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Abstract: By applying the combination of discrete variational method and approximation, developed in a
previous study [J. Kuang, W. Chen, and Z. Guo, Periodic solutions with prescribed minimal period for second-
order even Hamiltonian systems, Commun. Pure Appl. Anal. 21 (2022), no. 1, 47–59], we overcome some
difficulties in the absence of Ambrosetti-Rabinowitz condition and obtain new sufficient conditions for the
existence of periodic solutions with prescribed minimal period for second-order Hamiltonian systems with
asymptotically linear nonlinearities.
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1 Introduction and main result

In the pioneering work [1] of 1978, Rabinowitz conjectured that the first- and second-order Hamiltonian
systems have nonconstant solutions with any prescribed minimal period. In 1985, Ekeland and Hofer [2]
made important progress and confirmed the conjecture for a first-order Hamiltonian system with strictly
convex assumptions. Since then, the minimal periodic problem of the Hamiltonian system has been exten-
sively studied in the literature. The reader may refer to [3–21]. In particular, Kuang et al. [8] recently intro-
duced a discrete variational method and approximation to study the minimal period problem for second-
order even Hamiltonian systems under the assumption of the Ambrosetti-Rabinowitz condition. Note that
discrete variational methods are very effective tools for difference equations, to mention a few, see [22–37].

Fan and Zhang [3] dealt with the minimal periodic problem for a first-order Hamiltonian system under
the assumption of asymptotically linear nonlinearities. However, little work has been done that has referred
to the minimal periodic problem for second-order Hamiltonian systems with such assumptions. Therefore,
in this article, we mainly consider the minimal periodic problem for the classical second-order Hamiltonian
system

x f x 0,( )″ + = (1)

where x �∈ and f x( ) is asymptotically linear at infinity.
Now, we state our main result.
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Theorem 1.1. Assume that the following conditions hold:
(f1) f C ,� �( )∈ and f x f x( ) ( )− = − for all x �∈ .
(f2)

f x
x

d and f x
x

lim 0 lim 0.
x x 0

( ) ( )
= > =

→∞

∗

→

(f3) There exist two positive constants η
∗
and β such that

f x x F x βf x2( ) ( ) ( )− ≥ (2)

for x η≥
∗
, where F x f s sd

x

0
( ) ( )∫= for x �∈ .

Then, for each T π d2> /
∗ ∗

, problem (1) has at least one nonconstant periodic solution x
∗
with minimal

period T
∗
.

Remark 1.1. The famous Ambrosetti-Rabinowitz condition in the case when x is scalar, there exist two
positive constants η and μ 2> such that

xf x μF x x η0 for all ,( ) ( ) ∣ ∣≥ > ≥

which implies

xf x F x
μ

xf x
μ

xf x μF x
μ

ηf x2 1 2 2 1 2
⎜ ⎟ ⎜ ⎟( ) ( ) ⎛

⎝

⎞

⎠
( ) [ ( ) ( )] ⎛

⎝

⎞

⎠
( )− = − + − ≥ −

for x η≥ , that is, f3( ) in Theorem 1.1 is weaker than that in the Ambrosetti-Rabinowitz condition.

Corollary 1.1. Assume that conditions f1( )– f3( ) hold and d = +∞
∗

. Then, for each T 0>
∗

, problem (1) has at
least one nonconstant periodic solution x

∗
with minimal period T

∗
.

Example 1.1. Let f x( ) be odd with

f x c x c x x
c c x x

, for 1,
, for 0 1,

m

r
1 2

1 2
( ) ⎧

⎨⎩( )
=

− ≥

− ≤ ≤

(3)

where c c r0, 11 2> > > and m0 1< < . It is easy to check that f1( )– f3( ) are satisfied; however, the
Ambrosetti-Rabinowitz condition is not fulfilled. Then, for each T π c2 1> /

∗
, problem (1) has at least one

nonconstant periodic solution x
∗
with minimal period T

∗
by Theorem 1.1.

The rest of this article is organized as follows. In Section 2, we give some preliminary results. In Section
3, we prove Theorem 1.1 by using discrete variational method and approximation.

