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Abstract: We consider a jump Markov process X Xt t 0( )=
≥
, with values in a state space E, �( ). We suppose

that the corresponding infinitesimal generator π x y x E, d ,θ( ) ∈ , hence the law x θ,� of X , depends on
a parameter θ Θ∈ . We prove that several models (filtered or not) associated with X are linked, by their
regularity according to a certain scheme. In particular, we show that the regularity of the model
π x y, dθ θ Θ( ( ))

∈
is equivalent to the local regularity of x θ θ, Θ�( )

∈
.
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1 Introduction and main results

Jump Markov processes, have found application in Bayesian statistics, chemistry, economics, information
theory, finance, physics, population dynamics, speech processing, signal processing, statistical mechanics,
traffic modeling, thermodynamics, and many others [1]. Regularity plays a significant role in the classical
asymptotic statistics for parametric statistical models for jump Markov processes; see [2–4] for recent
developments. Asymptotic normality or Bernstein-von Mises-type theorems impose several regularity con-
ditions so that their results hold rigorously. In this article, we focus on the regularity conditions of several
statistical models associated with a jump Markov process X with values E being an arbitrary space state,
endowed with a σ-field �. Let Ω be the canonical space of piecewise constant functions ω E: � ⟶

+
, right

continuous for the discrete topology. Let X Xt t 0( )=
⩾

be the canonical process, t t 0�( )
⩾

the canonical filtra-
tion, and t t0� �= ∨

≥
. LetT 00 = and Tn n 0( )

≥
be the sequence of the jump times of X , which are almost surely

increasing to∞. To each θ Θ d�∈ ⊂ and x E∈ , we associate

μ E
Q x y E

: 0, , an measurable function ,
, d , a Markov kernel also called a transition probability  on .

θ

θ

�⎧
⎨⎩

( )

( )

⟶ ∞ -

( )

We assume that, under x θ,� , the process Xt t 0( )
⩾

is Markovian, starts from x E∈ , is non-exploding, and
admits the infinitesimal generator

π x y μ x Q x y, d , d .θ θ θ( ) ( ) ( )=

The existence of the probabilities x θ,� is guaranteed by the boundedness of the function μθ for instance.
The following facts clarify our focus on the different statistical models that will be presented later on:
• under x θ,� , and conditionally to Tn 1�

−

, the distribution ofT Tn n 1−
−

is exponential with parameter μ Xθ Tn 1( )
−

;

• Q x y X y, d dθ x θ T, 1�( ) ( )= ∈ is the transition probability of the embedded Markov chain XT n 0n( ) ≥ ;
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• Q x y t k, d , d ,θ
k

�( ) ∈ , is the distribution of X T,T kk( ) under x θ,� ;

• The associated sub-Markovian transition kernels Pt
θ

t 0( )
≥

satisfy the backward Kolmogorov equations:

t
P x A P y A P x A π x y s t x E A, , , , d , , 0, , .t

θ

E

t
θ

t
θ

θ �( ) ( ( ) ( )) ( )∫

∂

∂

= − ≥ ∈ ∈ (1)

The Markov process X is simple if π x y, dθ( ) is a Markov kernel, i.e., for every x E∈ , π x y, dθ( ) is
a probability measure on E, �( ). In this case, the transition functions are also Markov and satisfy the
Chapman-Kolmogorov equation

P x A P y A P x x x E A, , , d , , ,s t
θ

E

t
θ

s
θ

�( ) ( ) ( )∫= ∈ ∈
+

and

X A P X A, , almost surely,x θ s t t s
θ

t x θ, ,� ��( ∣ ) ( )∈ = -
+

cf. [5] for more account.
• The multivariate point process associated with the process Xt t 0( )

⩾
is

λ t y ε t y,d , d d , d ,
k

T X
1

,k Tk
( ) ( )∑

( )

⋅ =

≥

and its compensator, under x θ,� , is

ν t y π X y t t,d , d , d d .θ
θ t ��( ) ( ) ( )⋅ =

+

Cf. Höpfner et al. [6] for instance. Note that in our study, we will not use the transition functions nor the
multivariate point process and its compensator. In fact, we aim to show that the regularity of each model for
the following statistical models is linked to the others, according to a certain scheme:

X
Ω, , ,
the filtered model associated with ,

x t t x θ θ

t t

0 , Θ

0

�� � �( ( ) ( ) )

( )

=

=

⩾ ∈

⩾

(2)

E π x y
X

E, , , d
the model associated with the generator of ,

x θ θ

t t

Θ

0

�( ( ( )) )

( )

=

=

∈

⩾

(3)

E Q x y
X

E, , , d
the model associated with the observation of ,

x θ θ

T

Θ

1

�( ( ( )) )′ =

=

∈ (4)

E Q x y t

X T

E , , , d , d

the model associated with the observation of , .
x
k

θ
k

θ

T k

Θ

k

� �� � ( ( ))( )

( )

= × ⊗

=

+ ∈
+ (5)

The model Ex is not a proper statistical model since π x y, dθ θ Θ( ( ))
∈

is not a probability measure.
Nevertheless, the extension of the notion of regularity to models associated with families of finite positive
measures is also feasible and is described as follows. Let Rθ θ Θ( )

∈
be a family of finite positive measures in

E, �( ). For θ ξ, Θ∈ , we denote by Πθ ξ, a measure that dominates R R, θ0 , and Rξ , and by z z,θ ξ ξ θ, , , and Zθ ξ, ,

be Radon-Nikodym derivatives, respectively, of Rθ and Rξ according to Πθ ξ, and of Rθ according to Rξ . The

Lebesgue decomposition of Rθ, with respect to Rξ , is given by the pair N Z,θ ξ θ ξ, ,( ),

N u z u Z
z
z

N

N
0 , , outside ,

0, on .

θ ξ ξ θ θ ξ

θ ξ

ξ θ
θ ξ

θ ξ

, , ,

,

,
,

,
{ ( ) }

⎧

⎨
⎩

= / = =

We start by recalling the notion of “error functions” which was introduced in [6] as follows.

Definition 1. A function f : 0, 0,[ ) [ )∞ → ∞ is called an error function, if f ulim 0u 0 ( ) =
↘

. More generally,
an error function is any positive function f E: 0, 0, ,( ) [ )× ∞ → ∞ such that
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f u u f x u x E, is measurable , 0, and lim , 0, .
u 0

�( ) ( )⋅ - ∀ > = ∀ ∈

↘

Definition 2. (Regularity of non-filtered models). The model E R, , θ θ Θ�( ( ) )
∈

is regular at θ 0= , if the random
function

R

θ Z

Θ L

,θ

2
0

,0

( )⟶

⟼

is differentiable at θ 0= , i.e., there exists a random vector V Vi i d1( )=
≤ ≤

and an error function f : 0,[ )∞ →

0,[ )∞ , such that

R N Z V θ θ f θ1 1
2

.θ
θ θ

R

,0 ,0

L

2
2

2
0

( ) ∣ ∣ (∣ ∣)
( )

+ − − ⋅ ≤ (6)

Note that if the regularity of the model E R, , θ θ Θ�( ( ) )
∈

holds, then V is necessarily R0( )-square inte-
grable. Furthermore, if Rθ θ Θ( )

∈
is a family of probability measures, then V 0.R0� ( ) = The Hellinger integral of

order 1
2
between the measures Rθ and R ,ξ , is defined by

H z zΠθ ξ θ ξ θ ξ ξ θ, , , ,( )≔

and is independent of the dominating measureΠ .θ ξ, The regularity of the model E R, , θ θ Θ�( ( ) )
∈

is equivalent
to one of these two assertions:
(i) There exist an error function f1 and a random vector V (the same as before), such that

z z z V θ θ f θ1
2

.θ θ θ,0 0, 0,

L Π
1

θ2 ,0
∣ ∣ (∣ ∣)

( )

− − ⋅ ≤ (7)

(ii) There exists an error function f2 and a matrix I I ij
i j d1 ,[ ]=
≤ ≤

, such that

H H H H θ I ξ θ ξ f θ ξ1
4

.θ ξ θ ξ0,0 , 0, 0,
2∣ ∣∣ ∣ (∣ ∣ ∣ ∣)+ − − − ⋅ ⋅ ≤ ∨

The matrix I is positive definite and is called the Fisher information matrix of the model at θ 0= . It is
linked to the vector V by

I R V V ,ij i j
0( )=

cf. [6,7].

