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Abstract: In this article, we deal with orbital stability and Zhukovskiǐ quasi-stability of periodic or recurrent
orbits in an impulsive dynamical system defined in the n-dimensional Euclidean space n� . We show that for
a periodic orbit of an impulsive system, its asymptotically orbital stability is equivalent to the asymptoti-
cally Zhukovskiǐ quasi-stability, and for a recurrent orbit, the orbital stability is equivalent to the
Zhukovskiǐ quasi-stability.
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1 Introduction

Impulsive dynamical systems are a generalization of classical dynamical systems. They describe the evolu-
tion of systems where the continuous development of a process is interrupted by abrupt perturbations. The
behavior of an impulsive system is much richer than that of the corresponding continuous dynamical
system. In particular, the theory of impulsive dynamical systems represents a natural framework for the
mathematical modeling of many real-world phenomena. Recently, the theory of impulsive dynamical
systems has been intensively investigated. For the elementary results in this field, we refer readers to [1–3].

The research of impulsive semidynamical systems in a metric space was started by Kaul [4–6] and
Rozhko [7,8]. Specifically, Rozhko dealt with a class of almost periodic motions in pulsed systems and the
stability theory in terms of Lyapunov for impulsive systems. Later on, Kaul continued the study for impul-
sive semidynamical systems and established a list of important results about the structure of limit sets,
periodicity and recurrence of an orbit, minimality and stabilities of closed subsets, etc. Also, Ciesielski
presented many fundamental results in this field; for example, he applied his section theory of semidynam-
ical systems to obtain the continuity of an impulsive time function [9–11]. Recently, in [12–15], Bonotto and
his research group developed a list of significant results on impulsive semidynamical systems, which
include many counterparts of basic properties in classical dynamical systems. In addition, the authors of
this article also established some interesting results on the limit sets and limit set maps [16,17], Lyapunov
quasi-stability [18], and Zhukovskiǐ quasi-stability [19].

Poincaré (orbital) stability and Zhukovskiǐ stability are two different important stabilities of solutions of
differential equations. Since Zhukovskiǐ stability admits a time lag, it is a more suitable concept for the
study of impulsive dynamical systems. The Zhukovskiǐ quasi-stability in impulsive dynamical systems was
first introduced in [18], where the author proved that the limit set of a uniformly asymptotically Zhukovskiǐ
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quasi-stability orbit is composed of a rest point or a periodic orbit. Clearly, the structure of limit sets can be
determined by the stability of orbits. Furthermore, the inverse problem was considered in [19]. Actually,
it was shown in [19] that (i) if the positive limit set of an orbit for a planar system is an asymptotically stable
limit cycle, then it is a uniformly asymptotically Zhukovskiǐ quasi-stable orbit; (ii) if an orbit is not even-
tually periodic and its positive limit set is a periodic orbit, then it is an asymptotically Zhukovskiǐ quasi-
stable orbit.

In this article, we deal with the recurrence, orbital stability, and Zhukovskiǐ quasi-stability of orbits in an
impulsive dynamical system defined in n� . First, for a periodic orbit (or eventually periodic orbit), we show
that the asymptotically orbital stability is equivalent to the asymptotically Zhukovskiǐ quasi-stability. Second,
it is shown that for a recurrent orbit, the orbital stability is also equivalent to the Zhukovskiǐ quasi-stability.

2 Definitions and notations

We consider the system of differential equations

X F X ,( )′ = (1)

where F : n n� �→ . Obviously, the map F : n n� �→ defines a vector field F of system (1) on n� . Assume
that the vector field F defines a flowφ on n� ; i.e.,φ : n n� � �× → is continuous such thatφ p p, 0( ) = for all
p n�∈ and φ φ p t s φ p t s, , ,( ( ) ) ( )= + for all p n�∈ , t s, �∈ . If A n�⊂ and J �⊂ , we writeφ A J A J( )× = ⋅ ,
in particular, φ p t p t,( ) = ⋅ . For a point p n�∈ , the orbit of p is the set γ p p �( ) = ⋅ . The positive and
negative semi-orbits are the sets γ p p �( ) = ⋅

+ + and γ p p �( ) = ⋅
− −, respectively.

