ZTi/\sn‘P 1 _ 16 . V

lim E =0,
noioo 0 16, 2
then, using [7, Lemma 3.17], we obtain
6,0 2
_ JEolZ8 10(Xrns, )] =1 4
nljl:lm |Ex,0 |9n| — 59 . [EX,O[VTI/\Splo-(XTﬂ\S,,,p)] =0. (32)

(2)(b) By [5], we may write
Tl/\sn,ple/\Rn,pa Tl/\sple/\Rp,

where Ry, = 1,,(Xo), Ry = 1,(Xo), the sequence (R,)pey does not depend on (6,)ney and the functions
Tnps Tp : E — (0, p] are &-measurable. Moreover, by (11), we deduce the following inequalities and
inclusions:

(@O LTAR,, <TiAR, and R, <p;

(i) (Sn,p >T) = (Rn,p >T) ¢ (Sp >1) = (Rp > T);
(iit) (Sp < T, Sp = Sn,p) = (Rp < T, Rp = Rn,p);

@iv) lim Py o(Rp < T, Ry = Rpp) = Py o(Ry < Tr) > 0;

n—+oo

(v) lim Py o(Rpp = 1) = lim Py o(Ry =2 T, Ry = Ryp) = P o(Rp =2 Ty) > 0.
n—+oco n—+co

(2)(c) Let us define the quantities

[ 2
\/IE)(,O[Z?l;l\’gn.pla(XTl/\Rn,p)] -1 1
ke p(n) = Ey 0 a -6 Ex ol Vinr |0 (X, )| 1Ry <TiRy-Rop)
n
- i
e1 (Ho=Mg, )Xorp(Xo) _ 1 1
= |EX’0 |en| - 56 . Ex,O[wp(Xo)lo'(Xo)] ]l(Rp<Ti’Rp:Rn,p) ,
[ 2
JEcolZE8 10(Xrar,, )l =1
L p(n) =[Ex o 16,1 - 59 . [Ex,O[VTl/\Rp|0(X7]/\R,,,p)] ]l(RpZTl)Rp:Rn,p)
n
EcolZ0lo(n)] -1 1 i
= |Ex,0 |e I - 59 . EX,O[Vﬂlo(XTl)] ]l(RpEleRp=Rn,p) s
n

and the &-measurable function wy, : E — R9 given by
Wl,p(x) = [EX,O[Vrp(x)] .
There exists an & ® &-measurable function w, : E x E — R4, such that

EX,O[VH|U(XE)] = Wz(X, XTl) (33)
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(2)(d) Using (iv) in (2) (b), and by (32), we obtain that for all p € N,

; . 5 (Mo=Mg, )OO0 _ 1 1 2
lim kp(n) = lim ~ 20 wip(0)| PeoR, < T) = O.
n—+oo n—+00 |6n| 2

Since R, < p, thenP, o(R, < T) > 0. We deduce from the latter that 8 — p,(x) is differentiable at 0, and that
its derivative
Wl,p(x )

rp(x)

Ho(x) =

is independent of p and also of the functions r,.
(2)(e) Similarly, by (v) in 2(b), and by (32), for all p € N, we have

5 2
“n(x, Xp) -1
NP 7

lim I p(n) = lim E,,
n—+0o n—+0o |9n|

1
- 59 . Wz(X, XTI) [PX,()(Rp > Tl) =0,

and since
Px,o(Rp > Th) = Pyo(rp(x) > Tr) > O,
we obtain the differentiability, in L%(Qo(x, dy)), at 0 = 0, of 6 — z—z(x, 9.
(2)(f) To prove the regularity of the model E,, it remains to show that

lim L[Exyo[l -

n—+oo |0y |2

Pe, (x, Xn)] = 0. (34)
Po

Observe that, for all p € N, we have

Exoll = Zghg, 1= ExolExo[1 - Z210(Xr) |, 2] + ExolExo[1 - Z7" |0(X,,) |1k, <

= |EX,0|:(1 — p@,,)(x’ XTl)Jl(Rnple)] + [1 - e(yo_yﬂn)(X)r”*l’(x)]ﬂ)xyo(Rn,p < Tl)
Po '
On the other hand, by (13), by (iv) in (2)(b), and by the fact that 8 — uy(x) is differentiable at 0 (which
is equivalent to the regularity of the model E, in (28)), we obtain

