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Abstract: In this article, we will discuss disjoint diskcyclicity for finitely many operators acting on a
separable, infinite dimensional Fréchet space X. More precisely, we provide disjoint disk blow-up/collapse
property and disjoint diskcyclicity criterion. In addition, we characterize the disjoint diskcyclicity for
weighted shifts both in the bilateral and unilateral cases.
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1 Introduction

Let X denote a separable, infinite dimensional Fréchet space over the real or complex scalar field K. L(X)
denotes the space of linear continuous operators on X. As usual, Z is the set of integers and N is the set
of nonnegative integers, and let C be the complex plane.

An operator T € L(X) is said to be hypercyclic, if there exists a vector x € X such that its orbit under the
operator

orb(T, x) = {x, Tx, T, ...}

is norm dense in X. Such a vector x is said to be a hypercyclic vector for the operator T. An operator T € L(X)
is supercyclic if there is a vector x for which the orbit {AT"x; A € C, n > 0} is dense in X. Hypercyclicity and
supercyclicity have been studied in recent decades, see [1,2].

The diskcyclic phenomenon was introduced by Zeana in [3]. Let T € L(X), T is called diskcyclic if there
is a vector x € X such that the set {aT™ : a € C, |a|] < 1, n > 0} is dense in X, see [4]. The vector x is called
a diskcyclic vector for T. The following diagram shows the relations among cyclic operators:

Hypercyclicity = Diskcyclicity = Supercyclicity.

Since contractive operators cannot be diskcyclic, Supercyclicity = Diskcyclicity. Bamerni et al. [5] gave
an example of diskcyclic operator, which is not hypercyclic.

The following definitions are from Definition 1.1 in [6] and Section 1.3 in [7].

Definition 1.1. For N > 2, the operators Ty, ..., Ty in L(X) are disjoint hypercyclic or d-hypercyclic (disjoint
supercyclic or d-supercyclic, respectively), if there is a vector z € X such that (z, z,...,z) € XV is a hyper-
cyclic (supercyclic, respectively) vector for the direct sums ¥, T.
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The research about the disjoint diskcyclicity is still in the blank state. So it is our goal in this article to
give a new subject called disjoint diskcyclicity.

Definition 1.2. For N > 2, the operators T,,..., Ty in L(X) are disjoint diskcyclic, if there is a vector z € X
such that (z, z,...,z) € XV is a diskcyclic vector for the direct sums @V T;. The vector z is called a disjoint
diskcyclic vector associated with the operators T, ..., Ty.

Similarly, the following holds true:
Disjoint hypercyclicity = Disjoint diskcyclicity = Disjoint supercyclicity

but Disjoint supercyclicity = Disjoint diskcyclicity . Moreover, we will provide an example of disjoint dis-
keyclic system but not disjoint hypercyclic in Section 3.

The article is organized as follows: In Section 2, we provide some basic definitions associated with
disjoint diskcyclicity. In addition, the related properties are obtained, which play a key role in the theory of
disjoint diskcyclicity. In Section 3, we characterize the disjoint diskcyclicity for distinct powers of weighted
bilateral(unilateral) shifts. In Section 4, we characterize disjoint diskcyclicity of weighted shift operators.

2 Disjoint diskcyclicity

Definition 2.1. We say that N > 2 sequences of operators (Tj;){2y,...,(In,j)j2; in L(X) are disjoint disk-
topologically transitive, if for every nonempty open subsets V,..., Vy of X, there exist m e N, a,;, € C
with || > 1 such that @ # Vo n Ty p(amW) N+ 0 Ty'(amVi). Also, we say that N > 2 operators T, ..., Ty
in L(X) are disjoint disk-topologically transitive, provided (Tli 05215 e ,(T,{,)j-’i1 are disjoint disk-topologically
transitive sequences.