Let Ω, �( ) be a sample space endowed with a filtration t t 0�( )
⩾
, and a family of probability measures

θ θ Θ�( )
∈

coinciding on 0� . The regularity of the statistical filtered model

Ω, , ,t t θ θ0 Θ�� �( ( ) ( ) )
⩾ ∈

(8)

mimics the one in Definition 2 and is expressed in terms of likelihood processes [8,7]. For a clear presenta-
tion, we need to introduce the likelihood process of θ� with respect to θ ξ, , Θξ� ∈ , defined in Jacod and
Shiryaev’s book [9], by

Z td
d

, 0.t
θ ξ θ t

ξ t

, �

�

�

�

∣

∣
= ≥

The process Zt
θ ξ, is a positive ,ξ t� �( )-supermartingale and is a martingale if

t, i.e. if , 0 .θ
loc

ξ θ t ξ t� � � �� �( ∣ ∣ )≪ ≪ ∀ ≥

For any probability measure θ ξ,� , locally dominating θ� and ξ� , the ,θ ξ
t

,� �( )-martingales

z zd
d

,
d

dt
θ ξ θ t

θ ξ
t

t
ξ θ ξ t

θ ξ
t

,
,

,
,

�

�

�

�

�

�

�

�

∣

∣

∣

∣
= =
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and the stopping times

τ t z τ t zinf 0 s.t. 0 , inf 0 s.t. 0θ ξ
t
θ ξ ξ θ

t
ξ θ, , , ,{ } { }= ≥ = = ≥ =

provide this version of Zθ ξ, :

Z
z
z

t τ τ

t τ τ

, if

0, if .
t
θ ξ

t
θ ξ

t
ξ θ

θ ξ ξ θ

θ ξ

,

,

,
, ,⎧

⎨

⎪

⎩
⎪

=

< ∧

≥ ∧

As for non-filtered models, we have the following definition.

Definition 3. (Regularity of filtered models). Let T be a stopping time relative to t t 0�( )
⩾
. The model

Ω, , ,t t θ θ0 Θ�� �( ( ) ( ) )
⩾ ∈

is said to be regular (or differentiable) at time T and at θ 0= , if the model
Ω, ,T θ θ Θ��( ( ) )

∈
is regular in the sense of Definition 2. That means that there exists an T� -measurable,

0� -square-integrable, and centered random vectorV VT T
i

i d1[ ]=
≤ ≤

and two error functions f f,T T1, 2, , such that

Z θ f θ1 T
θ

T
,0 2

1,0�� [ ] ∣ ∣ (∣ ∣)− ≤ (9)

and

Z θ V θ f θ1 1
2

.T
θ

T T
,0

2
2

2,0��
⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤

⎦⎥
∣ ∣ (∣ ∣)− − ⋅ ≤ (10)

As in Definition 2 and according to [7, point 3.12], the regularity of the model is equivalent to the
existence of a positive definite d d× matrix JT and of an error function fT , such that

H H H H θ J ξ θ ξ f θ ξ1
4

,T T
θ ξ

T
θ

T
ξ

T T
0,0 , 0, 0, ∣ ∣∣ ∣ (∣ ∣ ∣ ∣)+ − − − ⋅ ⋅ ≤ ∨

where

H z z Z ZT
θ ξ

T
θ ξ

T
ξ θ

T
θ ξ

T
ξ θ

T τ τ
, , , , ,

θ ξ θ ξ, 0� � �� �[ ] [ ]( )= =
< ∧

is the Hellinger integral of order 1
2
, at time T , and which is independent of the choice of the dominating

probability measure. The Fisher information matrix of the model is then

J V V .T T
i

T
j

i j d1 ,0��[ [ ]]=
≤ ≤

It is worth noting that if the regularity at a time T implies the regularity at any stopping time S T≤ . In
particular, if the regularity holds along a sequence S p,p �∈ , increasing to infinity, then there exists a local
martingale Vt t 0( )

≥
, locally square-integrable, null at zero, such that ifT Sp≤ for some p, thenVT is a version

of the random variable in (10). In particular, if (9) and (10) are satisfied for all t 0≥ , then Vt t 0( )
≥

is a square-
integrable martingale, null at 0, cf. [7, Corollary 3.16].

We are now able to introduce the notion of local regularity, which is less restrictive than the pre-
ceding one.

Definition 4. (Local regularity of filtered models). A sequence Sp p �( )
∈

of stopping times is called a localizing
sequence if it is 0� -almost surely increasing to ∞. A localizing family is a sequence formed by the pair
S S,p n p p n, , 1�( )

∈ ≥
, where Sp p �( )

∈
is a localizing sequence and Sn p n, 1( )

≥
is a sequence of stopping times, satis-

fying

S S S Sand lim 0.n p p
n

n p p, 0 ,� ( )≤ < =

→∞

(11)

The model (8) is said to be locally regular (or locally differentiable at θ 0= ), if there exists a right con-
tinuous, left limited process Vt t 0( )

≥
on d� , such that, for all θ θ,n( ) satisfying

θ θ
θ

θlim 0 and lim ,
n

n
n

n

n∣ ∣
= =

→∞ →∞

(12)
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there exists a localizing family S S,p n p p n, , 1�( )
∈ ≥

, satisfying

Z

θ
plim

1
0, ,

n

S
θ

n

,0

2
n p
n

0 ,
�

�
�

∣ ∣

[ ]−

= ∀ ∈

→∞

(13)

and

Z

θ
θ V n p t

1 1
2

, as , , 0.
t S
θ

n
t S

,0
Ln p

n

p

, 2 0
�

�

∣ ∣

( )
−

⟶ ⋅ → +∞ ∀ ∈ ∀ ≥

∧

∧

(14)

Note that if the model is regular along a localizing sequence, then it is necessarily locally regular.
By Theorem [7, Theorem 4.6], the process Vt t 0( )

≥
is a locally square-integrable ( , t0� � )-local martingale and

the Fisher information process It t 0( )
≥
, at θ 0= , is defined as the predicable quadratic covariation of Vt t 0( )

≥
:

I I V V, .t t
ij

i j d
i j

t i j d1 , 1 ,[ ] [ ]≔ = ⟨ ⟩
≤ ≤ ≤ ≤

The local regularity does guarantee the integrability of I ; however, it is the minimal condition we require to
obtain the property of local asymptotic normality (LAN) for statistical models. In this case, the Fisher
information quantities provide the lower bound of the variance of any estimator of the unknown parameters
intervening in the models, see [10–12] for instance.

According to [7, Theorem 6.2], the local regularity is equivalent to the two following conditions:

θ ξ
h h h h θ I ξ θ ξ t1 Var 1

4
0, as , 0, 0,θ ξ θ ξ

t

0,0 , 0, 0, 0�

∣ ∣∣ ∣ { }
+ − − − ⋅ ⋅ ⟶ → ∀ ≥ (15)

and for all t 0≥ ,

A
θ

θ0, as 0,t
θ

2
0�

∣ ∣
⟶ → (16)

where
• Var . t t 0( { } )

≥
is the variation process of .{ }.

• ht
θ ξ

t
,

0( )
≥

is a version of the Hellinger process of order 1
2
between θ� and ξ� , i.e., is a predictable non-

decreasing process, null at zero, such that

z z z z h is a , martingale.θ ξ θ ξ θ ξ θ ξ
t

, ,� �[ ] ( )+ ∘ -
− −

(17)

• At
θ

t 0( )
≥

is the predictable nondecreasing process intervening in the Doob-Meyer decomposition of the

supermartingale Zt
θ

t 0( )
≥
. Since θ� and 0� coincide on 0� , then necessarily Z 1θ

0 = and there exists

a , t0� �( )-local martingale Mt
θ

t 0( )
≥

such that

Z M A1 .θ θ θ
= + −

The results that we obtain complete those of Höpfner et al. [6], who proved that if π x y, dθ θ Θ( ( ))
∈

is
regular and if the process X satisfies a condition of positive recurrence (resp. null recurrence), then the
model x θ θ, Θ�( )

∈
localized around the parameter θ 0= is or locally asymptotically normal or is locally

asymptotically mixed normal. The main result is as follows.

Theorem 5. The model x� is locally regular for all x E∈ , if, and only if, Ey is regular for all y E∈ .

Models (2)–(5) are described in depth in Section 2. We also provide a full scheme linking them by their
regularity, see Theorems 6–8 and 10. The proofs are given in Section 3.

2 Additional regularity properties

Our notations and the calculus of the Hellinger integrals and of the likelihood processes are borrowed from
Höpfner [13] and Höpfner et al. [6]. For x E∈ and θ ξ θ, ∈ , the following measures will be used in the sequel.

Regularity of models associated with Markov jump processes  915



(a) yΠ dx
θ ξ, ( ) is a measure dominating π x y π x y, d , , dθ ξ( ) ( ), and π x y, d0( ). Thus, yΠ dx

θ ξ, ( ) also dominates

Q x y, dθ( ), Q x y, dξ ( ), and Q x y, d0( );

(b) y td , dx
θ ξ,

� ( ) is a transition probability on E �×
+

dominating Q x y t¯ , d , dθ( ), Q x y t¯ , d , dξ ( ), and

Q x y t¯ , d , d0( );

(c) x
θ ξ,� is a probability measure, locally dominating ,x θ x ξ, ,� � , and x,0� ;

(d) y y y t y tΠ d Π d , d , d d , dx
θ

x
θ

x
θ

x
θ,0 ,0

� �( ) ( ) ( ) ( )= = , and x
θ

x
θ,0� �= .

The Radon-Nikodym derivatives are denoted by

χ x π x ρ x Q x ρ x Q x

χ x χ x ρ x ρ x ρ x ρ x

χ x χ x rho x ρ x ρ x ρ x

, d ,
dΠ

, , d ,
dΠ

, , , d ¯ , ,
d ,

, , , , , , , , , ,

, , , , , , , , , , .