1

0< lim ————™ < lim
Ho-too 16, I oo |0y P

Exoll - Zfhg,| . Exoll-Zgr]

and
[1 — e(MoHe, J0Ip(0)]

lim P, o(Rnp, < T)) = O.
o400 Ien |2 x,O( n,p 1)
The latter gives
rEX,O[ - 2, X)
lim Py o(Ry, = T) = 0.
Heroo |9n |2 x,O( p 1)

(2)(g) The regularity of the model E, is deduced by steps (2)(d), (2)(e), (2)(f) and by Theorem 6. O

Proof of Theorem 7. Fix x € E and t > 0. Assume that A,(y) is satisfied for all y € E and that |0), |£| < u;.
The dominating probability measure K%¢ is

1
K% = E(Px,o + Pyo + Py g).
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In this proof, we simplify some notations as follows:

X = %, for a = 0,10, €] < u;.
K47
Due to the choice of [K,og’f, we have

20+ 28 + 28 = 3.
(1) First note that the regularity of E, is equivalent to

L
16111

where f] is the error function in condition A,(y). Moreover, we have

lg(y, 6, )| = ‘H("@(y) + B (y) - B (y) - %9 I(y) €| < Ay, 16 V€D,

1

2

t
[Eade0n.0.0%ds < R lo1 v 19D,
0

where the error function F ; is

1
t 2

Fudo 161 v 16D = | [Evadd FCE. 161 v 16D%1ds

0

On the other hand, (21) and the condition A«(y) yield
t

sup [E[Kg,s[ll(Xs)P]ds < co.
1601, 18]<ue o

(2) We will show the existence of an error function E, for which

t
Lix, 6, &) = 1+ H¥ — HO? - H — %[EX,O Ie (X)) éds|, xcE
0

satisfies

ILe(x, 6, )] < |6]1§1F(x, 6] V [§]).

— 925

(35)

(36)

@37

38)

Using (17), (19), and the fact that (z°).0 is a (K%¢, #¢)-martingale, we decompose L.(x, 6, &) into

t t t t
Li(x, 0, &) = Eyac -J' 2025 dn%% + I 2029 A0 + '[ 2028 dn0% — %z?_ je-z(xs)- £ds
0 0 0 0

t
= IEKg,s[AS + Bs + Cs + Dg]ds,
0

where
As- (HO’G(XS) + B0 - B0 - L0 10t E)\/ZE_Zﬁ_,
By = A*P(X)({20 20 — \z8z28),

Co= ™ (X)({28 28 - \28z28),

D= %e X (2025 - 20).

39)
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(2)(a) By (35) and (36), we obtain
[Exedanids | < 3180E1F 0x 101 v 1D. (40)

(2)(b) Applying Cauchy-Schwarz’s inequality twice, and using (35), we obtain

¢
I[E[Kg.e[Bs]ds <3 J-[E[K“ [A*%(X,)?]ds I[Ewu (\/Z \/Z)z . (41)
0

Then, the condition A; implies

t

t
J Exosl H*’(X;)?]ds < 16 |* JEKes[fz(Xsﬂds
0 0

By (17), we have
S_
Eyoel(yzg - VzE ) = 2 o J‘\/zro,zﬁ: dh®¢ | < 6[E[Kg,:[hs(f’f],
0

hence,

t

JEwd (22 - 2 e

0

t

f oS drds < 611¢ P [ E o £051ds
0

0

ov_,a

Finally, condition A;, implies that

alw

Fo(x, u) = 3uy/2t sup IEkg,s[ﬁ(Xs)z]ds
161,18 1<u

is an error function. Then, by (41) and (3) we obtain
[ EcdBas | < 16121F 0x 101 v 16D.