2 Preliminary results

Let k k0 :� �{ }= > ∈
+ and x x0 :� �{ }= ≥ ∈

∗
. For each T 0>

∗
and x C T0, 2 , �([ ] )∈ /

∗ ∗
, we define x

∗
by

x t x t kT t kT kT T
x kT T t t kT T kT T

, for , 2 ,
, for 2,

( ) ⎧
⎨⎩

( ) [ ]

( ) [ ]
=

− ∈ + /

− + − ∈ + / +

∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

(4)

for all k �∈ , provided that x C T0, 2 , �([ ] )∈ /
∗ ∗

is a nontrivial solution of the following system:

x f x
x x T

0,
0 2 0.

⎧
⎨⎩

( )

( ) ( )

″ + =

= / =
∗

(5)

Then, it follows from f1( ) that x
∗
is a nonconstant solution with minimal period T

∗
of problem (1).
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For each fixed positive integer n, we denote by hn
T
n4=
∗ and u k x khn( ) ( )= for all k n0, 2 �[ ]∈ , where

n0, 2 �[ ] denotes the discrete interval n0, 1, ,2[ ]⋯ . The following system can be regarded as a discrete
analog of (5)

u k h f u k k n
u u n

Δ 1 for 1, 2 1 ,
0 2 0,

n
2 2

�⎧
⎨
⎩

( ) ( ( )) [ ]

( ) ( )

− − = ∈ −

= =

(6)

where Δ is the forward difference operator defined by u k u k u kΔ 1( ) ( ) ( )= + − and u k u kΔ Δ Δ2 ( ) ( ( ))= . Define

K u j u j
h

j n1 for 0 2 1.n j
n n

n
,

( ) ( )
=

+ −

≤ ≤ − (7)

Then, (6) can be written as

K K h f u
K K h f u

K K h f u n

1 ,
2 ,

,
2 1 ,

n n n n

n n n n

n n n n n n

,0 ,1

,1 ,2

,2 2 ,2 1

⎧

⎨

⎪

⎩
⎪

( ( ))

( ( ))

( ( ))

− =

− =

⋯⋯⋯⋯⋯⋯⋯

− = −
− −

(8)

where u u n0 2 0n n( ) ( )= = .
Now, we present the variational framework. Let E u u k u u n: 0 2 0n k

n
0

2{ { ( )} ( ) ( ) }= = = =
=

and
E u E u k k n: 0 for 0 2n n{ ( ) }= ∈ ≥ ≤ ≤

∗ . So, En is isomorphic to n2 1� − . Then, En can be equipped with
the inner product , n⟨⋅ ⋅⟩ and norm n‖⋅‖ as

u v u k v k u v E, , ,n
k

n

n
1

2 1
( ) ( )∑⟨ ⟩ = ∈

=

−

and

u u k ,n
k

n

1

2 1
2

1 2

⎜ ⎟
⎛

⎝

∣ ( )∣
⎞

⎠

∑‖ ‖ =

=

−
/

respectively. For the convenience of notations, we will identify u u u n0, 1 , , 2 1 , 0( ( ) ( ) )= … − with
u u n1 , , 2 1 n2 1�( ( ) ( )) ( )

… − ∈
− .

Consider the functional In defined by

I u u k u k h F u k1
2

.n
k

n

n
k

n

0

2 1 2
2

1

2 1
( )

∣ ( ) ( )∣
( ( ))∑ ∑=

+ −

−

=

−

=

−

(9)

Then, we find that In is Fréchet differentiable in En, and its Fréchet derivative is given by

I u v u k h f u k v k, Δ 1n
k

n

n
1

2 1
2 2( ) [ ( ) ( ( ))] ( )∑⟨ ′ ⟩ = − − −

=

−

(10)

for u and v En∈ . In view of (9) and (10), it is easy to obtain that a critical point of the functional In in En is
a solution of problem (6).

In order to construct an equivalent form for the functional In, define the matrix B by

B

2 1 0 0 0
1 2 1 0 0

0 1 2 0 0

0 0 0 2 1
0 0 0 1 2

.