θ ξ
θ

x
θ ξ θ ξ

θ

x
θ ξ θ ξ

θ

x
θ ξ

θ θ θ θ θ θ

θ θ θ

, , , , ,
1

,

,0 ,0
1

,0
1

0 0, 0 0, 0
1

0,
1

�
( )

( )

( )
( )

( )

( )
( )

( )

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

⋅ =

⋅

⋅

⋅ =

⋅

⋅

⋅ ⋅ =

⋅ ⋅

⋅ ⋅

⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ⋅

If we choose

y π x y π x y π x yΠ d , d , d , d ,x
θ ξ

θ ξ
,

0( ) ( ) ( ) ( )= + +

and if x
θ ξ,� is the probability under which the canonical process Xt t 0( )

⩾
, starts from x, and has the infini-

tesimal generator yΠ dx
θ ξ, ( ), then we have

, and .x
loc

x
θ ξ

x θ
loc

x
θ ξ

x
loc

x
θ ξ

,0
,

,
,

,0
,� � � � � �≪ ≪ ≪

With the convention 1j 1
0
∏ =

=

, a version of the likelihood processes of x θ,� , with respect to x
θ ξ,� and

to t t 0�( )
⩾
, is given in [6] by

z χ X X χ X y y s
d
d

, exp 1 , Π d d .t
θ ξ x θ t

x
θ ξ

t j T t
θ ξ T T

t

E

θ ξ s X
ξ θ, ,

,
1:

,

0

,
,

j

j j s1

�

�

�

�

∣

∣

⎧

⎨
⎩

⎫

⎬
⎭

( )( ) ( )( ) ∫∫∏= = −

≥ ≤

−

With the notations

z z z z τ t z, , and inf 0 0 ,t
θ

t
θ

t t
θ θ

t
θ,0 0 0, { }≔ ≔ ≔ ≥ / =

a version of the likelihood processes of x θ,� , relative to x,0� and t t 0�( )
⩾
, is explicitly given by

Z z
z

μ μ X s
χ
χ

X X t τ τ

t τ τ

exp d , , if

0, if .

t
θ t

θ

t

t

θ s
j T t

θ
T T

θ

θ

0 0

0
1: 0

0

0

j

j j1

⎧

⎨

⎪

⎩
⎪

⎛

⎝

⎜⎜
( )( )

⎞

⎠

⎟⎟
∫ ( )∏

= =

− < ∧

≥ ∧

≥ ≤

−

The Hellinger integral of order 1
2
between π x y, dθ( ) and π x y, dξ ( ) is then

H x χ x y χ x y y, , Π d ,θ ξ

E

θ ξ ξ θ x
θ ξ,

, ,
,( ) ( ) ( ) ( )∫=

and the Hellinger integral of order 1
2
at time t between x θ,� and x ξ,� relative to the filtration t t 0�( )

⩾
,

is expressed by

H x z z .t
θ ξ

t
θ ξ

t
ξ θ, , ,

x
θ ξ,��( ) [ ]= (18)

We also consider the quantities

H x
μ x μ x

H x¯
2

,θ ξ θ ξ θ ξ, ,( )
( ) ( )

( )=

+

−

which are used to define the Hellinger process ht
θ ξ

t
,

0( )
≥
, of order 1

2
, between x θ,� and x ξ,� , and relative to

t t 0�( )
⩾
. It is expressed by
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h H X s¯ d .t
θ ξ

t
θ ξ

s
,

0

,
( )∫= (19)

Finally, we define the function

g x θ ξ
θ ξ

H x H x H x θ I x ξ, , 1 ¯ ¯ ¯ 1
4

,θ ξ θ ξ0, 0, ,
( )

∣ ∣∣ ∣
⎛
⎝

( ) ( ) ( ) ( ) ⎞
⎠

≔ + − − ⋅ ⋅ (20)

where I x( ) is the Fisher information matrix of the model Ex at θ 0= , whenever it is regular. Consequently,
H x¯ θ0,

( ) is expressed by

H x θ I x θ θ g x θ θ¯ 1
8

1
2

, , .θ0, 2( ) ( ) ∣ ∣ ( )= ⋅ ⋅ + (21)

Observe that the function g in (20) is such that the function

f x u g x θ ξ x E, sup , , , ,
θ ξ u,

( ) ∣ ( )∣
∣ ∣ ∣ ∣

≔ ∈

≤

is nondecreasing in u, satisfies g x θ ξ f x θ ξ, , , .∣ ( )∣ ( ∣ ∣ ∣ ∣)≤ ∨ Thus, f has the vocation to be an error function.
We can now state a first technical but intuitive result.

Theorem 6. Let x E∈ . Then the following assertions are equivalent.
(1) Ex is regular;
(2) Ex′ is regular and μ x.( ) is differentiable at θ 0= ;

(3) Ex
1 is regular;

(4) x� is regular at time T1.

In the three following theorems, we complete our results by studying the regularity of the filtered model

x� , at fixed times t 0> , or at the jump times T k,k �∈ . In this direction, we obtain only partial results
appealing to some additional conditions of integrability.

Theorem 7. Let t 0> . For all x E∈ , assume the following.

Condition xAt( ). There exists u 0t > , an error function f1 and a measurable function f E: 0,2 [ )→ ∞ ,
satisfying the following:

H x θ ξ f x θ ξ u¯ , if , ,θ ξ
t

, 2
2( ) ∣ ∣ ( ) ∣ ∣ ∣ ∣≤ − ≤

and

f X u s f X s, d , d .
t

s t

t

s

0

1
2

0

2
2

x
θ

x
θ ξ,� �� �[ ( ) ] [ ( ) ]∫ ∫< +∞ < +∞

Then, y� is regular at the time t, for all y E∈ .

Theorem 8. For all x E∈ , assume the following. The model Ex is regular, and

Condition xB( ). The error function f in (7), associated with the model Ex
1, satisfies the following.

There exists r 0> such that

f r x f y r x y t θ r, , , d , d , if .x
θ

E

x
θ

�

� �[ ( )]( ) ( ) ( ) ∣ ∣∫⋅ = < +∞ ≤

×
+

Then, the model Ey
k is regular for all y E∈ , and all k �∈ .

Remark 9.
(i) The control in the first integral in condition xAt( ) is exactly the required condition for Ex to be regular.

The finiteness of the second integral will ensure integrability conditions in the proof of Theorem 7.
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(ii) Equivalently, we could replace the error function in condition B(x) by the one in (6). The integrability
condition becomes

Q f r x f y r Q x y t¯ , , ¯ , d , d ,
E

0 0

�

[ ( )]( ) ( ) ( )∫⋅ = < +∞

×
+

and the only difference is that we would have to check two inequalities instead of one.

We conclude with our last result.

Theorem 10. 1. Let x E∈ . If x� is regular at a time t 0> , then Ex is regular.
2. Furthermore, if x� is regular at a time t 0> , for all x E∈ , then, y� is locally regular, for all y E∈ .

3 Proofs of the theorems

We will sometimes use the notion of isomorphism between two statistical models. Referring to Strasser’s
book [14], we say that two models A, , θ θ Θ�� �( ( ) )=

∈
and B Q, , θ θ Θ	 �( ( ) )=

∈
are isomorphic if they are

randomized of each other. To illustrate this notion, assume for instance that � and 	 are, respectively,
dominated by P and Q. Then, the model 	 is randomized from � , if there exists a Markovian operator
M L A P L B Q: , , , ,θ θ� �( ) ( )→

∞ ∞ , such that

Q
Q

M P
P

θd
d

d
d

, Θ.θ θ
= ∀ ∈

The models � and 	 are randomized of each other if they are mutually exhaustive, which is always the
case in our study, each time an isomorphism holds, cf. [14, Lemma 23.5 and Theorem 24.11]. When com-
puting expectations, these isomorphisms allow us to handle at our convenience, one of the two likelihoods
of the models � and 	 . The latter is justified by the fact that they have the same law under the respective
probability quotient.