Let M p U G p 0{ ∣ ( ) }= ∈ = be a simple smooth surface in an open subset U of n� , where G U: �→ is
a smooth function with G p G x G x, , 0, ,0n1( ) ( ) ( )′ = ∂ /∂ … ∂ /∂ ≠ ⋯ for p x x x U, , , n1 2( )= ⋯ ∈ . The surface M
is said to be transversal to the vector field F if the inner productG p pF 0( ) ( )′ ⋅ ≠ for all p M∈ , it is also called
a contact-free surface [20]. Now, denote MΩ n�= ⧹ . Let I M: Ω→ be a continuous function and N I M( )= .
If p M∈ , we shall denote I p( ) by p+ and say p jumps to p+. Meanwhile, M is said to be an impulsive set and
I is called an impulsive function. For each p Ω∈ , by M p( )+ , we mean the set γ p M( ) ∩

+ . We can define
a function ψ : Ω � { }→ ∪ +∞

+ (the space of extended positive reals) by

ψ p s p s M p t M t s
M p

, if and for 0, ,
, if .

( )
⎧

⎨
⎩

[ )

( )
=

⋅ ∈ ⋅ ∉ ∈

+∞ = ∅
+

In general, ψ : Ω � { }→ ∪ +∞
+ is not continuous. Fortunately, some easy applicable conditions given by

Ciesielski in [9] guarantee the continuity of ψ. Throughout this article, we always assume that ψ is
a continuous function on Ω.

Now, we define an impulsive system φΩ, ˜( ) by portraying the trajectory of each point in Ω. Let p Ω∈ ,
the impulsive trajectory of p is an Ω-valued function φ̃p defined on a subset of �+. If M p( ) = ∅

+ , then

ψ p( ) = +∞, and we set φ t p t˜p( ) = ⋅ for all t �∈
+. If M p( ) ≠ ∅

+ , it is easy to see that there is a positive

number t0 such that p t p M0 1⋅ = ∈ and p t M⋅ ∉ for all t t0, 0[ )∈ . Thus, we define φ t˜p( ) on t0, 0[ ] by

φ t
p t t t
p t t

˜
, 0 ,

, ,p
0

1 0
( )

⎧

⎨
⎩

=

⋅ ≤ <

=
+

where ψ p t0( ) = and p I p Ω1 1( )= ∈
+ .

Since t0 < +∞, we continue the process by starting with p1
+. Similarly, if M p1( ) = ∅

+ + , i.e., ψ p1( ) = +∞
+ ,

we define φ t p t t˜p 1 0( ) ( )= ⋅ −
+ for t t0 < < +∞. Otherwise, let ψ p t1 1( ) =

+ , where p t p M1 1 2⋅ = ∈
+ , and

p t M1 ⋅ ∉
+ for any t t0, 1[ )∈ , then we define φ t˜p( ) on t t t,0 0 1[ ]+ by

φ t
p t t t t t t
p t t t

˜
, ,

, ,p
1 0 0 0 1

2 0 1
( )

⎧

⎨
⎩

( )
=

⋅ − ≤ < +

= +

+

+

where p I p Ω2 2( )= ∈
+ .
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Thus, continuing inductively, the aforementioned process either ends after a finite number of steps,
whenever M pn( ) = ∅

+ + for some n, or it continues infinitely, if M pn( ) ≠ ∅
+ + for n 0, 1, 2,= … , and φ̃p is

defined on the interval t0, p[ ), where t tp i i0= ∑
=

+∞ . We call ti{ } the impulsive intervals of φ̃p and

t k t k: 0, 1, 2,p i
k

i0{ ( ) }= ∑ = …
=

the impulsive times of φ̃p. After setting each trajectory φ̃p for every point

p Ω∈ , we let φ p t φ t˜ , ˜p( ) ( )= for p Ω∈ and t t0, p[ )∈ , then we obtain a discontinuous system φΩ, ˜( ) satis-
fying the following properties:
(i) φ p p˜ , 0( ) = for all p Ω∈ , and
(ii) φ φ p s t φ p s t˜ ˜ , , ˜ ,( ( ) ) ( )= + for all p Ω∈ and s t t, 0, p[ )∈ , such that s t t0, p[ )+ ∈ .

