DE GRUYTER Open Mathematics 2022; 20: 1039-1045 a

Research Article

Kehua Li* and Changming Ding

Orbital stability and Zhukovskii quasi-
stability in impulsive dynamical systems

https://doi.org/10.1515/math-2022-0478
received February 25, 2022; accepted June 23, 2022

Abstract: In this article, we deal with orbital stability and Zhukovskii quasi-stability of periodic or recurrent
orbits in an impulsive dynamical system defined in the n-dimensional Euclidean space R". We show that for
a periodic orbit of an impulsive system, its asymptotically orbital stability is equivalent to the asymptoti-
cally Zhukovskii quasi-stability, and for a recurrent orbit, the orbital stability is equivalent to the
Zhukovskii quasi-stability.
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1 Introduction

Impulsive dynamical systems are a generalization of classical dynamical systems. They describe the evolu-
tion of systems where the continuous development of a process is interrupted by abrupt perturbations. The
behavior of an impulsive system is much richer than that of the corresponding continuous dynamical
system. In particular, the theory of impulsive dynamical systems represents a natural framework for the
mathematical modeling of many real-world phenomena. Recently, the theory of impulsive dynamical
systems has been intensively investigated. For the elementary results in this field, we refer readers to [1-3].

The research of impulsive semidynamical systems in a metric space was started by Kaul [4-6] and
Rozhko [7,8]. Specifically, Rozhko dealt with a class of almost periodic motions in pulsed systems and the
stability theory in terms of Lyapunov for impulsive systems. Later on, Kaul continued the study for impul-
sive semidynamical systems and established a list of important results about the structure of limit sets,
periodicity and recurrence of an orbit, minimality and stabilities of closed subsets, etc. Also, Ciesielski
presented many fundamental results in this field; for example, he applied his section theory of semidynam-
ical systems to obtain the continuity of an impulsive time function [9-11]. Recently, in [12-15], Bonotto and
his research group developed a list of significant results on impulsive semidynamical systems, which
include many counterparts of basic properties in classical dynamical systems. In addition, the authors of
this article also established some interesting results on the limit sets and limit set maps [16,17], Lyapunov
quasi-stability [18], and Zhukovskii quasi-stability [19].

Poincaré (orbital) stability and Zhukovskii stability are two different important stabilities of solutions of
differential equations. Since Zhukovskii stability admits a time lag, it is a more suitable concept for the
study of impulsive dynamical systems. The Zhukovskii quasi-stability in impulsive dynamical systems was
first introduced in [18], where the author proved that the limit set of a uniformly asymptotically Zhukovskii
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quasi-stability orbit is composed of a rest point or a periodic orbit. Clearly, the structure of limit sets can be
determined by the stability of orbits. Furthermore, the inverse problem was considered in [19]. Actually,
it was shown in [19] that (i) if the positive limit set of an orbit for a planar system is an asymptotically stable
limit cycle, then it is a uniformly asymptotically Zhukovskii quasi-stable orbit; (ii) if an orbit is not even-
tually periodic and its positive limit set is a periodic orbit, then it is an asymptotically Zhukovskii quasi-
stable orbit.

In this article, we deal with the recurrence, orbital stability, and Zhukovskii quasi-stability of orbits in an
impulsive dynamical system defined in R™. First, for a periodic orbit (or eventually periodic orbit), we show
that the asymptotically orbital stability is equivalent to the asymptotically Zhukovskil quasi-stability. Second,
it is shown that for a recurrent orbit, the orbital stability is also equivalent to the Zhukovskii quasi-stability.

2 Definitions and notations

We consider the system of differential equations
X' = FX), @

where F : R" — R". Obviously, the map F : R" — R" defines a vector field F of system (1) on R". Assume
that the vector field F defines a flow ¢ onR"; i.e., ¢ : R" x R — R" is continuous such that ¢(p, 0) = p for all
p € R"and p(¢(p, t),s) = (p,t + s)forallp e R, t,s e R.IfA c R"and ] c R, wewritep(A xJ)=A -],
in particular, ¢(p, t) = p - t. For a point p € R", the orbit of p is the set y(p) = p - R. The positive and
negative semi-orbits are the sets y*(p) = p-R* and y(p) = p - R, respectively.