⎛

⎝

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟
⎟

=

− ⋯

− − ⋯

− ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ −

⋯ −

Then, it is easy to see that
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I u uBu h F u k1
2n

T
n

k

n
2

1

2 1
( ) ( ( ))∑= −

=

−

(11)

and

u
u

u n

B

u
u

u n

Δ 0
Δ 1

Δ 2 2

1
2

2 1

,

2

2

2

⎛

⎝

⎜

⎜
⎜

( )

( )

( )

⎞

⎠

⎟

⎟
⎟

⎛

⎝

⎜

⎜

( )

( )

( )

⎞

⎠

⎟

⎟

−

−

⋯

− −

=

⋯

−

(12)

for u En∈ . By direct computations, we obtain that the eigenvalues of B are given by

λ kπ
n

k n4 sin
4

, 1, 2, , 2 1,k
2

= = … −

and the eigenvector ζk corresponding to λk is given by

ζ kπ
n

kπ
n

n kπ
n

sin
2

, sin 2
2

, ,sin 2 1
2

.k

T
⎛
⎝

( ) ⎞
⎠

= …

−

Now, we recall the definition of the Palais-Smale (PS) condition and the classical mountain pass lemma
needed in the proof of our Theorem 1.1. As usual, let H be a real Banach space, we denote by Br the open ball
in H with radius r and center 0, and Br∂ its boundary.

Definition 2.1. Let H be a real Banach space. A functional I C H R,1( )∈ is said to satisfy the PS condition if
every sequence xj{ } in H , such that I xj{ ( )} is bounded and I x 0j( )′ → as j → +∞, has a convergent
subsequence.

Lemma 2.1. (Mountain pass lemma) Let H be a real Banach space and I C H R,1( )∈ satisfies the PS condition.
Assume that I 0 0( ) = and the following two conditions hold.
(J1) There exist constants a 0> and ρ 0> such that I aBρ ≥

∂
;

(J2) There exists e H B\ ρ∈ such that I e 0( ) ≤ .

Then I possesses a critical value α a≥ . Moreover, α can be characterized as

α I φ sinf max ,
φ sΓ 0,1

( ( ))
[ ]

=

∈ ∈

where

φ C H φ φ eΓ 0, 1 , : 0 0, 1 .{ ([ ] ) ( ) ( ) }= ∈ = =

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following lemma.

Lemma 3.1. Define E u E u k for all k n: 0 0 2n n{ ( ) }= ∈ ≥ ≤ ≤
∗ . If conditions f1( )– f3( ) are satisfied, then (6)

has at least a nontrivial solution un in En
∗. Moreover, there exist positive numbers M

∗
and n

∗
such that

u k T Mn∣ ( )∣ ≤
∗ ∗

for n n≥
∗
and k n1 2 1≤ ≤ − , where M

∗
is independent of n.

Proof. We divide the proof of Lemma 3.1 into three steps.
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Step 1. We prove that problem (6) has a nonzero solution. For this, we first prove that In satisfies the PS
condition. Let I un j{ ( )} be a bounded sequence and I u 0n j( )′ → as j ,→ +∞ where uj{ } is a sequence in En.
Then, there exists a positive constant Mn such that I u Mn j n∣ ( )∣ ≤ for all j Z∈

+. By f2( ), we have

F u
u

f u
u

d dlim 1
2

lim 1
2

is also valid .
u u2

( ) ( )
( )= = = +∞

→∞ →∞

∗ ∗

Since T π d2> /
∗ ∗

, we can choose L 0> such that d L π T4 2 2
> > /

∗ ∗
. Then,

F u
u

d L f u
u

d L dlim 1
2

1
2

and lim is also valid .
u u2

( ) ( )
( )= > = > = +∞

→∞

∗

→∞

∗ ∗

Hence, there exists η 00 > such that

F u L u f u L u u η
2

and for all .2
0( ) ∣ ( )∣ ∣ ∣ ∣ ∣> > > (13)

Let

η η ηmax , 0{ }=
∗

and

M F u L u u ηmax
2

: 0 .0
2⎧

⎨⎩
( ) ∣ ∣ ⎫

⎬⎭
= − ≤ ≤

Then, we have

F u L u M u
2

for all .2
0 �( ) ≥ − ∈ (14)

By the continuity of f , there exist two positive constants σ and P
∗
such that

f u σ f u u F u Pand 2∣ ( )∣ ∣ ( ) ( )∣≤ − ≤
∗

(15)

for u η∣ ∣ ≤ , which, combined with f1( ), f3( ), and (13), produces

f u k u k F u k f u k u k F u k

n P f u k u k F u k

n P β f u k

n P Lβ u k

nP Lβ u k

2 2

2 1 2

2 1

2 1

2 ,

k

n

j j j
u k η u k η

j j j

u k η
j j j

u k η
j

u k η
j

u k η
j

1

2 1

j j

j

j

j

j

[ ( ( )) ( ) ( ( ))]
⎛

⎝
⎜

⎞

⎠
⎟

[ ( ( )) ( ) ( ( ))]

( ) [ (∣ ( )∣)∣ ( )∣ (∣ ( )∣)]

( ) (∣ ( )∣)

( ) ∣ ( )∣

∣ ( )∣

∣ ( )∣ ∣ ( )∣

∣ ( )∣

∣ ( )∣

∣ ( )∣

∣ ( )∣

∑ ∑ ∑

∑

∑

∑

∑

− = + −

≥ − − + −

≥ − − +

≥ − − +

≥ − +

=

−

≤ >

∗

>

∗

>

∗

>

∗

>

(16)

for each j �∈
+.

