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Abstract: In this article, we study Hopf bifurcation and Turing instability of a diffusive predator-prey model
with hunting cooperation. For the local model, we analyze the stability of the equilibrium and derive
conditions for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic
solution by the center manifold and the normal form theory. For the reaction-diffusion model, first it is
shown that Turing instability occurs, then the direction and stability of the Hopf bifurcation is reached. Our
results show that hunting cooperation plays a crucial role in the dynamics of the model, that is, it can be
beneficial to the predator population and induce the rise of Turing instability. Finally, numerical simula-
tions are performed to visualize the complex dynamic behavior.
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1 Introduction

The predator is a population that eats another population (known as prey). The prey is the food source of
the predator, and the predator dies if it does not obtain food. Modeling the interaction between preys and
predators has become one of the important methods to reveal their evolution law. The mathematical model
describing this interaction was first proposed to explain the oscillatory levels of certain fish catches in the
Adriatic by Lotka-Volterra [1,2]. Since then, based on different biological meanings, statistical data, and
experiments, a lot of predator-prey models have been proposed and studied and have become an important
tool for mathematicians and biologists to learn more about nature and better protect the environment.

Cooperative hunting is a social behavior intrinsically present in many predator populations. This is a
common interest among predators for successfully capturing preys compared to individual efforts. Different
predators employ different strategies based on their moving abilities, social skills, communication capa-
bilities, cognitions, prey types, and availabilities. Bailey et al. [3] reviewed different strategies taken by
predators during cooperative hunting of over 40 species, including carnivores [4] (lions [5], wolves [6],
African wild dogs [7], and chimpanzees [8]), birds [9], ants [10], and spiders [11].

Although there are many cooperative predators in nature, there are only a few mathematical models
incorporating such a biological mechanism. To the best of our knowledge, an earlier predator-prey model
with hunting cooperation has been proposed by Berec [12]. Berec found that hunting cooperation has
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a destabilizing effect on predator-prey dynamics. Based on the research of Berec, Alves and Hilker [13]
extended the classical Lotka-Volterra model by including hunting cooperation as follows:
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where N and P are prey and predator densities, respectively, r is the intrinsic growth rate of the prey, K is
the carrying capacity of the prey, e is the conversion efficiency,m is the mortality rate of the predator, β is the

rate of predation without hunting cooperative, and α is the cooperative coefficient. r K e m β, , , , are positive
constants, and, α is a non-negative constant. If α 0= , model (1.1) becomes a classical Lotka-Volterra model
with logistic growth of the prey. For simplicity, consider dimensionless variables with the following scaling:
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model (1.1) is rewritten as follows:
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Alves and Hilker [13] investigated the stability of equilibrium in phase plane and bifurcation diagrams of
model (1.2) via numerical simulations. It is shown that for some σ and a Hopf or Bogdanov-Takens bifurca-
tions occur. Recently, Wu and Zhao [14] studied the stability of equilibrium and the existence of Hopf
bifurcations for model (1.2) via mathematical analysis.

As far as we know, reaction-diffusion equations have been widely employed to study the behavior of
biological phenomena in nature. In particular, Turing [15] showed that a system of coupled reaction-
diffusion equations can be used to describe patterns and forms in biological systems. Turing’s theory shows
that diffusion could destabilize an otherwise stable equilibrium of the reaction-diffusion system and lead to
nonuniform spatial patterns. This kind of instability is usually called Turing instability. Naturally, we then
consider the reaction-diffusion model corresponding to model (1.2):
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where Ω is a bounded domain in n� with smooth boundary Ω∂ and ν is the outward unit normal on Ω∂ .
d1 and d2 are the diffusion coefficients of u and v, respectively. The initial data u x v x,0 0( ) ( ) are nonnegative
smooth functions, which are not identically zero. Model (1.3) has been extensively investigated by many
researchers and some interesting results have also been obtained. For example, Wu and Zhao [14] con-
sidered the stability of equilibrium and, the existence of Hopf bifurcations and Turing instability. Capone
et al. in [16] proved the definitive boundedness of solutions via the existence of positive invariants and
attractive sets and obtained the Turing instability. Singh and Dubey [17] investigated meticulousness in the
spatial dynamics of the predator-prey model with hunting cooperation via diffusion-driven instability.
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However, we note that the results in [14,16] provide no further information on the direction and stability
of the Hopf bifurcation in models (1.2) and (1.3). Therefore, it may be interesting to investigate such cases.
We point out that this topic has been largely discussed in the literature for the predator-prey model. Based
on the aforementioned reasons, in the present article, we consider the following predator-prey model with
hunting cooperation
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Using the center manifold and the normal form theory, we derive conditions for determining the direction
of Hopf bifurcation and the stability of the bifurcating periodic solution. Based on the above discussions,
we further investigate the following reaction-diffusion model:
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It is worth mentioning that we can immediately reach the direction and stability of the Hopf bifurcation in
model (1.5) without any tedious calculations.