Proof of Theorem 6. 1 2( ) ( )⇒ : (a) By (7), the regularity of Ex at θ 0= is equivalent to the existence of
a random vector V x π x y, L , d2

0( ) ( ( ))⋅ ∈ , and of an error function fχ, such that

h x θ χ x y χ x y χ x y θ V x y y θ f x θ, , , 1
2

, , Π d , .
E

θ x
θ

χ0 0

2
2( ) ⎛

⎝
( ) ( ) ( ) ( )⎞

⎠
( ) ∣ ∣ ( ∣ ∣)∫≔ − − ⋅ ≤ (22)

The latter implies

χ x y χ x y y θ f x θ V x z π x z

θ f x θ f

, , Π d 2 , 1
2

, , d

, and is an error function .
E

θ x
θ

χ

E

χ χ

0
2 2 2

0( ( ) ( ) ) ( ) ∣ ∣
⎧

⎨
⎩

( ∣ ∣) ∣ ( )∣ ( )
⎫

⎬
⎭

∣ ∣ ( ∣ ∣)

∫ ∫− ≤ +

= ′ ′

(23)

(b) The implication “Ex is regular at θ μ x0 .( )= ⇒ is differentiable at θ 0= ” is shown in [6], using the fact
that the differentiability of χ x,θ ( )⋅ in L2 implies the differentiability of χ x,θ ( )⋅ in L1. Furthermore,
the derivative at θ 0= of μ x.( ) is

V x z π x z μ x V x z Q x z, , d , , d ,
E E

0 0 0( ) ( ) ( ) ( ) ( )∫ ∫=

which gives,

μ x
μ x

θ V x z Q x z θ F x θ1 1
2

, , d , ,
θ E

μ
0

0
( )

( )
( ) ( ) ( )∫= − ⋅ + ⋅ (24)
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where

f x u F x θ, sup , is an error functionμ
θ u

μ( ) ∣ ( )∣
∣ ∣

≔

≤

(c) Let us define

h x θ ρ x y ρ x y ρ x y θ V x y y, , , 1
2

, , Π d ,
E

θ x
θ

0 0

2
( ) ⎛

⎝
( ) ( ) ( ) ( )⎞

⎠
( )∫′ ≔ − − ⋅ ′

where the function

V x y V x y V x z Q x z Q x y, , , , d L , d
E

0
2

0( ) ( ) ( ) ( ) ( ( ))∫′ ≔ − ∈ (25)

satisfies

V x y Q x y, , d 0.
E

0( ) ( )∫ ′ =

Then, we can write

h x θ
χ x y
μ x

χ x y
μ x

χ x y
μ x

θ V x y y,
, , 1

2
,

, Π d ,
E

θ

θ
x
θ0

0

0

0

2

( )
⎛

⎝
⎜

( )

( )

( )

( )

( )

( )
( )

⎞

⎠
⎟ ( )∫′ = − − ⋅ ′

and use (24) and (25) to obtain

h x θ
μ x

χ x y χ x y χ x y θ V x y

θ V x z Q x z χ x y χ x y θ F x θ χ x y y

μ x
χ x y χ x y χ x y θ V x y θ V x z Q x z

χ x y χ x y θ f x θ χ x y y

, 1 , , 1
2

, ,

1
2

, , d , , , , Π d

3 , , 1
2

, , 1
4

, , d

, , , , Π d .

θ

E

θ μ θ x
θ

E

θ

E

θ μ θ x
θ

0 E

0 0

0 0

2

0
0 0

2
0

2

0
2 2 2

( )
( )

⎡

⎣

⎢
⎢

( ) ( ) ( ) ( )

⎧

⎨
⎩

( ) ( )
⎫

⎬
⎭

{ ( ) ( ) } ( ) ( )
⎤

⎦

⎥
⎥

( )

( )

⎡

⎣

⎢
⎢

( ) ( ) ( ) ( ) ( ) ( )

∣ ( ) ( ) ∣ ∣ ∣ ( ( ∣ ∣)) ( )
⎤

⎦

⎥
⎥

( )

∫

∫

∫ ∫

′ = − − ⋅

− ⋅ − + ⋅

≤ − − ⋅ + ⋅

× − +

Finally, according to (22) and (23), we have

h x θ
μ x

θ f x θ θ V x z Q x z f x θ μ x θ f x θ

θ f x θ f

, 3 , 1
4

, , d , ,

, , where is an error function.

χ

E

χ θ μ

ρ ρ

0

2
0

2

2 2

2

( )
( )

⎡

⎣

⎢
⎢

∣ ∣ ( ∣ ∣) ( ) ( ) ( ∣ ∣) ( )∣ ∣ ( ( ∣ ∣))
⎤

⎦

⎥
⎥

∣ ∣ ( ∣ ∣)

∫′ ≤ + ⋅ ′ +

≔

2 1( ) ( )⇒ : (a) Under the condition of differentiability of μ x.( ) at 0, we obtain

μ x μ x θ
μ x
μ x

θ F x θ1 1
2

, ,θ μ0
0

0
( ) ( ) ⎡

⎣
⎢

( )

( )

⎤

⎦
⎥

( )= + ⋅

′

+ ⋅ ′ (26)

where

f x u F x θ, sup , is an error function.μ θ u μ( ) ∣ ( )∣′ = ′
∣ ∣≤
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(b) According to (7), the regularity of Ex′, at θ 0= , is equivalent to the existence of a centered vector
V x Q x y, L , d2

0( ) ( ( ))′ ⋅ ∈ , and of an error function fρ such that

h x θ ρ x y ρ x y ρ x y θ V x y y θ f x θ, , , 1
2

, , Π d , .θ x
θ

ρ

E

0 0

2
2( ) ⎛

⎝
( ) ( ) ( ) ( )⎞

⎠
( ) ∣ ∣ ( ∣ ∣)∫′ = − − ⋅ ′ ≤

The vector V x,( )⋅ is defined by

V x y V x y
μ x
μ x

, , ,0

0
( ) ( )

( )

( )
≔ ′ +

′

which belongs to L π x y, d2
0( ( )) and satisfies

μ x V x z π x z, , d .
E

0 0( ) ( ) ( )∫
′ ≔

(c) Let us define

h x θ χ x y χ x y χ x y θ V x y y, , , 1
2

, , Π d .θ x
θ

E

0 0

2
( ) ⎛

⎝
( ) ( ) ( ) ( )⎞

⎠
( )∫= − − ⋅ (27)

By (26), we have

h x θ θ V x z Q x z θ F x θ μ x ρ x y μ x ρ x y

μ x ρ x y θ V x y y

μ x ρ x y ρ x y ρ x y θ V x y

θ V x z Q x z ρ x y ρ x y θ F x θ ρ x y y

, 1 1
2

, , d , , ,

1
2

, , Π d

, , 1
2

, ,

1
2

, , d , , , , Π d .

E E

μ θ

x
θ

E

θ

E

θ μ θ x
θ

0 0 0 0

0 0

2

0 0 0

0 0

2

( )
⎡

⎣

⎢
⎢

⎧

⎨
⎩

( ) ( ) ( )
⎫

⎬
⎭

( ) ( ) ( ) ( )

( ) ( ) ( )
⎤

⎦

⎥
⎥

( )

( )
⎡

⎣

⎢
⎢

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
⎤

⎦

⎥
⎥

( )

∫ ∫

∫

∫ { }

= + ⋅ + ⋅ ′ −

− ⋅

= − − ⋅ ′

+ ⋅ − + ⋅ ′

With the same arguments as in 1 2( ) ( )⇒ (c), we retrieve

h x θ μ x θ f x θ θ V x z Q x z θ f x θ θ V x z Q x z

θ
μ x

f x θ

, 3 , 1
4

, , d 2 , 1
2

, , d

, .

ρ ρ

θ
μ

0
2

E

0

2

2

E

2
0

2

( ) ( )
⎡

⎣

⎢
⎢

∣ ∣ ( ∣ ∣)
⎧

⎨
⎩

( ) ( )
⎫

⎬
⎭

⎧

⎨
⎩

∣ ∣ ( ∣ ∣) ∣ ( )∣ ( )
⎫

⎬
⎭

∣ ∣

( )
( ∣ ∣)

⎤

⎦

⎥
⎥

∫ ∫≤ + ⋅ × + ⋅

+ ′

Consequently, there exists an error function fχ such that

h x θ θ f x θ, , .χ
2( ) ∣ ∣ ( ∣ ∣)≤

2 3( ) ( )⇒ : Let x E∈ . Since

Q x y t Q x y μ x e t t¯ , d , d , d dθ θ θ
μ x tθ ��( ) ( ) ( ) ( )( )

=

−

+

is the tensorial product of two probability measures, then Ex
1 is statistically isomorphic to E Ex x′ × ″, where

E μ x e t t, , d .x θ
μ x t

θ Θθ� �� �� ( ) ( )( )
( ( ) )

″ =
+

−

∈
+ +

(28)
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The differentiability of μ x.( ), at θ 0= , is equivalent to the differentiability of the model Ex″. The assertion is
then a consequence of [15, Corollary I.7.1] in Ibragimov and Has’minskii’s book.

3 2( ) ( )⇒ : As in the proceeding implication, observe that Ex
1 is statistically isomorphic to E Ex x′ × ″,

and the result becomes a simple consequence of [15, Theorem I.7.2].
3 4( ) ( )⇔ : This equivalence is deduced from the fact that Q x y t¯ , d , dθ( ) is the distribution of X T,T 11( ),

then Q x y t¯ , d , dθ( ) is identified with x θ,� restricted to the σ-field T1� . Thus, Ex
1 and Ω, ,T θ θ Θ1 �� ( )( )

∈

are statistically isomorphic. □

Proof of Theorem 5. (1) For the necessity condition, we will check (15) and (16), as it was done for the

Markov chains in [7]. For fixed x E∈ , we choose the dominating probability x
θ ξ,� , the one for which the

process Xt t 0( )
⩾

has the generator

y π x y π x y π x yΠ d , d , d , d .x
θ ξ

θ ξ
,

0( ) ( ) ( ) ( )= + +

(1)(a) Using the function g in (20), we have

h h h θ I X ξ s θ ξ g X θ ξ s1
4

d , , d .t
θ

t
ξ

t
θ ξ

t

s

t

s
0, 0, ,

0 0

( ) ∣ ∣∣ ∣ ( )∫ ∫+ − − ⋅ ⋅ =

Then, the convergence (15) holds if yAt( ) is true for all y E∈ , which, by Remark 9, is equivalent to the
regularity of Ey, which is regular for all y E∈ .