We call φΩ, ˜( ), with φ̃ as defined earlier, an impulsive dynamical system associated with φΩ,( ). Also
for simplicity of exposition, we denote φ p t˜ ,( ) by p t∗ . Thus, (ii) reads p s t p s t( ) ( )∗ ∗ = ∗ + .
Similarly, if A Ω⊂ and J �⊂

+, we denote A J p t p A t Jand{ ∣ }∗ = ∗ ∈ ∈ . In particular, if J t{ }= , we
let A t A t φ A˜t{ } ( )∗ = ∗ = . For p Ω∈ the mapping φ̃ : Ωp � →

+ defined by t p t→ ∗ and for a t �∈
+ the

mapping φ̃ : Ω Ωt → defined by p p t→ ∗ may not be continuous. However, φ̃p is continuous from the right

hand for any p Ω∈ .
For an impulsive dynamical system φΩ, ˜( ), the trajectories that are of interest are those with an infinite

number of discontinuities and with 0,[ )+∞ as the interval of definition. Following Kaul in [4], the trajec-
tories are called infinite impulsive trajectories. Furthermore, for an impulsive dynamical system, Ciesielski
used time reparametrization to obtain an isomorphic system whose impulsive trajectories are global, i.e.,
the resulting dynamics is defined for all positive times, [11]. Hence, from now on, we always assume
tp = +∞ for any p Ω∈ .

In the following, for a point p Ω∈ , let B p q d p q δΩ ,δ( ) { ∣ ( ) }= ∈ < be the open ball in Ω with center p
and radius δ 0> , where d is the Euclidean metric on n� , and the closed ball B p q d p q δΩ ,δ( ) { ∣ ( ) }= ∈ ≤ . In
addition, for S Ω⊂ , the r-neighborhood of S in Ω is denoted byU S r q d q S r, Ω ,( ) { ∣ ( ) }= ∈ < for r 0> , where
d q S d q p p S, inf ,( ) { ( )∣ }= ∈ . Here, with no confusion, we also use d for the distance between a point and a
set. The orbit of p in φΩ, ˜( ) is the set γ p p˜ �( ) = ∗ . The positive and negative semi-orbits of p are the sets
γ p p˜ �( ) = ∗

+ + and γ p p˜ �( ) = ∗
+ −, respectively. A subset S of Ω is said to be positively invariant if

γ p S˜ ( ) ⊂
+ for any p S∈ ; furthermore, it is said to be invariant if it is positively invariant, and for any

p S∈ and t �∈
+, there exist a q S∈ such that q t p∗ = .

Now, we introduce several definitions that will be used in the sequel.

Definition 2.1. Let p Ω∈ . The positive semi-orbit γ p p˜ �( ) = ∗
+ + is said to be orbitally stable if, given an

ε 0> , there exists a δ δ ε 0( )= > such that for any q B pδ( )∈ , then we have that q U p ε,� �( )∗ ⊂ ∗
+ + .

Moreover, if there is a η 0> such that if q B pη( )∈ implies d q t p, 0�( )∗ ∗ →
+ as t → +∞, then the

positive semi-orbit γ p˜ ( )+ is asymptotically orbitally stable.

Next, we give the following concept of φ̃-recurrence in impulsive dynamical systems, which was
introduced first in [21].

Definition 2.2. A point p Ω∈ is said to be φ̃-recurrent if for every ε 0> , there exists a T T ε 0( )= > , such
that for any t s, �∈

+, the interval T0,[ ] contains a real number τ 0> such that

d p t p s τ ε, .( ( ))∗ ∗ + <

A positive semi-orbit γ p˜ ( )+ is said to be φ̃-recurrent if p is φ̃-recurrent.