Denote u u k k nmax : 1 2 1j j{∣ ( )∣ }= ≤ ≤ −
∗

, then u u n2 1 .j j n≥ ‖ ‖ / −
∗

Now, we claim that uj n‖ ‖ is bounded.
Arguing by the contradiction, assume up to a subsequence which we still denote by uj{ }, that uj n‖ ‖ → +∞ as

j → +∞. By I u 0n j( )′ → as j ,→ +∞ we can choose j large enough such that

I u ε Lh β
n2 1

,n j
n
2

( )‖ ′ ‖ < <

−

which, together with (16), produces
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M ε u I u I u u

h f u k u k F u k

nh P Lβh u k

nh P Lβh u k Lβh u k

nh P Lβh u Lβh nη

nh P Lh β
n

u Lβh nη

2 2 ,

2

2

2

2 2

2
2 1

2 ,

n j n n j n j j

n
k

n

j j j

n n
u k η

j

n n
u k η u k η

j n
u k η

j

n n j n

n
n

j n n

2

1

2 1

2 2

2 2 2

2 2 2

2
2

2

j

j j j

( ) ( )

[ ( ( )) ( ) ( ( ))]

∣ ( )∣

⎡

⎣

⎢
⎤

⎦

⎥∣ ( )∣ ∣ ( )∣

∣ ( )∣

∣ ( )∣ ∣ ( )∣ ∣ ( )∣

∑

∑

∑ ∑ ∑

+ ‖ ‖ ≥ − ⟨ ′ ⟩

= −

≥ − +

= − + + −

≥ − + −

≥ − +

−

‖ ‖ −

=

−

∗

>

∗

> ≤ ≤

∗ ∗

∗

(17)

which contradicts the fact that uj n‖ ‖ → +∞ as j → +∞. Hence, In satisfies the PS condition for each n �∈
+.

Next, we show that In satisfies (J1) in Lemma 2.1. It follows from ( f2) that there exist two positive
constants b π T0

2 2
< /

∗
and ρ such that

f x b x F x b x x ρand for all .0 0
2∣ ( )∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣≤ ≤ ≤ (18)

By

h
π
T

lim
sin

,
n

π
n

n

4
=

→∞
∗

there exists a positive integer n
∗
such that

π
T h

π
T

n n
2

sin
for .

π
n

n

2

2
4

2
2

2
⎛

⎝
⎜

⎞

⎠
⎟

≤ ≤ ≥

∗ ∗

∗
(19)

Hence, for all u Bρ∈ ∂ and n n≥
∗
,

I u π
n

u b h u π
T

b h ρ2 sin
4

0.n n n n n
2 2

0
2 2

2

2 0
2 2

⎜ ⎟( ) ⎛

⎝

⎞

⎠
≥ ‖ ‖ − ‖ ‖ ≥ − >

∗

(20)

Thus, In satisfies (J1) in Lemma 2.1.
Finally, we prove that In satisfies (J2) of Lemma 2.1 for n n≥

∗
. Let e En n∈ with

e d π
n

π
n

n π
n

dζsin
2

, sin 2
2

, ,sin 2 1
2

.n

T

1⎛
⎝

( ) ⎞
⎠

= …

−

= (21)

We can choose d large enough such that d M L π
T0 4

2

2> / −

∗

, where the fixed number d is independent of n.
By (14), we have

I e d π
n

kπ
n

h L kπ
n

M2 sin
4

sin
2 2

d sin
2

.n n
k

n

n
k

n
2 2

1

2 1
2 2

1

2 1 2

0⎜ ⎟( ) ⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠
∑ ∑≤ − −

=

−

=

−

(22)