(1)(b) The Doob-Meyer decomposition of the supermartingale Zθ asserts that

Z M A1 ,θ θ θ
= + −

where Mθ is a local martingale and Aθ is a predictable nondecreasing process. Since the jump times of the
process Xt t 0( )

⩾
are totally inaccessible, then Zθ is left-quasi continuous and Aθ has necessarily continuous

paths, cf. [16, Theorem 14]. From the decomposition of the additive functional Zlog θ on the event
t τ τθ0( )< ∧ , into a local martingale N θ, and a process with finite variation Bθ (see [5, p. 40]), we may
write Zθ in the form

Z
χ
χ

X X μ μ X s e, exp d ,t
θ

i T t

θ
T T

t

θ s
N B

1, 0 0

0
i

i i
t
θ

t
θ

1
⎧

⎨
⎩

⎫

⎬
⎭

( )( )( ) ∫∏= − =

≥ ≤

+

−

where,

N
χ
χ

X X
χ
χ

X y π X y slog , log , , d d ,t
θ

s t X X

θ
s s

t
θ

s s
, 0 0 E 0

0
s s

⎧

⎨
⎩

⎫

⎬
⎭

( ) ( )( ) ∫∫∑= −

≤ ≠
−

−

B
μ
μ

X
χ
χ

X y π X y s1 log , , d d .t
θ

t
θ

s
θ

s s

0 E 0 0
0⎜ ⎟

⎛

⎝

( ) ( )⎞

⎠

( )∫∫= − +

Applying Ito’s formula to the semimartingale Zθ, we obtain

Z Z dN Z B Z e N

Z dN Z B Z
χ
χ

X X
χ
χ

X X

M A

1 d 1 Δ

1 d , 1 log ,

1 ,

t
θ

t

s
θ

s
θ

t

s
θ

s
θ

s t
s
θ N

s
θ

t

s
θ

s
θ

t

s
θ

s
θ

i T t
T
θ θ

T T
θ

T T

t
θ

t
θ

0 0

Δ

0 0 1, 0 0

s
θ

i
i i i i i1 1 1⎜ ⎟

( )

⎛

⎝

⎞

⎠

∫ ∫

∫ ∫ ( ) ( )

∑

∑

= + + + − −

= + + + − −

= + −

≤

≥ ≤

− − −

− − −
− −

where
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M Z dN Z
χ
χ

X y
χ
χ

X y μ ν s y

A Z B Z
χ
χ

X y
χ
χ

X y ν s y

, 1 log , ,d , d ,

d , 1 log , ,d , d .

t
θ

t

s
θ

s
θ

t

s
θ θ

s
θ

s

t
θ

t

s
θ

s
θ

t

s
θ θ

s
θ

s

0 0 E 0 0

0

0 0 E 0 0

0

⎜ ⎟

⎜ ⎟

⎛

⎝

( ) ( )⎞

⎠

( )( )

⎛

⎝

( ) ( )⎞

⎠

( )

∫ ∫∫

∫ ∫∫

= + − − − ⋅

= − − − − ⋅

− −

− −

Then, we may write

A Z μ X
ρ
ρ

X y Q X y s1 , , d d .t
θ

t

s
θ

θ s
θ

s s

0 E 0
0⎜ ⎟( ) ⎛

⎝

( )⎞

⎠

( )∫ ∫= −

−

Using [7, point 7.5], we retrieve that there exists an error function f z z E, ,( )⋅ ∈ , such that

ρ
ρ

z y Q z y θ f z θ0 1 , , d ,θ

E 0
0

2
⎜ ⎟
⎛

⎝

( )⎞

⎠

( ) ∣ ∣ ( ∣ ∣)∫≤ − ≤

A
θ

F Y Z Y T t T t μ X f X θsup , , .t
θ

t
θ

t
θ

s t
s
θ

t
θ

k
k k θ T T2

0
1 k k

∣ ∣
( ) ∣ ∣( ) ( )∑≤ ≔ ≔ ∧ − ∧

≤
≥

+
(29)

Then, observing that Y ω ω, Ω,t
θ( ) ∈ is a finite sum, that θ μθ( )↦ ⋅ is continuous at θ 0= and using the fact

that f is an error function, we deduce that for all t 0≥ ,

Y θ0, a.s. , as 0.t
θ

x,0�⟶ - → (30)

On the other hand, the Doob inequality for positive supermartingales yields

Z A
Z

A A
t A θ1 , for all 0, 0, and Θ.x

θ
t

x
θ

,0
,0 0

�
�

(( ) )
[ ]

≥ ≤ = ≥ > ∈

∗

We deduce that if θn is a sequence going to 0 and if ε 0> , then

F ε Z Y ε Z A Z Y ε Z A

Z A Y ε
A A

Y ε
A

, ,
1 .

x t
θ

x
θ

t t
θ θ

t x
θ

t t
θ θ

t

x
θ

t x t
θ

x t
θ

,0 ,0 ,0

,0 ,0 ,0

n n n n n n n

n n n

� � �

� � �

( ) ( )

( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( )

( )

> = > > + > ≤

≤ > + > ≤ + >

∗ ∗ ∗ ∗

∗

Since A may be chosen arbitrarily big, then the latter and (30) show that for all t 0≥ ,

F n0, as ,t
θn x,0�
⟶ → +∞

which, by (29), gives (16).
(2) For the sufficient condition, we write the conditions of local regularity, then we express them at the

time T1.
(2)(a) The local regularity of x� at θ 0= implies that there exists a ,x t,0� �( )-local martingale Vt t 0( )

≥
,

locally square-integrable, null at zero, satisfying (14) and represented by

V υ s y λ ν s y, ,d , d ,t

t

E0

0( )( )( )∫∫= − ⋅ (31)

where the function υ E: Ω d� �× × ⟼
+

is predictable and satisfies

υ s y λ ν s y t, ,d , d , a.s. , for all 0.
t

x

0 E

0
,0�∣ ( )∣( )( )∫∫ + ⋅ < +∞ − ≥

Let θ θ,n n( ) satisfy (12), and S S,p n p p n, , 1�( )
∈ ≥

be the corresponding localizing family. By [7, Theorem 4.6],
we obtain that for all p �∈ :
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Z

θ
θ Vlim sup

1 1
2

0.
n

x
t

t S
θ

n
t S,0

0

,0 2

n p
n

p

,
�

⎡

⎣

⎢
⎢
⎢

∣ ∣

⎤

⎦

⎥
⎥
⎥

−

− ⋅ =

→+∞
≥

∧

∧

Furthermore, we can choose Sp p �( )
∈

independent of θn n �( )
∈

and S pp ≤ (this is what we will do in the sequel).
We deduce that

Z

θ
θ Vlim

1 1
2

0,
n

x
T S
θ

n
T S,0

,0 2

n p
n

p

1 ,

1�

⎡

⎣

⎢
⎢
⎢

∣ ∣

⎤

⎦

⎥
⎥
⎥

−

− ⋅ =

→+∞

∧

∧

then, using [7, Lemma 3.17], we obtain

Z σ X

θ
θ V σ Xlim

1 1
2

0.
n

x
x T S

θ
T S

n
x T S T S,0

,0
,0

,0

2

n p
n

n p

p n p

1 , 1 ,

1 1 ,�
�

�

⎡

⎣

⎢
⎢
⎢

[ ∣ ]

∣ ∣
[ ∣ ]

⎤

⎦

⎥
⎥
⎥

( )

( ) −

− ⋅ =

→+∞

∧
∧

∧ ∧
(32)

(2)(b) By [5], we may write

T S T R T S T R, ,n p n p p p1 , 1 , 1 1∧ = ∧ ∧ = ∧

where R r X R r X, ,n p n p p p, , 0 0( ) ( )= = the sequence Rp p �( )
∈

does not depend on θn n �( )
∈

and the functions
r r E p, : 0,n p p, ( ]⟶ are �-measurable. Moreover, by (11), we deduce the following inequalities and
inclusions:

i T R T R R p
ii S T R T S T R T
iii S T S S R T R R
iv R T R R R T

v R T R T R R R T

and ;
;

, , ;
lim , 0;

lim lim , 0.