Obviously, p Ω∈ is φ̃-recurrent means for any ε 0> ; there exists a T T ε 0( )= > such that
γ p U p s s T ε˜ , ,( ) ( [ ] )⊂ ∗ +

+ holds for every s 0≥ .
The idea of a time reparametrization is useful in our discussion about Zhukovskiǐ quasi-stabilities,

see [16,18].
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Definition 2.3. A time reparametrization is a homeomorphism ρ from �+ onto �+ with ρ 0 0( ) = .
Furthermore, for a σ 0> , by a time σ-reparametrization, we mean a homeomorphism ρ from �+ onto �+

with ρ 0 0( ) = such that ρ t t σ∣ ( ) ∣− < for all t 0≥ .

Now, we recall the concepts of Zhukovskiǐ quasi-stabilities, which were first introduced for impulsive
dynamical systems in [16].

Definition 2.4. Let p Ω∈ . The positive semi-orbit γ p p˜ �( ) = ∗
+ + is Zhukovskiǐ quasi-stable provided that

given any ε 0> , there exists a δ δ p ε, 0( )= > such that if q B pδ( )∈ , then one can find a time reparame-
trization ρq such that d p t q ρ t ε, q( ( ))∗ ∗ < holds for all t 0≥ . Moreover, if there is a λ 0> such that if

q B pλ( )∈ , then d p t q ρ t, 0q( ( ))∗ ∗ → as t → +∞, and then the orbit p �∗
+ is said to be asymptotically

Zhukovskiǐ quasi-stable.

Furthermore, the property of Zhukovskiǐ quasi-stability can be strengthened to that of uniformly
asymptotically Zhukovskiǐ quasi-stability as follows:

Definition 2.5. The positive semi-orbit γ p p˜ �( ) = ∗
+ + of p Ω∈ is uniformly asymptotically Zhukovskiǐ

quasi-stable provided that given any ε 0> ; there exists a δ 0> such that for each s 0> and q B p sδ( )∈ ∗ ,
one can find a time reparametrization ρq such that d p s t q ρ t ε, q( ( ) ( ))∗ + ∗ < holds for all t 0≥ , and also,

d p s t q ρ t, 0q( ( ) ( ))∗ + ∗ → as t → +∞.

The definition of an impulsive periodic orbit was first presented by Kaul in [4] as follows:

Definition 2.6. Let p Ω∈ . The positive semi-orbit γ p p˜ �( ) = ∗
+ + is said to be (impulsive) periodic of period

τ and order k if γ p˜ ( )+ has k components and τ is the least positive number such that p τ p∗ = . Thus the
point p is called an (impulsive) periodic point of order k .

A periodic orbit of an impulsive dynamical system φΩ, ˜( ) is an invariant closed set in Ω, and it is not
connected if k 1≠ . If γ p˜ ( )+ is not a periodic orbit, but there exists a t 0> such that γ p t˜ ( )∗

+ is a periodic
orbit, then γ p˜ ( )+ is said to be eventually periodic. Clearly, a periodic orbit is eventually periodic, but easy
examples can be constructed to show that the converse may not be true.

The continuous dependence on the initial conditions is a fundamental property in the theory of
dynamical systems. Fortunately, in [16], the author establishes a counterpart of the continuous dependence
for impulsive dynamical systems, which is crucial for the study of impulsive dynamical systems. It is called
Quasi-Continuous Dependence and is presented as follows.

Quasi-continuous dependence: Let φΩ, ˜( ) be an impulsive dynamical system and p Ω∈ . For any
ε 0> , σ 0> , and a positive number τ, there exists a δ 0> such that if q B pδ( )∈ , then the inequality
d p t q ρ t ε, q( ( ))∗ ∗ < holds for all t τ0,[ ]∈ , where ρq is a time σ-reparametrization.

From the aforementioned definition, it is obvious that the quasi-continuous dependence property is a
natural generalization of the standard continuous dependence on the initial conditions. For simplicity, we
denote the quasi-continuous dependence by QCD property in the sequel. In [16], a crucial proposition was
established by the author. It is shown that for impulsive dynamical systems, the QCD property is equivalent
to the continuity of ψ. Hence, in this article the QCD property holds for our impulsive system φΩ, ˜( ) by
previous assumption that ψ is continuous on Ω.