For other research studies of the predator-prey model with hunting cooperation, see [18] for cross-
diffusion, see [19] for time delay, see [20,21] for discrete time; in particular, Pati et al. [20] explored
bifurcation patterns, novel organized structures, and chaos in the bi-parameter space of a discrete-time
predator-prey model with cooperative hunting.

This article is organized as follows. In Section 2, we investigate the existence, direction, and stability
of the Hopf bifurcation in model (1.4) by the Poincaré-Andronov-Hopf bifurcation theorem. In Section 3,
we first consider the Turing instability of the reaction-diffusion model (1.5) when the spatial domain is a
bounded interval, and then we study the existence and direction of Hopf bifurcation and the stability of
the bifurcating periodic solution. Moreover, numerical simulations are presented to verify and illustrate the
theoretical results above.

2 Dynamics of the local model

In this section, we mainly discuss the existence, direction, and stability of the Hopf bifurcation in
model (1.4).
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and the corresponding characteristic equation is

λ a λ aTr Det 0,2 ( ) ( )− + =
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where aTr aσ σ
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By the Poincaré-Andronov-Hopf bifurcation theorem (see [22, Theorem 3.1.3]), we know that (1.4) under-
goes a Hopf bifurcation at u v,c c( ) as a passes through a0.

However, the detailed nature of the Hopf bifurcation needs further analysis of the normal form
(see [23–25]) for model (1.4). To this end, we translate the equilibrium u v,c c( ) to the origin by the translation
u u u v v v˜ , ˜c c= − = − . For the sake of convenience, we still denote u∼ and v∼ by u and v, respectively. Thus,
the local model (1.4) is transformed into
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So, the stability of Hopf bifurcation for model (1.4) at u v,c c( ) is determined by the sign of the following
quantity:
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By [26, Chapter 3] and β a 00( )′ > , δ a 00( ) < , we summarize our results as follows.

Theorem 2.1. Suppose that σ 0> , a σ
1
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+ .

(i) The equilibrium u v,c c( ) of model (1.4) is locally stable when a a0< , and unstable when a a0> ;
(ii) Model (1.4) undergoes a Hopf bifurcation at u v,c c( ) when a a0= , the direction of the Hopf bifurcation is

supercritical and the bifurcating periodic solutions are orbitally asymptotically stable.

3 Dynamics of the diffusion model

For simplicity, in this section, we take the spatial domain Ω of model (1.5) as the one-dimensional
interval πΩ 0,( )= .

3.1 Local stability analysis and Turing instability

Let u u u v v v˜ , ˜c c= − = − , we still denote u∼ and v∼ by u and v, respectively, and then the linearized system of
(1.5) at u v,c c( ) is written as follows:
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Theorem 3.1. Suppose that a a σ
σ0

1 2( )
< =

+ so that u v,c c( ) is a locally stable equilibrium for (1.4). Then u v,c c( )
is an unstable equilibrium of (1.5) if
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3.2 Hopf bifurcation

By (3.5) and (3.6) one can derive that T a D a0, 00 0 0 0( ) ( )= > and T a D a0, 0j j0 0( ) ( )< > for all j N∈ .
This reveals that a a0= is a Hopf bifurcation point of model (1.5) at u v,c c( ) and the corresponding
Hopf bifurcation is spatially homogeneous. Note that the spatially homogeneous Hopf bifurcation of
model (1.5) at u v,c c( ) is in fact one of the ODE dynamics (1.4) at the equilibrium u v,c c( ), see [27–29].
Therefore, by combining the analysis in Section 2, we can immediately reach the following result without
any tedious calculations.
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(ii) If (H2) or (H3) is satisfied, then the direction of the Hopf bifurcation is supercritical and the bifurcating

periodic solutions are orbitally asymptotically stable.

Remark 3.1. Note that the existence of the spatially inhomogeneous periodic solutions to model (1.5) has
been obtained in [14, Section 3], and these bifurcating periodic solutions are clearly unstable since the
steady state u v,c c( ) is unstable.

4 Numerical simulations

In this section, we present some numerical simulations to illustrate our theoretical analysis.
The local model (1.4) involves two parameters a σ, . First, choosing parameter σ 1= , we have the critical

point a 40 = . By Theorem 2.1(i), we know the equilibrium ,1
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3 1
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(see Figure 1). From Theorem 2.1(ii), a Hopf bifurcation occurs at a a4.1 0= > , the direction of the bifurca-
tion is supercritical and the bifurcating periodic solutions are asymptotically stable (Figure 2).