n p p p

n p n p p p

p p n p p p n p

n
x p p n p x p

n
x n p

n
x p p n p x p

1 , 1

, 1 , 1 1 1

1 , 1 ,

,0 1 , ,0 1

,0 , 1 ,0 1 , ,0 1

� �

� � �

( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

∧ ≤ ∧ ≤

≥ = ≥ ⊆ ≥ = ≥

< = = < =

< = = < >

≥ = ≥ = = ≥ >

→+∞

→+∞ →+∞

(2)(c) Let us define the quantities

k n
Z σ X

θ
θ V σ X

e
θ

θ V σ X

l n
Z σ X

θ
θ V σ X

Z σ X
θ

θ V σ X

1 1
2

1 1
2

,

1 1
2

1 1
2

,

x p x
x T R

θ
T R

n
x T R T R R T R R

x
μ μ X r X

n
x r X R T R R

x p x
x T R

θ
T R

n
x T R T R R T R R

x
x T

θ
T

n
x T T R T R R

, ,0
,0

,0

,0

2

,

,0 ,0 0

2

,

, ,0
,0

,0

,0

2

,

,0
,0

,0

,0

2

,

n p
n

n p

p n p p p n p

θn p

p p p n p

n p
n

n p

p n p p p n p

n

p p n p

1 , 1 ,

1 1 , 1 ,

1
2 0 0 0

0 1 ,

1 , 1 ,

1 1 , 1 ,

1 1

1 1 1 ,

�
�

� �

� � �

�
�

� �

�
�

� �

( )

⎡

⎣

⎢
⎢
⎢

∣

∣ ∣
[ ∣ ]

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢ ∣ ∣

[ ∣ ( )]
⎤

⎦
⎥

( )

⎡

⎣

⎢
⎢
⎢

[ ∣ ]

∣ ∣
[ ∣ ]

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢

∣

∣ ∣
[ ∣ ]

⎤

⎦

⎥
⎥

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

( )

[ ( )]

( )

[ ( )]

≔

−

− ⋅

=

−

− ⋅

≔

−

− ⋅

=

−

− ⋅

( )

∧
∧

∧ ∧ < =

−

< =

∧
∧

∧ ∧ ≥ =

≥ =

and the �-measurable function w E:p
d

1, �⟶ given by

w x V .p x r x1, ,0 p�( ) ( )[ ]=

There exists an � �⊗ -measurable function w E E: d
2 �× ⟶ , such that

V σ X w x X, .x T T T,0 21 1 1� ∣[ ( )] ( )= (33)
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(2)(d) Using iv( ) in (2) (b), and by (32), we obtain that for all p �∈ ,

k n e
θ

θ w x R Tlim lim 1 1
2

0.
n

x p
n

μ μ x r x

n
p x p, 1,

2

,0 1
θn p

1
2 0

�( )
∣ ∣

( ) ( )
( ) ( )

=

−

− ⋅ < =

( )

→+∞ →+∞

−

Since R pp ≤ , then R T 0x p,0 1� ( )< > . We deduce from the latter that θ μ xθ( )↦ is differentiable at 0, and that
its derivative

μ x
w x
r x

,p

p
0

1,
( )

( )

( )
′ =

is independent of p and also of the functions rp.
(2)(e) Similarly, by v( ) in 2(b), and by (32), for all p �∈ , we have

l n
x X

θ
θ w x X R Tlim lim

, 1 1
2

, 0,
n

x p
n

x

ρ
ρ T

n
T x p, ,0 2

2

,0 1

θn

0
1

1� �( )

⎡

⎣

⎢
⎢
⎢

∣ ∣

⎤

⎦

⎥
⎥
⎥

( )( )

( )

=

−

− ⋅ ≥ =

→+∞ →+∞

and since

R T r x T 0,x p x p,0 1 ,0 1� �( ) ( ( ) )≥ = ≥ >

we obtain the differentiability, in L Q x y, d2
0( ( )), at θ 0,= of θ x,ρ

ρ
θ

0
( )↦ ⋅ .

(2)(f) To prove the regularity of the model Ex′, it remains to show that

θ
ρ
ρ

x Xlim 1 1 , 0.
n n

x
θ

T2 ,0
0

n
1�

∣ ∣

⎡

⎣
⎢

⎤

⎦
⎥( )− =

→+∞

(34)

Observe that, for all p �∈ , we have

Z Z σ X Z σ X

ρ
ρ

x X e R T

1 1 1

1 , 1 .

x T R
θ

x x T
θ

T R T x x R
θ

R R T

x
θ

T R T
μ μ x r x

x n p

,0 ,0 ,0 ,0 ,0

,0
0

,0 , 1

n p
n n

n p n p
n

n p n p

n
n p

θn n p

1 , 1 1 , 1 , , , 1

1 , 1
0 ,

� � � � � � �

� � �⎜ ⎟

[ ] [ ∣ ] [ ∣ ]

⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥ [ ] ( )

( ) ( )

( )
( ) ( )

[ ( )] [ ( )]

( )
( )

− = − + −

= − + − <

∧
≥ <

≥

−

On the other hand, by (13), by iv( ) in (2)(b), and by the fact that θ μ xθ( )↦ is differentiable at 0 (which
is equivalent to the regularity of the model Ex″ in (28)), we obtain

Z
θ

Z

θ
0 lim

1
lim

1
0

n

x T R
θ

n n

x S
θ

n

,0
2

,0

2
n p

n
n p
n

1 , ,
� �[ ]

∣ ∣

[ ]

∣ ∣
≤

−

≤

−

=

→+∞

∧

→+∞

and

e
θ

R Tlim 1 0.
n

μ μ x r x

n
x n p2 ,0 , 1

θn p0
�

[ ]

∣ ∣
( )

( ) ( )
−

< =

( )

→+∞

−

The latter gives

x X

θ
R Tlim

1 ,
0.

n

x
ρ
ρ T

n
x p

,0

2 ,0 1

θn

0
1�

�

⎡
⎣

⎤
⎦

∣ ∣
( )

( )−

≥ =

→+∞

(2)(g) The regularity of the model Ex is deduced by steps (2)(d), (2)(e), (2)(f) and by Theorem 6. □

Proof of Theorem 7. Fix x E∈ and t 0> . Assume that A yt ( ) is satisfied for all y E∈ and that θ ξ u, t∣ ∣ ∣ ∣ < .

The dominating probability measure x
θ ξ,� is

1
3

.x
θ ξ

x x θ x ξ
,

,0 , ,� � � �( )= + +
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In this proof, we simplify some notations as follows:

z
K

α θ ξ u
d
d

, for 0, , .s
α x α s

x
α ξ

s
t

,
,

� �

�

∣

∣
∣ ∣ ∣ ∣= = < (35)

Due to the choice of ,x
θ ξ,� we have

z z z 3.s s
θ

s
ξ0

+ + =

(1) First note that the regularity of Ey is equivalent to

g y θ ξ
θ ξ

H y H y H y θ I y ξ f y θ ξ, , 1 ¯ ¯ ¯ 1
4

, ,θ ξ θ ξ0, 0, ,
1∣ ( )∣

∣ ∣∣ ∣
( ) ( ) ( ) ( ) ( ∣ ∣ ∣ ∣)= + − − ⋅ ⋅ ≤ ∨

where f1 is the error function in condition yAt( ). Moreover, we have

g X θ ξ s F x θ ξ, , d , ,
t

s t

0

2
1,x

θ ξ,

1
2

��

⎧

⎨
⎩

[ ( ) ]
⎫

⎬
⎭

( ∣ ∣ ∣ ∣)∫ ≤ ∨
(36)

where the error function F t1, is

F x θ ξ f X θ ξ s, , d .t

t

s1,

0

2
x
θ ξ,

1
2

��( ∣ ∣ ∣ ∣)
⎧

⎨
⎩

[ ( ∣ ∣ ∣ ∣) ]
⎫

⎬
⎭

∫∨ ≔ ∨

On the other hand, (21) and the condition yAt( ) yield

I X ssup d .
θ ξ u

t

s
,

0

2

t
x
θ ξ,�� [∣ ( )∣ ]

∣ ∣ ∣ ∣
∫ < ∞

≤

(37)

(2) We will show the existence of an error function Ft, for which

L x θ ξ H H H θ I X ξ s x E, , 1 1
4

d ,t t
θ ξ

t
θ

t
ξ

x

t

s
, 0, 0,

,0

0

�( )
⎡

⎣

⎢
⎢

( )
⎤

⎦

⎥
⎥

∫≔ + − − − ⋅ ⋅ ∈

satisfies

L x θ ξ θ ξ F x θ ξ, , , .t t∣ ( )∣ ∣ ∣∣ ∣ ( ∣ ∣ ∣ ∣)≤ ∨ (38)

Using (17), (19), and the fact that zt t
0

0( )
≥

−

is a ,x
θ ξ

t
,� �( )

−
-martingale, we decompose L x θ ξ, ,t( ) into

L x θ ξ z z h z z h z z h z θ I X ξ s

A B C D s

, , d d d 1
4

d

d ,

t

t

s
θ

s
ξ

s
θ ξ

t

s s
θ

s
θ

t

s s
ξ

s
ξ

t

t

s

t

s s s s

0

,

0

0 0,

0

0 0, 0

0

0

x
θ ξ

x
θ ξ

,

,

�

�

�

�

( )
⎡

⎣

⎢
⎢

( )
⎤

⎦

⎥
⎥

[ ]

∫ ∫ ∫ ∫

∫

= − + + − ⋅ ⋅

= + + +

− − − − − − −

(39)

where

A H X H X H X θ I X ξ z z

B H X z z z z

C H X z z z z

D θ I X ξ z z z

¯ ¯ ¯ 1
4

,

¯ ,

¯ ,
1
4

.