Let M = {p € U|G(p) = 0} be a simple smooth surface in an open subset U of R", where G : U — R is
a smooth function with G'(p) = (0G /9dx, ...,0G/dx,) + (0, --- ,0) for p = (x4, %, -+ ,X,) € U. The surface M
is said to be transversal to the vector field F if the inner product G'(p)- F(p) # O forall p € M, it is also called
a contact-free surface [20]. Now, denote Q = R"\M. Let I : M — Q be a continuous function and N = I(M).
If p € M, we shall denote I(p) by p* and say p jumps to p*. Meanwhile, M is said to be an impulsive set and
I is called an impulsive function. For each p € Q, by M*(p), we mean the set y*(p) N M. We can define
a function ¥ : Q — R* U {+00} (the space of extended positive reals) by

W(p) = S, if p-seM and p-t¢M forte]lO,s),
P)= Vo, if M (p) = 2.

In general, Y : Q — R* U {+00} is not continuous. Fortunately, some easy applicable conditions given by
Ciesielski in [9] guarantee the continuity of 1. Throughout this article, we always assume that i is
a continuous function on Q.

Now, we define an impulsive system (Q, ¢) by portraying the trajectory of each point in Q. Let p € Q,
the impulsive trajectory of p is an Q-valued function ¢, defined on a subset of R*. If M*(p) = &, then
Y(p) = +0o, and we set (ﬁp(t) =p-tforallteR* If M'(p) # @, it is easy to see that there is a positive
number ¢ty such that p-to=p; e Mand p - t ¢ M for all t € [0, t). Thus, we define q"Jp(t) on [0, ty] by

~ p-t, 0<t<ty,
t =
@,() {p;’ =ty

where Y(p) =ty and p;' = I(py) € Q.

Since tg < +00, we continue the process by starting with p;*. Similarly, if M*(p;") = @, i.e., Y(p;") = +oo0,
we define @ (t) = pi (t - tp) for ty < t < +oo. Otherwise, let Y(p;) = t, where p{ -t = p, € M, and
pi - t¢ Mforanyt e [0, t), then we define (ﬁp(t) on [toy, to + t;] by

+

. pr(t—ty), to<t<to+t,
g,t)=1{""
D> t= to + tl,

where pS = I(p,) € Q.



DE GRUYTER Orbital stability and Zhukovskil quasi-stability in impulsive dynamical systems =— 1041

Thus, continuing inductively, the aforementioned process either ends after a finite number of steps,
whenever M*(p,;) = @ for some n, or it continues infinitely, if M*(p;) + @ forn=0,1, 2,..., and q”)p is

+00t

defined on the interval [0, t,), where t,=3."f;, We call {; the impulsive intervals of ?, and

{tp(k) = Zfzoti :k=0,1,2, ...} the impulsive times of ¢,. After setting each trajectory ¢, for every point
p € Q,welet @(p, t) = (ﬁp(t) for p e Qandt € [0, t,), then we obtain a discontinuous system (Q, @) satis-
fying the following properties:

(i) ¢(p,0) =p forall p € Q, and

(i) ¢(P(p,s),t)=@(p,s+t)forallpeQands, ¢e]0,t,),suchthats+telO0,t,).

We call (Q, ¢), with ¢ as defined earlier, an impulsive dynamical system associated with (Q, ¢). Also
for simplicity of exposition, we denote @(p,t) by p = t. Thus, (ii) reads (p *s) =t =p = (s + ¢t).
Similarly, if A c Q and J c R*, we denote A « J={p = tjpe€ A and ¢ € J}. In particular, if J = {t}, we
let A = t=A « {t} = $(A). For p € Q the mapping ¢, : R* — Q defined byt — p = t and for a t € R* the
mapping @, : Q — Q defined by p — p * t may not be continuous. However, @, is continuous from the right

hand for any p € Q.

For an impulsive dynamical system (Q, ¢), the trajectories that are of interest are those with an infinite
number of discontinuities and with [0, +00) as the interval of definition. Following Kaul in [4], the trajec-
tories are called infinite impulsive trajectories. Furthermore, for an impulsive dynamical system, Ciesielski
used time reparametrization to obtain an isomorphic system whose impulsive trajectories are global, i.e.,
the resulting dynamics is defined for all positive times, [11]. Hence, from now on, we always assume
t, = +oo forany p € Q.