Take parameters as a σ d d2, 1, 1, 0.51 2= = = = , then a a 40< = and (H2) are satisfied; the equilibrium
u v, ,c c
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− is still stable under diffusive effects (Figure 3). Initial values are chosen as

u x, 0 0.75 0.001rand 1( ) ( )= + , v x, 0 0.2 0.001rand 1( ) ( )= + .
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If the parameters are taken as a σ d d2, 1, 2, 0.21 2= = = = , then a a 40< = and (H3) are satisfied, the

equilibrium u v, ,c c
1
2

2 1
2( )

( )
=

− is still stable under diffusive effects (Figure 4). Initial values are chosen as

u x, 0 0.75 0.001rand 1( ) ( )= + , v x, 0 0.2 0.001rand 1( ) ( )= + .
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Figure 1: Phase portraits of model (1.4) with parameter =σ 1, the equilibrium
( )

,1
3

3 − 1
3 is locally stable, where = <a a3 0.
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Figure 2: Phase portraits of model (1.4) with parameter =σ 1, the bifurcating periodic solution is stable, where = >a a4.1 0.

Figure 3: Phase portraits of (1.5) with parameters = = = =a σ d d2, 1, 1, 0.51 2 , the equilibrium
( )

,1
2

2 − 1
2 is stable.
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However, when a σ d d2, 1, 10, 0.21 2= = = = , then a a 40< = and (H1) are satisfied; the equilibrium

u v, ,c c
1
2

2 1
2( )

( )
=

− becomes unstable under diffusive effects (Figure 5). Initial values are chosen as

u x, 0 0.75 0.001rand 1( ) ( )= + , v x, 0 0.2 0.001rand 1( ) ( )= + .
Taking a σ d d4.1, 1, 1, 0.51 2= = = = , then a a 40> = and (H2) are satisfied. In this case, theoretical

analysis showed that the limit cycle from Hopf bifurcation is stable for (1.5). For numerical results,
see Figure 6. Initial values are taken as u x, 0 0.75 0.2rand 1( ) ( )= + , v x, 0 0.2 0.2rand 1( ) ( )= + , close to
the limit cycle.

Figure 4: Phase portraits of (1.5) with parameters = = = =a σ d d2, 1, 2, 0.21 2 , the equilibrium ( ),1
2

2 − 1
2 is stable.

Figure 5: Phase portraits of (1.5) with parameters = = = =a σ d d2, 1, 10, 0.21 2 , the equilibrium
( )

,1
2

2 − 1
2 becomes unstable.

Figure 6: Phase portraits of (1.5) with parameters = = = =a σ d d4.1, 1, 1, 0.51 2 . Bifurcated homogeneous periodic solution is
stable.
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The similar phenomenon occurs when parameters are taken as a σ d d4.1, 1, 2, 0.21 2= = = = , then
a a 40> = and (H3) are satisfied. In this case, the limit cycle from Hopf bifurcation is stable for (1.5)
(Figure 7). Initial values are taken as u x, 0 0.75 0.2rand 1( ) ( )= + , v x, 0 0.2 0.2rand 1( ) ( )= + , close to the
limit cycle.

When parameters are taken as a σ d d4.1, 1, 10, 0.21 2= = = = , then a a 40> = and (H1) are satisfied. In
this case, the limit cycle from Hopf bifurcation is unstable for (1.5). Numerical results are shown in Figure 8.
Initial values are taken as u x, 0 0.75 0.2rand 1( ) ( )= + , v x, 0 0.2 0.2rand 1( ) ( )= + .

5 Conclusion

In this article, we study the diffusive predator-prey model (1.5) with hunting cooperation under Neumann
boundary conditions. The predator cooperation in hunting rate a plays a key role in determining the
dynamics of the model. We provide detailed analyses of the Hopf Bifurcation and Turing instability in
model (1.5) via three possible mechanisms: (i) For the local model of (1.5), we analyzed the stability of the
equilibrium and derived conditions for determining the direction of Hopf bifurcation and the stability of
the bifurcating periodic solution by the center manifold and the normal form theory (see Theorem 2.1).
Our result showed that hunting cooperation could be beneficial to the predator population. (ii) We studied
the Turing instability of the reaction-diffusion model (1.5) when the spatial domain is a bounded interval

Figure 7: Phase portraits of (1.5) with parameters = = = =a σ d d4.1, 1, 2, 0.21 2 . Bifurcated homogeneous periodic solution is
stable.

Figure 8: Phase portraits of (1.5) with parameters = = = =a σ d d4.1, 1, 10, 0.21 2 . Bifurcated homogeneous periodic solution is
unstable.
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(see Theorem 3.1). Our result showed that hunting cooperation might be one of the determining factors in
producing Turing patterns. In fact, we can find that Turing instability never occurs in model (1.5) without
hunting cooperative. (iii) Combining the analysis of (i) and (ii), we immediately reach the direction and
stability of the Hopf bifurcation for model (1.5) without any tedious calculations (see Theorem 3.2). More-
over, numerical simulations are also carried out to illustrate theoretical analysis, from which the theoretical
results are verified. More interesting and complex behavior of such models will further be explored.
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