3 Main results

The concepts of asymptotically orbital stability and asymptotically Zhukovskiǐ stability are different in their
dynamical properties. However, for an impulsive periodic orbit, the following result holds.
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Theorem 3.1. Let Γ be a periodic orbit in an impulsive dynamical system φΩ, ˜( ). Then, Γ is asymptotically
orbitally stable if and only if Γ is asymptotically Zhukovskiǐ quasi-stable.

Proof. Assume that pΓ 1 �= ∗
+ with period τ and order k, where p N1 ∈ . Then, Γ can be written as

p t p t p tΓ 0, 0, 0, ,k k1 1 2 2[ ) [ ) [ )= ∗ ∪ ∗ ∪ ⋯ ∪ ∗

where p Ni ∈ , ψ p t i k1, 2, ,i i( ) ( )= = … , and t τi
k

i1∑ =
=

. Clearly, we have I p t pi i i 1( )∗ =
+

for
i k1, 2, , 1= … − and I p t pk k 1( )∗ = ; the solution segments p t i k0, : 1, 2, ,i i{ [ ) }∗ = … are pairwise disjoint.

For a given ε 0> , by the quasi-continuous dependence, there exists a θ ε0,( )∈ such that if q B pθ 1( )∈ ;
then d p t q ρ t ε, q1( ( ))∗ ∗ < holds for all t τ0,[ ]∈ , where ρq is a time reparametrization. Now, assume that

pΓ 1 �= ∗
+ is asymptotically orbitally stable; then for the aforementioned θ, there is a δ θ0,( )∈ such that if

q B pδ 1( )∈ , we have q U θΓ,� ( )∗ ⊂
+ and d q t, Γ 0( )∗ → as t → +∞. Without loss of generality, let ε be

sufficiently small so that U εΓ,( ) is composed of k pairwise disjoint components, i.e., k disjoint tubes.
Let q B pδ 1( )∈ , and we define a time reparametrization τq as follows. Write N B pθ 1L ( )= ∩ , then we have

q q ρ τq1 L( )= ∗ ∈ . Clearly, it follows from q U θΓ,1 � ( )∗ ⊂
+ that there exists a time reparametrization ρq1

so

that d p t q ρ t θ, q1 1 1
( )( )∗ ∗ < holds for all t τ0,[ ]∈ . Thus, inductively, there exist two sequences qn{ } and

ρqn{ } satisfyingd p t q ρ t θ, n q1 n
( )( )∗ ∗ < andq ρ τ qn q n 1n

( )∗ =
+
forn 1, 2,= … ,where ρqn{ }are time reparametriza-

tions. Let q q0 = and ρ ρq q0
= . Then, we define τ t ρ t nτq qn

( ) ( )= − for t nτ n τ n, 1 0, 1, 2,[ ( ) ]( )∈ + = … , and

it is easy to see that τq is a time reparametrization. Now, we obtain d p t q ρ t θ ε, q1( ( ))∗ ∗ < < , and

certainly d p t q ρ t, 0q1( ( ))∗ ∗ → as t → +∞. So, pΓ 1 �= ∗
+ is asymptotically Zhukovskiǐ quasi-stable.

Conversely, from definitions, it is easy to see that if Γ is asymptotically Zhukovskiǐ quasi-stable, then
Γ is asymptotically orbitally stable. Thus, the proof is completed. □

From the proof of Theorem 3.1, it is easy to see that the following statement is true.

Corollary 3.2. Let pΓ �= ∗
+ be a eventually periodic orbit in an impulsive dynamical system φΩ, ˜( ), Then,

Γ is asymptotically orbitally stable if and only if Γ is asymptotically Zhukovskiǐ quasi-stable.

Proof.We just need to show the necessity of the statement since the sufficiency is obvious by the definitions
of asymptotically orbital stability and asymptotically Zhukovskiǐ quasi-stability.