In the following, for a point p € Q, let Bs(p) = {q € Q|d(p, q) < 8} be the open ball in Q with center p
and radius § > 0, where d is the Euclidean metric on R", and the closed ball Bs(p) = {q € Q|d(p, q) < 6}.In
addition, for S c Q, the r-neighborhood of S in Q is denoted by U(S, r) = {q € Q|d(q, S) < r} forr > 0, where
d(q, S) = inf{d(q, p)|p € S}. Here, with no confusion, we also use d for the distance between a point and a
set. The orbit of p in (Q, @) is the set y(p) = p * R. The positive and negative semi-orbits of p are the sets
Yi(p) =p * R* and y*(p) = p * R, respectively. A subset S of Q is said to be positively invariant if
Y'(p) c S for any p € S; furthermore, it is said to be invariant if it is positively invariant, and for any
p € Sandt € R*, there exist a g € S such thatq = t = p.

Now, we introduce several definitions that will be used in the sequel.

Definition 2.1. Let p € Q. The positive semi-orbit y*(p) = p * R* is said to be orbitally stable if, given an
€ > 0, there exists a 6 = 6(¢) > 0 such that for any q € Bs(p), then we have that g * R* c U(p = RY, €).
Moreover, if there is a > 0 such that if g € By(p) implies d(q * t,p * R*) - 0 as t — +oo, then the
positive semi-orbit y*(p) is asymptotically orbitally stable.

Next, we give the following concept of @-recurrence in impulsive dynamical systems, which was
introduced first in [21].

Definition 2.2. A point p € Q is said to be ¢-recurrent if for every € > 0, there exists a T = T(g) > 0, such
that for any t, s € R*, the interval [0, T] contains a real number 7 > 0 such that

dlp«t,p*(S+7T))<Ee.

A positive semi-orbit y*(p) is said to be ¢-recurrent if p is ¢-recurrent.

Obviously, p € Q is @-recurrent means for any & > 0; there exists a T=T(¢) >0 such that
¥i(p) cU(p = [s,s + T], €) holds for every s > 0.

The idea of a time reparametrization is useful in our discussion about Zhukovskil quasi-stabilities,
see [16,18].



1042 — Kehua Li and Changming Ding DE GRUYTER

Definition 2.3. A time reparametrization is a homeomorphism p from R* onto R* with p(0) = 0.
Furthermore, for a 0 > 0, by a time o-reparametrization, we mean a homeomorphism p from R* onto R*
with p(0) = 0 such that |p(t) — t| < o for all t > 0.

Now, we recall the concepts of Zhukovskii quasi-stabilities, which were first introduced for impulsive
dynamical systems in [16].

Definition 2.4. Let p € Q. The positive semi-orbit y*(p) = p * R* is Zhukovskil quasi-stable provided that
given any € > 0, there exists a 6 = 6(p, €) > 0 such that if g € Bs(p), then one can find a time reparame-
trization p, such that d(p = t,q * p (D) <€ holds for all t > 0. Moreover, if there is a A > 0 such that if
g € Bi(p), thend(p * t, q * p,(t)) — 0 ast — +oo, and then the orbit p x R* is said to be asymptotically
Zhukovskii quasi-stable.

Furthermore, the property of Zhukovskil quasi-stability can be strengthened to that of uniformly
asymptotically Zhukovskii quasi-stability as follows:

Definition 2.5. The positive semi-orbit y*(p) = p * R* of p € Q is uniformly asymptotically Zhukovskii
quasi-stable provided that given any € > 0; there exists a § > 0 such that for each s > 0 and q € Bs(p * s),
one can find a time reparametrization Py such thatd(p = (s + t), g = p,(t)) < € holds for all ¢ > 0, and also,

dip = (s+1t),q * pq(t)) — 0ast — +oo.
The definition of an impulsive periodic orbit was first presented by Kaul in [4] as follows:

Definition 2.6. Let p € Q. The positive semi-orbit y*(p) = p * R* is said to be (impulsive) periodic of period
T and order k if y*(p) has k components and 7 is the least positive number such that p = 7 = p. Thus the
point p is called an (impulsive) periodic point of order k.