In view of

kπ
n

kπ
n

n

n

sin
2

1
2

1 cos

2 1
2

2 cos sin 2 cos sin 2 cos sin
4 sin

,

k

n

k

n

π
n

π
n

π
n

π
n

nπ π
n

π
n

π
n

1

2 1
2

1

2 1

2
2

2
2

2

2

⎡
⎣

⎤
⎦

∑ ∑= −

=

−

−

+ + ⋯+

=

=

−

=

−

− (23)

which, combined with (22), gives us
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I e nd h π
T

Lnd h h nM nh d L π
T

M2
2

2 2
4

.n n
n n

n n

2 2 2

2

2 2
2

0
2 2

2

2 0⎜ ⎟( ) ⎡

⎣
⎢

⎛

⎝

⎞

⎠

⎤

⎦
⎥

≤ − + ≤ − − +

∗ ∗

(24)

Then, it follows from d M L π
T0 4

2

2> / −

∗

that I e 0n n( ) < . Hence, we have verified all assumptions of Lemma

2.1. For n n≥
∗
, we know that In possesses a critical value αn, where

α I φ s φ C E φ φ einf max , Γ 0, 1 , : 0 0, 1 .n
φ s

n n n
Γ 0,1

( ( )) { ([ ] ) ( ) ( ) }
[ ]

= = ∈ = =

∈ ∈

Thus, (6) has at least a nontrivial solution in En.
Step 2. We prove that problem (6) has a nonzero solution u En n∈

∗ for any n n≥
∗
. For each φ Γ∈ with

φ t φ t φ t φ t, , , n1 2 2 1( ) ( ( ) ( ) ( ))= …
−

satisfying φ 0 0( ) = and φ e1 n( ) = , where en is given in (21), we denote by φ∗,

φ t φ t φ t φ t, , , n1 2 2 1( ) (∣ ( )∣ ∣ ( )∣ ∣ ( )∣)= …
∗

−

for t 0, 1[ ]∈ . It is easy to check that φ Γ∈
∗ ∗, where

φ C E φ φ eΓ 0, 1 , : 0 0, 1 Γ.n n{ ([ ] ) ( ) ( ) }= ∈ = = ⊂
∗ ∗

By f1( ), it is easy to obtain that

I φ s I φ smax max
s

n
s

n
0,1 0,1

( ( )) ( ( ))
[ ] [ ]

≥

∈ ∈

∗

and

α I φ s I φ sinf max inf max .n
φ s

n
φ s

n
Γ 0,1 Γ 0,1

( ( )) ( ( ))
[ ] [ ]

= =

∈ ∈ ∈ ∈
∗

Thus, there exists a nonzero critical point u En n∈
∗ and I u α 0n n n( ) = > for n n≥

∗
.

Step 3. For n n≥
∗
, we claim that there exists a positive constant M

∗
, independent of n, such that

u k M0 n( )≤ ≤
∗
for all k n0 2≤ ≤ . Choose

φ t t π
n

t π
n

t n π
n

d sin
2

, d sin 2
2

, ,d sin 2 1
2

Γ,
T

( ) ⎛
⎝

( ) ⎞
⎠

= …

−

∈

using the similar argument as (24), we have

α I φ s nh M h T Mmax 2 1
2

.n
s

n n n
0,1

2
0 0( ( ))

[ ]
≤ ≤ =

∈

∗ (25)

On the other hand, it follows from (9) and (10) that

α I u I u u h f u k u k F u k1
2

, 1
2

.n n n n n n n
k

n

n n n
2

1

2 1
( ) ( ) ⎛

⎝
( ( )) ( ) ( ( ))⎞

⎠
∑= − ⟨ ′ ⟩ = −

=

−

(26)

Combining f3( ), (15), (25), and (26) together, we obtain that

h f u k h f u k h f u k

σT
β

h f u k u k F u k

σT
β

h f u k u k F u k

β
h f u k u k F u k

β
h P

σT α
βh β

T P σT M T
β β

T P

1
2

2 1
2

1
2

2 1
2

2 1
2

1

1
2

2 1
2

1
2

1
2

,

n
k

j

n n
u k η

n n
u k η

n

n
u k η

n n n

n
u k η

n n n

n
u k η

n n n n
u k η

n

n

1

0

n n

n

n

n n

( ( )) ∣ ( ( ))∣ ∣ ( ( ))∣

⎛
⎝

( ( )) ( ) ( ( ))⎞
⎠

⎛
⎝

( ( )) ( ) ( ( ))⎞
⎠

⎛
⎝

( ( )) ( ) ( ( ))⎞
⎠

∣ ( )∣ ∣ ( )∣

∣ ( )∣

∣ ( )∣

∣ ( )∣ ∣ ( )∣

∑ ∑ ∑

∑

∑

∑ ∑

≤ +

≤ + −

≤ + −

+ − +

≤ + + ≤ + +

= ≤ >

∗

>

∗

>

≤ ≤

∗

∗ ∗ ∗ ∗

∗

∗ ∗

(27)

for each j n1 2 1≤ ≤ − . Let
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M σT M T
β β