Definition 2.2. We say that N > 2 sequences of operators (Tp,;){2y,...,(Ty,j)j2; in L(X) are disjoint disk-
universal, if

{a(Tz, Lyz,....Inz)j €N, a € C, |al < 1}

is dense in X" for some vector z € X. Also, we say that (T,j)525 ... (T j)52; are disk-hereditarily universal,
provided for each increasing sequence of positive integers (ng), the sequences (Tin)i21,---»(Tv,n )it
are disjoint disk-universal.

The operator T € L(X) is topologically transitive if for each pair U, V of nonempty open subsets of X, there
exists n such that U n T™(V) + &. An application of Birkhoff’s transitivity theorem [8] shows that hyper-
cyclicty and topologically transitivity are equivalent. Likewise, the authors [6] showed that when the space
X is a Fréchet space, the notions of disjoint hypercyclicity and disjoint topologically transitivity coincide.

Proposition 2.3. Let N > 2 and (T; p)n21, --- s(Tn.n)neq be sequences of operators in L(X). Then the following are
equivalent:

(@) (T,)n21s ---»(In,nneq are disjoint disk-topologically transitive.

(ii) The set of disjoint disk-universal vectors for (T; p)ne1s ----(In,n)ne1 IS a dense Gs set.

Proof. (i) follows immediately from (ii).
(i) = (ii). We assume {A; : j € N} be a basis for the topology of X. Then (i) implies that [Jms«

Uapnec, lanizt(Trm(@mA; ) M- NTx'm(amd;,)) is both open and dense in the Fréchet space X for every
J = (jy---»jy) € NV. On the other hand, the set of disjoint disk-universal vectors for (T; )22y, ...,(Ty. o2 is

NNU U (Tih(and;) 0 nTit(and;,)).

JeNNkeNm>kameC, |ap|>1

It follows that the set of disjoint disk-universal vectors for (T3, n)n21s --.,(In,n)neq is @ dense Gy set. O
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Definition 2.4. We say that N > 2 sequences of operators (T,j)i2;, ... ,(Ty,j)j2; in L(X) satisfy the disjoint disk
blow-up/collapse property provided for any nonempty open neighborhood W of zero of X and nonempty
open subsets Vg, 14,..., Vy c X, there exist m € N, a,, € C with |a,| > 1 so that

@+ W T p(anV) N0 Ty p(am W),
@+ Vo N T b(@nW) N0 Tl (amW).

We say that the operators T,,..., Ty in L(X) satisfy the disjoint disk blow up/collapse property if their
corresponding sequences of iterations (T{)}ﬁv ,(TI{, 721 do.

The following disjoint disk blow-up/collapse property is a sufficient condition for the disjointness
of diskcyclic operators.

Proposition 2.5. Let N > 2 and (T n);21, - - »(Tn,n)ne1 be sequences of operators in L(X). If (T, n)n21s - - (TN, n)noq
satisfy the disjoint disk blow-up/collapse property, then they are disjoint disk-topologically transitive.

Our aim is to provide another sufficient condition called disjoint diskcyclic criterion for the disjoint
diskcyclicity.

Definition 2.6. Let (1), be a strictly increasing sequence of positive integers. We say that Ty, ..., Ty € L(X)
satisfy the disjoint diskcyclic criterion with respect to (ny)z2; provided there exist dense subsets Xy, X, ..., Xy
of X and mappings S;: X; > X(1<l<N),sothatforl1 <i<N

i) S T 0 pointwise on X,

(ii) (T*S™ - 6;ddx,) T 0 pointwise on X;,

(i) Hmye ool T ||Zfi1$i”k + || = 0 for any x € X, and any y, € X;.

In general, we say that T, ..., Ty satisfy the disjoint diskcyclic criterion, if there exists some sequence (1 )i24
for which is satisfied the aforementioned three conditions.

Proposition 2.7. Let N > 2 and T, ..., Ty € L(X) satisfy the disjoint diskcyclicity criterion. Then T, ..., Ty have
a residual set of disjoint diskcyclic vectors.