A periodic orbit of an impulsive dynamical system (Q, @) is an invariant closed set in Q, and it is not
connected if k # 1. If y*(p) is not a periodic orbit, but there exists a t > 0 such that y*(p * t) is a periodic
orbit, then y*(p) is said to be eventually periodic. Clearly, a periodic orbit is eventually periodic, but easy
examples can be constructed to show that the converse may not be true.

The continuous dependence on the initial conditions is a fundamental property in the theory of
dynamical systems. Fortunately, in [16], the author establishes a counterpart of the continuous dependence
for impulsive dynamical systems, which is crucial for the study of impulsive dynamical systems. It is called
Quasi-Continuous Dependence and is presented as follows.

Quasi-continuous dependence: Let (Q, ¢) be an impulsive dynamical system and p € Q. For any
€>0, 0> 0, and a positive number 7, there exists a § > 0 such that if g € Bs(p), then the inequality
dlp = t,q * pq(t)) < € holds for all t € [0, 7], where p, is a time o-reparametrization.

From the aforementioned definition, it is obvious that the quasi-continuous dependence property is a
natural generalization of the standard continuous dependence on the initial conditions. For simplicity, we
denote the quasi-continuous dependence by QCD property in the sequel. In [16], a crucial proposition was
established by the author. It is shown that for impulsive dynamical systems, the QCD property is equivalent
to the continuity of 1. Hence, in this article the QCD property holds for our impulsive system (Q, ¢) by
previous assumption that i is continuous on Q.

3 Main results

The concepts of asymptotically orbital stability and asymptotically Zhukovskil stability are different in their
dynamical properties. However, for an impulsive periodic orbit, the following result holds.
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Theorem 3.1. Let ' be a periodic orbit in an impulsive dynamical system (Q, ¢). Then, T is asymptotically
orbitally stable if and only if T is asymptotically Zhukovskii quasi-stable.

Proof. Assume that I' = p; * R* with period 7 and order k, where p; € N. Then, I can be written as
[=p; +[0,) Upy * [0,5) U---Upx * [0, t),

where p; e N, Y(p)=t (=12,..,k), and Zleti =171. Clearly, we have I(p; *t) =pi, for
i=1,2,...,k—1and I(px * ;) = p1; the solution segments {p; = [0, t;) : i = 1, 2, ...,k} are pairwise disjoint.

For a given € > 0, by the quasi-continuous dependence, there exists a 8 € (0, €) such that if g € By(p1);
thend(p; = t, g = p,(t)) < € holds for all t € [0, 7], where p, is a time reparametrization. Now, assume that
I = p; * R*is asymptotically orbitally stable; then for the aforementioned 8, thereisa é € (0, 8) such that if
q € Bs(p1), we have g * R* c U(T, 0) and d(q = t,T) — 0 as t — +oo. Without loss of generality, let € be
sufficiently small so that U(T, €) is composed of k pairwise disjoint components, i.e., k disjoint tubes.

Let g € Bs(p1), and we define a time reparametrization 7, as follows. Write £ = N n By(p;), then we have
q1=q * pq(T) € £. Clearly, it follows from q; * R* c U(T, ) that there exists a time reparametrization Pg, SO
that d(p; = t, q; * qu(t)) < 6 holds for all t € [0, 7]. Thus, inductively, there exist two sequences {g,} and
{pqn} satisfyingd(p; * t, gy * pqn(t)) <@andgy * p, (1) = gnsaforn = 1,2, ... ,where{pq"} are time reparametriza-
tions. Let go = g and p,, = p,. Then, we define 7,(t) = p, (¢ — n7) for t € [nT,(n + DT](n=0,1, 2, ...), and
it is easy to see that 7, is a time reparametrization. Now, we obtain d(p: = t, g * p,(t)) < 6 < ¢, and
certainly d(p; = t, g = p,(t)) — 0 as t — +oo. So, I = p; * R* is asymptotically Zhukovskil quasi-stable.