(2)(c) As in (4), there exists an error function F; ; such that
t

[Exadcias | <6tigies . o1 v igh.
0

(2)(d) For the control of the fourth integral in (39), it suffices to observe that the inequality

W28zE - 200 < 22 x 1zl - 221+ 28 x [z - 22|
implies

Exed (42028 - 2002 < 6{Eyodl (20 — 22 7] + Eyosl (20 - zE 711,

Then, using (3) one obtains

1 1

t 2 t 2
[Eaad(ZZ2E - 20yas < 6daaor v D] [ exonds
0 0

By (37) and by condition A; conclude that
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t t

Fuat ) = 6uvE sup 1 [Ead HOOPIds x [ [Ea f0t1ds])

0l,|¢|<u
161,18]<uq o

is an error function satisfying
t

[Exednilas | < iolgiFcx 101 v 12D,

0
(2)(e) The control (38) is obtained with F; = 3F, ; + Fo¢ + F5¢ + Fy .
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O

For the proof of Theorem 8, we need a lemma which generalizes [15, Corollary 1.7.1], hence the situation
of Theorem 8. Let (F, ¥) be an arbitrary state space and Ry(x, dy), S¢(x, dy), 0 € ©, x € F, be two Markovian

kernels and Hﬁ(dy) be a kernel dominating
Ro(x,dy), Ro(x,dy), Sp(x,dy), and So(x,dy).
We consider the statistical models:

E( = (F’ ¥, (RQ(X! dy))969)9 GX = (F, 7:9 (SH(Xy d)’))ee@)),
HX = (F’ 7:’ (RQSG(X’ d)/))ee@), HX(FZ’ 7:2®s (RG(X’ dyl)sﬂ(yly dyz))@e@)’

where the product RySg is the Markovian product of the kernels Ry and Sy, i.e.,

RSo(x, A) = jRe<x, d)Ss(v, 4), A
E

The Radon-Nikodym densities associated with the models F, and G, relative to I1%(dy), are

3 = dRex, ) 5 _ dSe(x, )
ag(x, ) = e By(x, -) e

 _ dRo(x, -) 5 _ dSo(x, -)
@006 ) = ey > P )= ey

Choosing

() = %{Re(X, 3+ Ro(x, -) + S50, ) + So(x, )},

we have a, f < 4. We introduce the realizations of the last kernels as follows. Let ¥; and Y, be two random
variables on a probability space (Q, A) with values on the state space (F,F). For 6 € © and x € F, let us

define the probability measure P, g on Q such that
-C[Px,g(Yl) = RQ(X, dJ’) and —C[Px’g(Yzlyl = Y) = Se()’, dZ),

hence,
Lp, (¥2) = ReSp(x, dy).

(42)

We also define the probability measure K¢, on Q, enjoying the same properties as in (42), when replacing
Px,0 by K¢ (respectively, Ry(x, dy) and Sg(x, dy) by I1%(dy)). With these choices, and by [9, Theorem IV 4.16],

we see that
P <K? and Py < KY.
We can now state that

F, is statistically isomorphic to 7, = (Q, a(1}), (Px,0)¢co)>
H, is statistically isomorphic to Hy = (Q, 0(¥2), (Px,0)ec0),
H, is statistically isomorphic to H, = (Q, 6(¥;, Y2), (Px.6)pce)-
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Consequently, the Radon-Nikodym densities of ¥, and H,, with respect to [Kf, are expressed by
o _ AProlo(¥) _ dPy plo(1, Y2)

dK §lo(¥,) dKlo(¥;, Y2)

The regularity of the models ¥, and G, is equivalent to the following: there exists two error functions f, and

fg, an Ro(x, dy)-centered random vector V(x, -) € I?(Ro(x, dy)), and an Sy(x, dy)-centered random vector
Vp(x, -) € I2(So(x, dy)), such that

ag(x, ) and z%= = ag(x, YDBy(Y;, 1a).

2
a(x, 0) = I(\/(Xo(x, ) = ol 1) - 2@l )0 Valx y)) m%(dy)

F

= IE[K?(I:

< 16 Pfa(x, 161)

2 ] (43)

Jao06 Y — Jaols, ¥ — %\/ao()ﬁ D6 - Va(x, )

and

2
b(x, 0) = I(Jﬁg(x, V) = Bl ) = 5B )6 - Vitx, y)) Mdy) < 0 Pf6 16D (a4

F

We are now able to state the fundamental lemma.

Lemma 11. Let x € F. Assume that F; is regular and that G, is regular for all y € F. Also assume that there
exists r > 0, such that the error function fz in (44) satisfies

[ f5(-,D](x) < +00, if |6] <.

Then, the model H, is regular, and so is H, (as a sub-model of H,).