T P1
2

1
2

,0
= + +

∗ ∗

∗

∗ ∗ (28)

then, it is easy to check that M
∗
is independent of n. By Step 2, u En n∈

∗ is a nonzero solution to (6), then

K M K M0 and 0 ,n n n,0 ,4 1≤ ≤ ≥ ≥ −
∗ − ∗

(29)

which, combined with (8) and (27), gives us

K K h f u k K h f u k M2n j n n
k

j

n n n
k

j

n, ,0
1

,0
1

∣ ∣ ( ( )) ∣ ∣ ( ( ))∑ ∑= − ≤ + ≤

= =

∗
(30)

for all j n1 2 1≤ ≤ − . Hence,

u k
h

u k u k u u
h

nM1 1 0 4n

n

n n n n

n

( ) ( ( ) ( )) ( ( ) ( ))
=

− − + ⋯+ −

≤
∗

and

u k nM h T M4n n∣ ( )∣ ≤ =
∗ ∗ ∗

for all n n≥
∗
and k n0 2< ≤ , where T

∗
and M

∗
are independent of n, n

∗
is given in (19). This completes the

proof of the lemma. □

By Lemma 3.1, there exists a nonzero solution u En n∈
∗ to (6) for n n≥

∗
. We define xn by

x t

tK t h
tK K h u h t h
tK K h u h t h

tK n h K u n n h t T

, for 0 ,
1 , for 2 ,

2 2 , for 2 3 ,
,

2 1 2 1 , for 2 1 2.

n

n n

n n n n n n

n n n n n n

n n n n n n n

,0

,1 ,1

,2 ,2

,2 1 ,2 1

( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( )

( )

( ) ( ) ( )

=

≤ ≤

− + ≤ ≤

− + ≤ ≤

⋯⋯⋯⋯⋯⋯

− − + − − ≤ ≤ /
− − ∗

(31)

Then, x C T0, 2 ,n �([ ] )∈ /
∗ ∗

with x x T0 2 0n n( ) ( )= / =
∗

for n n≥
∗
.

Now, we are in a position to prove Theorem 1.1.

Proof. First, we prove that there exists a subsequence of xn n n{ }
=

+∞

∗

, which converges uniformly on T0, 2[ ]/
∗

.
For any s and t with s t T0 2≤ ≤ ≤ /

∗
, there exist two integers j1 and j2 such that

j h s t j h ,n n1 2≤ ≤ ≤

satisfying s j h h0 n n1≤ − < and j h t h0 n n2≤ − < . Then, by (29) and (30), we have

x t x s

M t s j j
K t s M t s j j
x t x j h h x j h h x s M t s j j
x t x j h h x j h h x s M t s j j

0 2 , for ,
2 , for 1,

2 , for 2,
2 , for 3.

n n
n j

n n n n n n n n

n n n n n n n n

2 1

, 2 1

1 1 2 1

2 1 2 1

1
∣ ( ) ( )∣

⎧

⎨

⎪

⎩
⎪

( )

∣ ( )∣ ( )

∣ ( ) ( ) ( ) ( )∣ ( )

∣ ( ) ( ) ( ) ( )∣ ( )

− =

≤ − =

− ≤ − = +

− + + + − ≤ − = +

− − + ⋯+ + − ≤ − ≥ +

∗

∗

∗

∗

(32)

Moreover,

x t x t x M t M T0 2n n n∣ ( )∣ ∣ ( ) ( )∣= − ≤ ≤
∗ ∗ ∗

(33)

for t T0 2≤ ≤ /
∗

and n n≥
∗
. By Arzela-Ascoli theorem, we can choose a subsequence, still denoted by

xn n n{ }
=

+∞

∗

, such that x tn n n{ ( )}
=

+∞

∗

converges uniformly to x t( ) on T0, 2[ ]/
∗

, where x C T0, 2 , �([ ] )∈ /
∗ ∗

with
x x T0 2 0( ) ( )= / =

∗
.