Conversely, from definitions, it is easy to see that if I' is asymptotically Zhukovskil quasi-stable, then
I is asymptotically orbitally stable. Thus, the proof is completed. O

From the proof of Theorem 3.1, it is easy to see that the following statement is true.

Corollary 3.2. Let T = p = R* be a eventually periodic orbit in an impulsive dynamical system (Q, ¢), Then,
I is asymptotically orbitally stable if and only if T is asymptotically Zhukovskil quasi-stable.

Proof. We just need to show the necessity of the statement since the sufficiency is obvious by the definitions
of asymptotically orbital stability and asymptotically Zhukovskii quasi-stability.

Let T be eventually periodic. That means there exists a ty > 0 such that I = p; = R* is periodic, where
p1 = p * to. Assume that I' is asymptotically orbitally stable, so is I7. Thus, by Theorem 3.1, we have I which
is asymptotically Zhukovskii quasi-stable. That is, for every € > 0, there is a 6 € (0, €) such that if
¢ € By(p1), then d(p; = t, g1 = p,(t)) < € for each t € R* and d(p; * t, q; * p,(t)) — 0 as t — +co, where
p, is a time reparametrization. For the aforementioned ¢, > 0 and 8 > 0, by quasi continuous dependence of
T, there exists a § > 0 such that if g € Bs(p), thend(p = t, g = py(t)) < 6 holds for t € [0, t,], where p, is a
time reparametrization. Set q; = g * To(tp), and it is clear that gq; € Bg(p,). Given a q € Bs(p), we define a
time reparametrization as follows. Let p,(t) = 7o(t) if t € [0, to] and p,(t) = py(t — to) ift € [to, +00). It is easy
to verified that p, is a time reparametrization. Certainly, we have d(p = t, q = pq(t)) < ¢ forallt e R* and
d(p = t,q * p,(t)) > 0 ast — +oo. Thus I is asymptotically Zhukovskii quasi-stable.

Now, we turn to consider orbitally stability, recurrence, and Zhukovskii quasi-stability in a planar
impulsive dynamical system as follows. O

Theorem 3.3. Let py € Q,I' = po * R* be the positive orbit of po. IfT is ¢-recurrent, thenT is orbitally stable
if and only if T is Zhukovskii quasi-stable.

Proof. Suppose p, is ¢-recurrent, then for any € > 0, there exists a T > 0 such that y*(po) c U(po * [0, T], €).
By the quasi-continuous dependence, for thee > 0 and T > O earlier, there exists a8 € (0, €) such that for every
q € Bg(po), we have d(pg * t, q * pq(t)) < ¢ for each t € [0, T], where P, is a time reparametrization.

Furthermore, we can find a §; > O, such that if g € Bs,(po), then d(po * t, q * pq(t)) < 0 holds for each
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t € [0, T]. By the orbitally stability of I, for the 8 above, there is a §, > O such that if g € Bs,(po),
then g * R* c U(T, 6).

Setting 6 = min{4,, 8,}. For any g € Bs(po), we define a time reparametrization 7, as follows. Let
p1=po * T and g, = q * pq(T); thus, we have d(p;, @) < 6. Clearly, g; * R* ¢ U(T, 0) implies there exists
a time reparametrization p, such thatd(p; = t, g¢; * p,(t)) < 6 holds for all ¢ € [0, T]. Thus, inductively there
exist three sequences {p,}, {gn}, and {p,} such that d(p, * t, g, * p,(t)) < 6 for each t € [0, T] and
DPn1 =Pn * T, Gue1=gn * p,(T) for n=1,2,..., where {p,} are time reparametrizations. Let g, = g and
Po = Py Then, we define 1,(t) = p,(t — nT) for t € [nT, (n + DT](n =0, 1, 2, ...), and it is easy to see that
T, is a time reparametrization and d(po * t, g * 1,(t)) < € for every t € R*; then, I = py * R* is Zhukovskil
quasi-stable.

Conversely, assume that I' is a Zhukovskii quasi-stable orbit. That is, for any € > 0, there existsa § > 0
such that, if g € Bs(po), d(po * t, q * 14(t)) < € for all t € R*, where 7, is a time reparametrization. That
means q * R* c U(T, €), so I is orbitally stable and the proof is completed. O
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