Proof. Let € >0 and e,f,...,fv € X. Given x € Xy and O # y; € X; such that [e - x|| < g, Ifi —wll < %
for1 < i< N. Pick k € N, by conditions (iii) and (ii) of Definition 2.6, it follows that for1 <l < N

N

ZSink i

i=1

Il

<S
PRl
4

N
fi- lenkSink i

&
< —.
i=1 2

If ||Zfi S™y; | = 0, by condition (ii) of Definition 2.6, y; = 0, which contradicts with 0 # y; € X;. So we can
choose 0 < a = % IIZ,{ilSi"k .|| <1, since condition (i) of Definition 2.6. Indeed, let X = x + %Zfi S

Then we have |le - X|| < [le — x|l + % IIZfilSi"k 2|l < e. It follows that

N
Ifi = aT/"R| = ||fi - aT™x = Y T[Sy
i=1
N
<|[fi = DTSy || + all T
i=1
N
e 2
<5+ > Sy | I1T|
i=1

<E.
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Hence, T,..., Ty are disjoint disk-topologically transitive. Proposition 2.3 implies that T,,..., Ty have
a residual set of disjoint diskcyclic vectors. O

3 Powers of disjoint diskcyclic weighted shifts

In this section, we extend some results of Bés and Peris [6] and Martin [7] to the setting of disjoint
diskcyclicity. Moreover, we will show an example to introduce that Disjoint diskcyclicity = Disjoint
hypercyclicity.

3.1 Case for weighted bilateral shifts

Theorem 3.1. Let X = co(Z) or IP(Z)1 < p < 00). For N>2andl=1,..., N, let w = (W;j)jcz be a bounded
bilateral sequence of nonzero scalars, F,, be the associated forward shift on X given by E,eix = Wj,k€j1.
For integers 1 < r < n<---< ry, the following are equivalent:

(i) Fi,..., Fy¥ have a dense set of disjoint diskcyclic vectors.

(ii) For each € > 0 and q € N, there exists m > 2q so that for|j|, |k| < q, we have: If1 <s,l < N,

j’l 1
H Wil > —» (3-1)
i=j—rm €
j+rim-1 k-1
[T wii| <e| ] weil- (3.2)
i=j i=k-rgm
Ifl1<s<I<N,
j-1 j=(r=r9m-1
[T wi| > = W, (3.3)
i=j—rm i=j—rim
j+(r—rs)m-1 j-1
wi| <€ H Wil (3.4)
i=j—rgm i=j—rgm
(iit) Fy,..., R} satisfy disjoint diskcyclic criterion.
Proof. (i) = (ii). Suppose Fy,..., F;¥ have a dense set of disjoint diskcyclic vectors. Let 0 < § < % with
% < €. We can find a disjoint diskcyclic vector x = Y} xiex, 0 # a € C with |a] <1 and m > 2q such that
x- Y el <86, (3.5)
lila
HaF,,’vIl’" - Y g <é. (3.6)
lilzq
It follows from (3.5) that
by -1 <8 iflj| < g, (3.7)
Ixi| < 6 if k| > q. (3.8)

Moreover, by (3.6),
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j-1
o [] wiipgrm—1| <6 ifljl <q, (3.9)
i=j—rm
k-1
o [] wuiprm| <6 if |k > q. (3.10)
i=k-rm

Now, fix |j| < q. Sincen>1and m > 2q, k =j — nm < —q. By (3.8) and (3.9),

j-1
1-6 1
a [T wi| > > .
i=j-rm 6 €

Since O < |a| < 1, (3.1) holds.
Fix|jl, [kl < qand1<s,l < N. By (3.7), % <1-6< x| <6+ 1. Since j - nm < -g, (3.10) yields that

1 j+rm-1
5@ [T wii
i=j

j+rim-1

24 H Wi

i=j

<

|Xj| < 6.