Let Γ be eventually periodic. That means there exists a t 00 > such that pΓ1 1 �= ∗
+ is periodic, where

p p t1 0= ∗ . Assume that Γ is asymptotically orbitally stable, so is Γ1. Thus, by Theorem 3.1, we have Γ1 which
is asymptotically Zhukovskiǐ quasi-stable. That is, for every ε 0> , there is a θ ε0,( )∈ such that if
q B pθ1 1( )∈ , then d p t q ρ t ε,1 1 1( ( ))∗ ∗ < for each t �∈

+ and d p t q ρ t, 01 1 1( ( ))∗ ∗ → as t → +∞, where
ρ1 is a time reparametrization. For the aforementioned t 00 > and θ 0> , by quasi continuous dependence of
Γ, there exists a δ 0> such that if q B pδ( )∈ , then d p t q ρ t θ, 0( ( ))∗ ∗ < holds for t t0, 0[ ]∈ , where ρ0 is a
time reparametrization. Set q q τ t1 0 0( )= ∗ , and it is clear that q B pθ1 1( )∈ . Given a q B pδ( )∈ , we define a
time reparametrization as follows. Let ρ t τ tq 0( ) ( )= if t t0, 0[ ]∈ and ρ t ρ t tq 1 0( ) ( )= − if t t ,0[ )∈ +∞ . It is easy

to verified that ρq is a time reparametrization. Certainly, we have d p t q ρ t ε, q( ( ))∗ ∗ < for all t �∈
+ and

d p t q ρ t, 0q( ( ))∗ ∗ → as t → +∞. Thus Γ is asymptotically Zhukovskiǐ quasi-stable.
Now, we turn to consider orbitally stability, recurrence, and Zhukovskiǐ quasi-stability in a planar

impulsive dynamical system as follows. □

Theorem 3.3. Let p Ω0 ∈ , pΓ 0 �= ∗
+ be the positive orbit of p0. If Γ is φ̃-recurrent, then Γ is orbitally stable

if and only if Γ is Zhukovskiǐ quasi-stable.

Proof. Suppose p0 is φ̃-recurrent, then for any ε 0> , there exists aT 0> such that γ p U p T ε0, ,0 0( ) ( [ ] )⊂ ∗
+ .

By the quasi-continuous dependence, for the ε 0> andT 0> earlier, there exists a θ ε0,( )∈ such that for every
q B pθ 0( )∈ , we have d p t q ρ t ε, q0( ( ))∗ ∗ < for each t T0,[ ]∈ , where ρq is a time reparametrization.

Furthermore, we can find a δ 01 > , such that if q B pδ 01( )∈ , then d p t q ρ t θ, q0( ( ))∗ ∗ < holds for each
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t T0,[ ]∈ . By the orbitally stability of Γ, for the θ above, there is a δ 02 > such that if q B pδ 02( )∈ ,
then q U θΓ,� ( )∗ ⊂

+ .
Setting δ δ δmin ,1 2{ }= . For any q B pδ 0( )∈ , we define a time reparametrization τq as follows. Let

p p T1 0= ∗ and q q ρ Tq1 ( )= ∗ ; thus, we have d p a θ,1 1( ) < . Clearly, q U θΓ,1 � ( )∗ ⊂
+ implies there exists

a time reparametrization ρ1 such that d p t q ρ t θ,1 1 1( ( ))∗ ∗ < holds for all t T0,[ ]∈ . Thus, inductively there
exist three sequences pn{ }, qn{ }, and ρn{ } such that d p t q ρ t θ,n n n( ( ))∗ ∗ < for each t T0,[ ]∈ and
p p Tn n1 = ∗

+
, q q ρ Tn n n1 ( )= ∗

+
for n 1, 2,= … , where ρn{ } are time reparametrizations. Let q q0 = and

ρ ρq0 = . Then, we define τ t ρ t nTq n( ) ( )= − for t nT n T n, 1 0, 1, 2,[ ( ) ]( )∈ + = … , and it is easy to see that

τq is a time reparametrization and d p t q τ t ε, q0( ( ))∗ ∗ < for every t �∈
+; then, pΓ 0 �= ∗

+ is Zhukovskiǐ
quasi-stable.

Conversely, assume that Γ is a Zhukovskiǐ quasi-stable orbit. That is, for any ε 0> , there exists a δ 0>

such that, if q B pδ 0( )∈ , d p t q τ t ε, q0( ( ))∗ ∗ < for all t �∈
+, where τq is a time reparametrization. That

means q U εΓ,� ( )∗ ⊂
+ , so Γ is orbitally stable and the proof is completed. □
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