Proof. We need to show that there exists an error function f, such that

c(x, 0) = [E[Kg[

NEZENF %@9 (Valx, 1) + Vy(¥i, 15))

2
] < 16 Pfy (x 10D, (45)

for all @ satisfying |6 < r. To this end, we split c(x, 8) as follows:

c(x, 6) = [E[Kg[ S50 TBo(Eo 1) — a0, To(Fo 1)
2
- gx/ao(x, YDBy(Yr 1) 0 -(Vax, i) + Vs(Ys, 1)) ]
- [E[Kg[ (m(x, ) - @l ) - 1@ 16 - lx, Yo)\/ﬁ@m, )

o (VBT - BT T - 2 BT 200 - Ty, ) o, T

2
b o 16 - Vit (ol 1) - ol Yz))‘ ]

Then, using the fact that a. ,. <4, we obtain

|
|

c(x, 0) < 12{[E[K§[

Ja06 X)) — Jaol, ¥ — éx/ao(x, D6 - Va(x, 1))

+ [E[Kgli \/ﬁG(Yb Y2) - \/ﬁO(Yh YZ) - %\ Bo(Yly YZ)H : VB(Yh YZ)
161

+ f—6[Ex,o[|Va(x, YPEEoll BV Y2) — (Bo(Hs, 12) |2]%}.
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Using inequalities (43), (44) and the fact that Hﬁ[ fp(-,1](x) < +co, we obtain
Ex,ol|Va(x, ¥)2] = Ro[|Vi P1(x) < 0 j IVBo(Y» 2) Vp(y, 2)PTI(d2)TT5(dy) < oo.

FxF
Thus,

g,(x, 16]) = 16 | 2120 £, 18D100) + j Vi, 2)PIA)Tdy) | — 0, as 6 — 0.

FxF

Finally, since

EollBy(Yi 2) — [Bo(Y, Vo) ] = j IBs(y, 2) — \[Bo(y 2) PII(dz)T5(dy),

FxF

then, (45) holds with the error function

fy (6, 161) = 12fa(x, 10]) + 12Ro] f(.,10D1(x) + %[Ex,o[IVa(X’ nPlg,(x, 16]). o

Proof of Theorem 8. The proof is a simple application of Lemma 11, by taking
F=ExR,, F=&E®Bgr,, Rg=Ss=Qq,

and by making an induction on the index k, using the same condition of integrability of the error func-
tion. O
Proof of Theorem 10.
(1) First, we note that

(Q, For Prodoco)regular = (Q, Feng, (Pro)oeo) regular

= (Q, O‘(XMTI), (Px,g)geg)regular.
Using the Bayes theorem, we express the likelihood of the model by

[Ex,O[Zze/\Tllo-(Xt/\T])] .

Since the model &, is regular at each time s € [0, t], then the derivative (V;)o<s<¢ of the model
(Q, Fs, (Py.0)0c0) is given by (31). Using [7, Lemma 3.13], we obtain the derivative at 8 = O of the like-

lihood Ey,0[Z\7|0(Xir7;)] in the form
Exo[ Viarlo(Xiaz) |-

(1)(a) There exists then an error function F; ¢, such that

1 2
K(t,x, 6) = [Ex,o[(J[Ex,o[zma(xm)] -1 20 Ko [Varlo(¥)]) ]
1 2
= [Ex,o[( [Ex,o[ZteW(Xt)] -1- 59 ' [Ex,o[Vt|0(Xt)]) J1(t<T1)]

2
+ [EX,O[( Exo[Zflo(X)] -1- %&[EX,O[VTJG(XH)]) Jl(t>ﬂ)]
= K(t, x, 0) + ky(t, x, 8) < |0 PFy¢(x, |6]).

(1)(b) As in the last point, we see that there exists an error function F,; such that

I(t, x, 9) = IEX’OI:I - %(X, XTl) PX’O(t >T) < IEX’o[l - ZTl] < Fzyt(X, |9|) (46)
0
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(1)(c) We use the same arguments as in the proof of Theorem 5 by taking S, , = Ry, = Sp = R, = t, and
we obtain that

o I(t, x, 0) < |6 |*Fy,«(x, |6]) expresses the differentiability of 8 — p,(x) at 6 = 0,

o I(t, x, 0) < |6 PF¢(x, |0]) and (46) express the regularity of the model Ej.