For |k| < g, by (3.8), [Xk_rml| < 8. So (3.9) implies

1 k-1
§<1— af T] weiPaerm -1

i=k-rsm

6.

k-1
a l_[ Ws i

i=k-rgm

<

Combining the aforementioned inequalities, we obtain

j+rim-1

n Wy,i

i=j

< 462

k-1
H Ws,i

i=k-rgm

Forl<s<l<Nandl<n<n<--<ryandm > 2q,ifk =j - ( — r;)m, we have k < —q. Then by (3.9)
and (3.10), we conclude that

5 10T W00% 1261
o™ e (a2 W ol 6 €
Similarly, if k = j + ( — r;)m, we have k > q. So
Tt LT ™ w0l _b
T e (el WeiXmnl  1-6

We obtain (3.3) and (3.4).

(it) = (iii). By (ii), there exist integers 1 < my < my<--- so that for |j| < g, we have:
Ifl<s<I<N,

j-1 j-(rn=rgm-1
[T wii| >a [T weils (3.11)
i=j—rm i=j—rm
j+(r—rs)m-1 1 j-1
Wil < — H Ws,i| - (3.12)
i=j-rgm i=j—rsm
Ifl1<s,I<N,
j-1
[T wil >4, (3.13)
i=j—-rm
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j+rm-1 k-1
Wi [T wsil- (3.14)
i=j i=k-rsm
Let Xo = X; =---= Xy = span{ey : k € Z}. Define Bey = ;I"—;‘(l <1< N) on X. Thus, a simple calculation
k-1
shows that
Bl = — M
Wik-1""* Wik-ring
By (3.13), we can easily obtain B;" = 0 pointwise on Xj. Since Xo = X; =---= Xy, B/"™ = 0 pointwise

on X, for1<I<N.
On the other hand, we can easily obtain that B/R,, = Idx,. Moreover, by (3.11) and (3.12), if1 < s < I < N,
we have

k=(rs-rpmg—1
T wd

k-
||FimaBE™ae, || = L <=,
H—L k— rsqus,il q
k—=(ri-rs)mg—1 X
”Frsqurlmqek” B |H1 k- nmq Wsz| < 1
Ws 1 - *
|Hl k- rlmq q

So (Fyy"B;™1 — & Id X,.) - 0 pointwise on X;.
Finally, let yO,yl, ,yN € spanfe, : k € Z} and C:=max{[ly |l : 0 <k < N}. Pick y, =2, v e for
qo sufficiently large and 1 < i < N. Then for g > qo, (3.14) implies that

-1

rm o j+rimg—1 N j-1
| e < 3T ol |2 2] T wee Ay
k=1 lil<go| i=j k=1ljl=qo\ i=j-rimgq

Hence, Fi, ..., F;) satisfy disjoint diskcyclic criterion.
(iii) = (i). This is the result of Proposition 2.7. O

If the shifts on Theorem 3.1 are invertible, this leads to the following result.

Corollary 3.2. Let X = co(Z) or IP(Z)(1 < p < 00). For N> 2 andl =1,..., N, let E,ex = wyjei.1 be an invert-
ible bilateral weighted forward shift on X, with weighted sequence of nonzero scalars w; = (Wj)jez. For any
integers1 <n <n, <---< 1y, the following are equivalent:
(i) Fi,..., FyY have a dense set of disjoint diskcyclic vectors.
(i) Fy,..., Y satisfy disjoint diskcyclic criterion.
(iii) There exist integers1 < n; < n, <--- so that we have:
ForjeN,ifl<s<I<N,

|1—L —j-ring Wil
hm j=(r— rs)"q_1 =
q—>oo l—ll =j-ring S’il

HJ+(r1 rong— 1 _|

li i=j ran

a=eo H i=j- rnq

Ifl<s,l<N,

1
lim | [] wyi| = oo,
g—oco |.

i=-1ing
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rm
lim max MTitweil

" =0.
q—00 - .
‘ Hi:—ranws,l

As an application, we will show that disjoint diskcyclicity is not equivalent to disjoint hypercyclicity
in the following example.

Example 3.3. Let F, be a hypercyclic bilateral forward weighted shift with the associated weight sequence
a = (ay)xez Where
l, if ke {2"-n,...,2" -1} forsomeodd n e N;

2
Qe = 2, ifkef{2n,..,2"+n-1} or k=-2" forsomeodd n € N;
1

, otherwise.