s
θ

s
ξ

s
θ ξ

s s s
θ

s
ξ

s
θ

s s
θ

s s
θ

s
ξ

s
ξ

s s
ξ

s s
θ

s
ξ

s s s
θ

s
ξ

s

0, 0, ,

0, 0

0, 0

0

⎛
⎝

( ) ( ) ( ) ( ) ⎞
⎠

( )( )

( )( )

( ) ( )

= + − − ⋅ ⋅

= −

= −

= ⋅ ⋅ −

− −

− − − −

− − − −

− − −
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(2)(a) By (35) and (36), we obtain

A s θ ξ F x θ ξd 3 , .
t

s t

0

1,x
θ ξ,�� [ ] ∣ ∣∣ ∣ ( ∣ ∣ ∣ ∣)∫ ≤ ∨ (40)

(2)(b) Applying Cauchy-Schwarz’s inequality twice, and using (35), we obtain

B s H X s z z sd 3 ¯ d d .
t

s

t
θ

s

t

s s
ξ

0 0

0, 2

0

0 2
x
θ ξ

x
θ ξ

x
θ ξ, ,

1
2

,

1
2

� � �� � �[ ]
⎧

⎨
⎩

[ ( ) ]
⎫

⎬
⎭

⎧

⎨
⎩

[( ) ]
⎫

⎬
⎭

∫ ∫ ∫≤ × −
− −

(41)

Then, the condition At implies

H X s θ f X s¯ d d .
t

θ
s

t

s

0

0, 2 4

0

2
2

x
θ ξ

x
θ ξ, ,� �� �[ ( ) ] ∣ ∣ [ ( ) ]∫ ∫≤

By (17), we have

z z z z h h2 d 6 ,s s
ξ

s

r r
ξ

r
ξ

s
ξ0 2

0

0 0, 0,
x
θ ξ

x
θ ξ

x
θ ξ, , ,� � �� � �[( ) ]

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

[ ]∫− = ≤
− − − −

−

−

hence,

z z s H X r s t ξ f X sd 6 ¯ d d 6 d .
t

s s
ξ

t s
ξ

r

t

s

0

0 2

0 0

0, 2

0

2x
θ ξ

x
θ ξ

x
θ ξ, , ,� � �� � �[( ) ] [ ( )] ∣ ∣ [ ( )]∫ ∫∫ ∫− ≤ ≤

− −

−

Finally, condition At, implies that

F x u u t f X s, 3 2 sup dt
θ ξ u

t

s2,
,

0

2
2

t
x
θ ξ,

3
4

��( )
⎧

⎨
⎩

[ ( ) ]
⎫

⎬
⎭

∣ ∣ ∣ ∣
∫=

≤

is an error function. Then, by (41) and (3) we obtain

B s θ ξ F x θ ξd , .
t

s t

0

2,x
θ ξ,�� [ ] ∣ ∣∣ ∣ ( ∣ ∣ ∣ ∣)∫ ≤ ∨

(2)(c) As in (4), there exists an error function F t3, such that

C s θ ξ F x θ ξd , .
t

s t

0

3,x
θ ξ,�� [ ] ∣ ∣∣ ∣ ( ∣ ∣ ∣ ∣)∫ ≤ ∨

(2)(d) For the control of the fourth integral in (39), it suffices to observe that the inequality

z z z z z z z z zs
θ

s
ξ

s s s
θ

s s
θ

s
ξ

s
0 0 0 0∣ ∣ ∣ ∣ ∣ ∣− ≤ × − + × −

− − − − − − − − −

implies

z z z z z z z6 .s
θ

s
ξ

s s s
θ

s s
ξ0 2 0 2 0 2

x
θ ξ

x
θ ξ

x
θ ξ, , ,� � �� � �[( ) ] { [( ) ] [( ) ]}− ≤ − + −

− − − − − − −

Then, using (3) one obtains

z z z s t θ ξ f X sd 6 d .
t

s
θ

s
ξ

s

t

s

0

0 2

0

2x
θ ξ

x
θ ξ,

1
2

,

1
2

� �� �

⎧

⎨
⎩

[( ) ]
⎫

⎬
⎭

(∣ ∣ ∣ ∣)
⎧

⎨
⎩

[ ( )]
⎫

⎬
⎭

∫ ∫− ≤ ∨
− − −

By (37) and by condition At conclude that
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F x u u t I X s f X s, 6 sup d dt
θ ξ u

t

s

t

s4,
,

0

2

0

2
t

x
θ ξ

x
θ ξ, ,

1
2� �� �( )

⎧

⎨
⎩

[∣ ( )∣ ] [ ( )]
⎫

⎬
⎭

∣ ∣ ∣ ∣
∫ [∫ ]= ×

≤

is an error function satisfying

D s θ ξ F x θ ξd , .
t

s t

0

4,x
θ ξ,�� [ ] ∣ ∣∣ ∣ ( ∣ ∣ ∣ ∣)∫ ≤ ∨

(2)(e) The control (38) is obtained with F F F F F3t t t t t1, 2, 3, 4,= + + + . □

For the proof of Theorem 8, we need a lemma which generalizes [15, Corollary I.7.1], hence the situation
of Theorem 8. Let F, �( ) be an arbitrary state space and R x y S x dy θ x, d , , , Θ, Fθ θ( ) ( ) ∈ ∈ , be two Markovian

kernels and dyΠx
θ( ) be a kernel dominating

R x y R x y S x y S x y, d , , d , , d , and , d .θ θ0 0( ) ( ) ( ) ( )

We consider the statistical models:

F R x y G S x y
H R S x y H R x y S y y

F, , , d , F, , , d ,
F, , , d , ¯ F , , , d , d ,

x θ θ x θ θ

x θ θ θ x θ θ θ

Θ Θ

Θ
2 2

1 1 2 Θ

� �

� �

( ( ( )) ) ( ( ( )) )

( ( ( )) ) ( ( ( ) ( )) )

= =

=

∈ ∈

∈

⊗

∈

where the product R Sθ θ is the Markovian product of the kernels Rθ and Sθ, i.e.,

R S x A R x y S y A A, , d , , .θ θ

E

θ θ �( ) ( ) ( )∫= ∈

The Radon-Nikodym densities associated with the models Fx and Gx, relative to yΠ dx
θ( ), are

α x R x β x S x

α x R x β x S x

, d ,
dΠ

, , d ,
dΠ

, d ,
dΠ

, , d ,
dΠ

.

θ
θ

x
θ θ

θ

x
θ

x
θ

x
θ0

0
0

0

( )
( )

( )
( )

( )

( )

( )
( )

( )
( )

( )

( )

⋅ =

⋅

⋅

⋅ =

⋅

⋅

⋅ =

⋅

⋅

⋅ =

⋅

⋅

Choosing

R x R x S x S xΠ 1
4

, , , , ,x
θ

θ θ0 0( ) { ( ) ( ) ( ) ( )}⋅ = ⋅ + ⋅ + ⋅ + ⋅

we have α β, 4. . ≤ . We introduce the realizations of the last kernels as follows. Let Y1 and Y2 be two random
variables on a probability space Ω, �( ) with values on the state space F,�( ). For θ Θ∈ and x F∈ , let us
define the probability measure x θ,� on Ω such that

Y R x y Y Y y S y z, d and , d ,θ θ1 2 1x θ x θ, ,� �
 
( ) ( ) ( ∣ ) ( )= = = (42)

hence,

Y R S x y, d .θ θ2x θ,�
 ( ) ( )=

We also define the probability measure x
θ� , on Ω, enjoying the same properties as in (42), when replacing

x θ,� by x
θ� (respectively, R x y, dθ( ) and S x y, dθ( ) by yΠ dx

θ( )). With these choices, and by [9, Theorem IV 4.16],
we see that

and .x θ x
θ

x x
θ

, ,0� � � �≪ ≪

We can now state that

F σ Y
H σ Y
H σ Y Y

is statistically isomorphic to Ω, , ,
is statistically isomorphic to Ω, , ,

¯ is statistically isomorphic to ¯ Ω, , , .

x x x θ θ

x x x θ θ

x x x θ θ

1 , Θ

2 , Θ

1 2 , Θ

�

�

�

�

	

	

( ( ) ( ) )

( ( ) ( ) )

( ( ) ( ) )

≔

≔

≔

∈

∈

∈
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Consequently, the Radon-Nikodym densities of x� and ¯ x	 , with respect to x
θ� , are expressed by

z
σ Y
σ Y

α x Y z
σ Y Y
σ Y Y

α x Y β Y Y
d
d

, and ¯
d ,
d ,

, , .θ x θ

x
θ θ

θ x θ

x
θ θ θ

, 1

1
1

, 1 2

1 2
1 1 2

�

�

�

�

∣ ( )

∣ ( )
( )

∣ ( )

∣ ( )
( ) ( )= = = =

The regularity of the models x� and x� is equivalent to the following: there exists two error functions fα and
fβ, an R x y, d0( )-centered random vector V x R x y, L , dα

2
0( ) ( ( ))⋅ ∈ , and an S x y, d0( )-centered random vector

V x S x y, L , dβ
2

0( ) ( ( ))⋅ ∈ , such that

a x θ α x y α x y α x y θ V x y y

α x Y α x Y α x Y θ V x Y

θ f x θ

, , , 1
2

, , Π d

, , 1
2

, ,

,

θ α x
θ

θ α

α

F

0 0
2

1 0 1 0 1 1
2

2

x
θ��

( ) ⎛
⎝

( ) ( ) ( ) ( )⎞
⎠

( )

⎡

⎣⎢
( ) ( ) ( ) ( ) ⎤

⎦⎥

∣ ∣ ( ∣ ∣)

∫≔ − − ⋅

= − − ⋅

≤

(43)

and

b x θ β x y β x y β x y θ V x y y θ f x θ, , , 1
2

, , Π d , .θ β x
θ

β

F

0 0

2
2( ) ⎛

⎝
( ) ( ) ( ) ( )⎞

⎠
( ) ∣ ∣ ( ∣ ∣)∫≔ − − ⋅ ≤ (44)

We are now able to state the fundamental lemma.