In virtue of Theorem 6, the latter is equivalent to the regularity of E,.
(2) The second assertion is an immediate consequence of Theorem 6. O

Acknowledgements: The author is grateful to Jean Jacod who introduced him to the topic of statistics of
Lévy processes and to the referees for their valuable comments and recommendations that improved the
content of the paper. The work of the author was supported by the “Research Supporting Project number
(RSP-2021/162), King Saud University, Riyadh, Saudi Arabia.”

Funding information: This study was funded by Research Supporting Project number (RSP-2021/162),
King Saud University, Riyadh, Saudi Arabia.

Conflict of interest: The author declares no conflict of interest.

References

[1] S. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Second edition, Cambridge University Press,
Cambridge, 2009.

[2] N. Lazrieva, T. Sharia, and T. Toronjadze, Semimartingale stochastic approximation procedure and recursive estimation,
J. Math. Sci. (N.Y.) 153 (2008), no. 3, 211-261, DOI: https://doi.org/10.1007/510958-008-9127-y.

[3] T. Ogihara and Y. Uehara, Local asymptotic mixed Normality via transition density approximation and an application to
ergodic jump-diffusion processes, 2021, arXiv: https://arxiv.org/abs/2105.00284.

[4] V. Panov, Modern Problems of Stochastic Analysis and Statistics: Selected Contributions in Honor of Valentin Konakov,
V. Panov (eds.), Springer Proceedings in Mathematics, Springer Cham, Switzerland, 2017.

[5] J.)acod and A. V. Skorohod, Jumping Markov processes, Ann. Inst. Henri Poincare Probab. Stat. 32 (1996), no. 1, 11-67,
http://eudml.org/doc/77529.

[6] R.Hopfner, ). Jacod, and L. Ladelli, Local asymptotic normality and mixed normality for Markov statistical models, Probab.
Theory Related Fields 86 (1990), 105-129, DOI: https://doi.org/10.1007/BF01207516.

[7] ). )acod, Une application of la topologie d’Emery: le processus information d’un modéle statistique filtré, In: ). Azéma,
M. Yor, and P. A. Meyer (eds), Séminaire de Probabilités XXIII. Lecture Notes in Mathematics 1372 (1989), 448-474,
DOI: https://doi.org/10.1007/BFb0083993.

[8] K. Dzhaparidze and E. Valkeila, On the Hellinger type distances for filtered experiments, Probab. Theory Related Fields 85
(1990), 105-117, DOI: https://doi.org/10.1007/BF01377632.

[9] ). Jacod and A. N. Shiryaevv, Limit Theorems for Stochastic Processes, Springer, Berlin, Heidelberg, New York, 1987.

[10] W. Jedidi, Local asymptotic normality complexity arising in a parametric statistical Lévy model, Complexity 2021 (2021),
3143324, 1-18, DOI: https://doi.org/10.1155/2021/3143324.

[11] H. Rammeh, Problémes d’estimation et d’estimation adaptative pour les processus de Cauchy et les processus stables
symétriques, PhD thesis, University of Paris, 1994.

[12] H. Luschgy, Local asymptotic mixed normality for semimartingale experiments, Probab. Theory Related Fields 92 (1992),
151-176, DOI: https://doi.org/10.1007/BF01194919.

[13] R. Hopfner, On statistics of Markov step processes, representation of the loglikelihood ratio process in filtered local
models, Probab. Theory Related Fields 94 (1993), 375-398, DOI: https://doi.org/10.1007/BF01199249.

[14] H. Strasser, Mathematical Theory of Statistics, Statistical Experiment and Asymptotic Decision Theory, Walter deGruyter,
Berlin, New York, 1985.

[15] 1. A. Ibragimov and R. Z. Has’minskii, Statistical Estimation, Asymptotic Theory, Springer, Berlin Heidelberg New
York, 1981.

[16] C. Dellacherie and P. A. Meyer, Probabilités et Potentiel, Chapters V to VI, Paris, Hermann, 1980.


https://arxiv.org/abs/2105.00284
http://eudml.org/doc/77529

	1 Introduction and main results
	2 Additional regularity properties
	3 Proofs of the theorems
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