By the definition of ai, a looks like

(...,1,2, LoL2,100 52,115, 5, 12,0, 1)
2 222
where [.] denotes the Oth coefficient. Applying (iii) of Corollary 3.2, we observe that F,, F? are disjoint
diskcyclic. On the other hand, by Remark 4.10 of [9], since
2m-1 2m-1

[[a=1 when [Ja;>1 foralmeN,

i=1 i=1

E,, F? are not disjoint hypercyclic.

3.2 Case for weighted unilateral shifts

Theorem 3.4. Let X = co(N) or [,(N)(1 < p < o0). For N> 2 andl=1,..., N, let w; = (W;j);2y be a bounded
sequence of nonzero scalars, By, : x = (Xo, X1, ...) = (Wi,1%, W;,2%, ...) be the associated backward shift on X.
For any integers 1 < n < n<---< ry, the following are equivalent:

(i) By,..., Bi¥ have a dense set of disjoint diskcyclic vectors.

(ii) For each € > 0 and q € N, there exists m € N so that for each O < j < q, we have:

j+rim

[[wil >~ as<isN) (3.15)
i=j+1 €
and
1w
a1 g oscr<n). (3.16)

j+rm
|Hi=1’+(n—rs)m+lws'i|

(iil) By,..., By satisfy disjoint diskcyclic criterion.
(iv) By,..., B have a dense set of disjoint hypercyclic vectors.
(v) By,..., B)Y satisfy disjoint hypercyclic criterion.

Proof. Conditions (ii), (iv), and (v) are equivalent, see [6, Theorem 4.1 ]. It is easy to see that the implication
(i) = (ii) is similar to (iv) = (ii). By Proposition 2.7, we obtain (iii) = (i). For (ii) = (iii), the proof is similar
to the discussion in Theorem 2.1 in [10], so we omit it. O
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4 The Disjoint diskcyclic weighted shifts

In this section, we will show that disjoint diskcyclicity can coincide with disjoint hypercyclicity in spe-
cial case.

Theorem 4.1. Let X =1%(Z) and {e; : i € Z} be the standard orthonormal basis of X. For N> 2 and
m=1,...,N, suppose Fy is a bilateral weighted forward shift on X given by Fye; = w™e;,1, where w'™
is the weight sequence fori € Z. Then the following are equivalent:
(i) F,..., Ey are disjoint diskcyclic.
(ii) There exists a strictly increasing sequence (ny)y>, of positive integers such that for each integer i and
integer m with1 < m < N, we have

03
[[w%] - (4.1)
j=1
and
ng—1
[Twi| -0 (4.2)
j=0
as k — oo.
otherwise, {(...,AD,, ... AW A, A8 AL AN, + k > O} is dense inK” with respect to the
(m)
n Wi

product topology, where {7 = |

j=1,,0 °
] M/17)

(iii) F,..., Fy satisfy the disjoint disk blow-up/collapse property.
Proof. The proof is similar to the discussion in Theorem 2.1 in [11], so we omit it. O

The bilateral and unilateral weighted backward shift cases of the characterization are similar to the
bilateral weighted forward shift case in Theorem 4.1, and so we omit the details.

Remark 4.2. Though disjoint diskcyclicity is not equal to disjoint hypercyclicity, sometimes, disjoint diskcyclic-
ity can coincide with disjoint hypercyclicity in special case. By comparing Theorem 4.1 with the construc-
tion of [11], we can add another two equivalent conditions:

(iv) F,..., Fy are disjoint hypercyclic.

(v) F,..., Fy satisfy the disjoint blow-up/collapse property.

Finally, we end this article with two questions.

Question 1: Suppose T, ..., Ty are disjoint diskcyclic, is the set of disjoint diskcyclic vectors dense in X?
Question 2: Suppose T, ..., Ty are disjoint diskcyclic and invertible, are T, L T,(,l disjoint diskcyclic?
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