Lemma 11. Let x F∈ . Assume that Fx is regular and that Gy is regular for all y F∈ . Also assume that there
exists r 0,> such that the error function fβ in (44) satisfies

f r x if θ rΠ , , .x
θ

β[ ( )]( ) ∣ ∣⋅ < +∞ <

Then, the model H̄x is regular, and so is Hx (as a sub-model of H̄x).

Proof. We need to show that there exists an error function fγ such that

c x θ z z z θ V x Y V Y Y θ f x θ, ¯ ¯ 1
2

¯ , , , ,θ
α β γ

0 0
1 1 2

2
2

x
θ��( ) ⎡

⎣⎢
( ( ) ( )) ⎤

⎦⎥
∣ ∣ ( ∣ ∣)≔ − − ⋅ + ≤ (45)

for all θ satisfying θ r∣ ∣ < . To this end, we split c x θ,( ) as follows:

c x θ α x Y β Y Y α x Y β Y Y

α x Y β Y Y θ V x Y V Y Y

α x Y α x Y α x Y θ V x Y β Y Y

β Y Y β Y Y β Y Y θ V Y Y α x Y

α x Y θ V x Y β Y Y β Y Y

, , , , ,

1
2

, , , ,

, , 1
2

, , ,

, , 1
2

, , ,

1
2

, , , , .

θ θ

α β

θ α θ

θ β

α θ

1 1 2 0 1 0 1 2

0 1 0 1 2 1 1 2
2

1 0 1 0 1 1 1 2

1 2 0 1 2 0 1 2 1 2 0 1

0 1 1 1 2 0 1 2
2

x
θ

x
θ

�

�

�

�

( ) ⎡

⎣
( ) ( ) ( ) ( )

( ) ( ) ( ( ) ( )) ⎤

⎦⎥

⎡

⎣⎢
⎛
⎝

( ) ( ) ( ) ( )⎞
⎠

( )

⎛
⎝

( ) ( ) ( ) ( )⎞
⎠

( )

( ) ( )( ( ) ( ) ) ⎤

⎦⎥

= −

− ⋅ +

= − − ⋅

+ − − ⋅

+ ⋅ −

Then, using the fact that α β. , . 4≤ , we obtain

c x θ α x Y α x Y α x Y θ V x Y

β Y Y β Y Y β Y Y θ V Y Y

θ V x Y β Y Y β Y Y

, 12 , , 1
2

, ,

, , 1
2

, ,

16
, , , .

θ α

θ β

x α θ

1 0 1 0 1 1
2

1 2 0 1 2 0 1 2 1 2
2

2
,0 1

2
1 2 0 1 2

2

x
θ

x
θ

x
θ

1
2

1
2

�

�

� �

�

�

�

( ) ⎧
⎨
⎩

⎡

⎣⎢
( ) ( ) ( ) ( ) ⎤

⎦⎥

⎡

⎣⎢
( ) ( ) ( ) ( ) ⎤

⎦⎥

∣ ∣
[∣ ( )∣ ] [∣ ( ) ( ) ∣ ] ⎫

⎬⎭

≤ − − ⋅

+ − − ⋅

+ −
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Using inequalities (43), (44) and the fact that f r xΠ ,x
θ

β[ ( )]( )⋅ < +∞, we obtain

V x Y R V x β y z V y z z y, , , Π d Π d .x α α

F F

β y
θ

x
θ

,0 1
2

0
2

0
2� [∣ ( )∣ ] [∣ ∣ ]( ) ∣ ( ) ( )∣ ( ) ( )∫= < ∞ < ∞

×

Thus,

g x θ θ f θ x V y z z y θ, 2Π , , Π d Π d 0, as 0.γ x
θ

β

F F

β y
θ

x
θ2 2( ∣ ∣) ∣ ∣

⎡

⎣

⎢
⎢

[ ( ∣ ∣)]( ) ∣ ( )∣ ( ) ( )
⎤

⎦

⎥
⎥

∫≔ ⋅ + → →

×

Finally, since

β Y Y β Y Y β y z β y z z y, , , , Π d Π d ,θ

F F

θ y
θ

x
θ

1 2 0 1 2
2

0
2

x
θ�� [∣ ( ) ( ) ∣ ] ∣ ( ) ( ) ∣ ( ) ( )∫− = −

×

then, (45) holds with the error function

f x θ f x θ R f θ x V x Y g x θ, 12 , 12 ., 3
4

, , . □γ α β x α γ0 ,0 1
2�( ∣ ∣) ( ∣ ∣) [ ( ∣ ∣)]( ) [∣ ( )∣ ] ( ∣ ∣)≔ + +

Proof of Theorem 8. The proof is a simple application of Lemma 11, by taking

F E R S Q, , ¯ ,θ θ θ� �� � �= × = ⊗ = =
+

+

and by making an induction on the index k, using the same condition of integrability of the error func-
tion. □

Proof of Theorem 10.
(1) First, we note that

σ X

Ω, , regular Ω, , regular

Ω, , regular .

t x θ θ t T x θ θ

t T x θ θ

, Θ , Θ

, Θ

1

1

� �

�

� �( ( ) ) ( )

( )

( )

( ( ) )

⇒

⇒

∈ ∧ ∈

∧ ∈

Using the Bayes theorem, we express the likelihood of the model by

Z σ X .x t T
θ

t T,0 1 1� ∣[ ( )]∧ ∧

Since the model x� is regular at each time s t0,[ ]∈ , then the derivative Vs s t0( )
≤ ≤

of the model
Ω, ,s x θ θ, Θ��( ( ) )

∈
is given by (31). Using [7, Lemma 3.13], we obtain the derivative at θ 0= of the like-

lihood Z σ Xx t T
θ

t T,0 1 1� ∣[ ( )]
∧ ∧

in the form

V σ X .x t T t T,0 1 1� ∣[ ( )]∧ ∧

(1)(a) There exists then an error function F t1, , such that

k t x θ Z σ X θ V σ X

Z σ X θ V σ X

Z σ X θ V σ X

k t x θ k t x θ θ F x θ

, , 1 1
2

1 1
2

1 1
2

, , , , , .

x x t T
θ

t T x t T t T

x x t
θ

t x t t t T

x x T
θ

T x T T t T

t

,0 ,0 ,0
2

,0 ,0 ,0
2

,0 ,0 ,0
2

1 2
2

1,

1 1 1 1

1

1 1 1 1 1

� � �

� � � �

� � � �

( ) ⎡

⎣⎢
⎛
⎝

∣ ∣ ⎞
⎠

⎤

⎦⎥

⎡

⎣⎢
⎛
⎝

[ ∣ ( )] [ ∣ ( )]⎞
⎠

⎤

⎦⎥

⎡

⎣⎢
⎛
⎝

∣ ∣ ⎞
⎠

⎤

⎦⎥

( ) ( ) ∣ ∣ ( ∣ ∣)

( )

( )

[ ( )] [ ( )]

[ ( )] [ ( )]

≔ − − ⋅

= − − ⋅

+ − − ⋅

= + ≤

∧ ∧ ∧ ∧

<

≥

(1)(b) As in the last point, we see that there exists an error function F t2, such that

l t x θ
ρ
ρ

x X t T Z F x θ, , 1 , 1 , .x
θ

T x x T t,0
0

,0 1 ,0 2,1 1� � �( ) ⎡

⎣
⎢

⎤

⎦
⎥

( ) [ ] ( ∣ ∣)( )≔ − ≥ ≤ − ≤ (46)
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(1)(c) We use the same arguments as in the proof of Theorem 5 by taking S R S R tn p n p p p, ,= = = = , and
we obtain that
• k t x θ θ F x θ, , ,t1

2
1,( ) ∣ ∣ ( ∣ ∣)≤ expresses the differentiability of θ μ xθ( )↦ at θ 0= ,

• k t x θ θ F x θ, , ,t2
2

1,( ) ∣ ∣ ( ∣ ∣)≤ and (46) express the regularity of the model Ex′.

In virtue of Theorem 6, the latter is equivalent to the regularity of Ex.
(2) The second assertion is an immediate consequence of Theorem 6. □
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