Next, we claim that, for each n n≥
∗
, there exists a positive integer k n1, 2 1 �[ ]∈ −

∗
such that

u k ρ.n∣ ( )∣ >
∗

(34)

Suppose by contrary that u k ρn∣ ( )∣ ≤ for all k n1, 2 1 �[ ]∈ − . By (18), we have
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f u k u k b u ,
k

n

n n n n
1

2 1

0
2( ( )) ( )∑ ≤ ‖ ‖

=

−

which, together with (19), produces

I u u π
n

u h f u k u k π
T

b h u, 4 sin
4

2 0n n n n n n
k

n

n n n n n
2 2 2

1

2 1 2

2 0
2 2

⎜ ⎟( ) ( ( )) ( ) ⎛

⎝

⎞

⎠
∑⟨ ′ ⟩ ≥ ‖ ‖ − ≥ − ‖ ‖ >

=

−

∗

(35)

for n n≥
∗
, which contradicts the fact that I u u, 0n n n( )⟨ ′ ⟩ = . Thus, our claim is proved.

Now, we claim that x is a nonzero function. Arguing by the contradiction, assume that x 0= . Since
xn n n{ }

=

+∞

∗

converges uniformly to x on T0, 2[ ]/
∗

for n n≥
∗
, there exists a positive integer n n>

∗
such that

x t ρ n n t Tfor all , 0 2,n∣ ( )∣ ≤ ≥ ≤ ≤ /
∗

(36)

which contradicts (34). Hence, x is a nonzero function.
Finally, we show that x C T0, 2 , �([ ] )∈ /

∗ ∗
is a nonzero solution of problem (5) and x

∗
is a nonconstant

periodic solution with prescribed minimal period T
∗
of problem (1), where x

∗
is given in (4). It follows from

(29) that there exists a subsequence of xn n n{ }
=

+∞

∗

, still denoted by xn n n{ }
=

+∞

∗

, such that

K K nas .n,0 → → +∞
∗

It is easy to check that K 0≥
∗

. By the definition of xn n n{ }
=

+∞

∗

, we have that x tn( ) is left differentiable on T0, 2( ]/
∗

for n n≥
∗
. For every t T0, 2( ]∈ /

∗
, there exists j n0, 2 1 �[ ]∈ − such that jh t j h1n n( )< ≤ + . Then, the left

derivative x tn ( )′
−

is given by

x t K K h f u k K f x s s τ td ,n n j n n
k

j

n n

t

n n, ,0
1

,0

0

( ) ( ( )) ( ( )) ( )∫∑′ = = − = − +
−

=

(37)

where

τ t f x s s h f u k f x s s h f x kh f x s sd d d .n

t

n n
k

j

n

jh

n n
k

j

n n

jh

t

n

0 1 0 1

n

n

( ) ( ( )) ( ( )) ( ( )) ( ( )) ( ( ))∫ ∫ ∫∑ ∑= − = − +

= =

(38)

By (33) and the continuity of f , there exists a positive constant M such that

M f x t M ,n( ( ))− ≤ ≤

then,

M h f x s s M hdn

jh

t

n n

n

( ( ))∫− ≤ ≤ (39)

for all t T0, 2[ ]∈ /
∗

and n n≥
∗
. Since x tn n n{ ( )}

=

+∞

∗

converges uniformly to x t( ) on T0, 2[ ]/
∗

, we have

f x s s h f x kh

f x s s f x s s h f x kh h f x kh f x s s

h f x kh n

d

d d d

0 as ,

jh

n n
k

j

n n

jh jh

n n
k

j

n n
k

j

n n

jh

n
k

j

n

0 1

0 0 1 1 0

1

n

n n n

( ( )) ( ( ))

( ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( ( ))

∫

∫ ∫ ∫

∑

∑ ∑

∑

−

≤ − + + − +

− → → +∞

=

= =

=

(40)

which, together with (39), produces

τ t n0 as .n( ) → → +∞ (41)
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Similarly, we can prove that x tn( ) is right differentiable on T0, 2[ )/
∗

, and the right derivative is given by

x t K f x s s γ td ,n n

t

n n,0

0

( ) ( ( )) ( )∫′ = − +
−

(42)

where γ t 0n( ) → as n → ∞. Given t 0> and δ 0< , for any s, satisfying t δ s t T0 2,≤ + < ≤ ≤ /
∗

there exist
two integers j3 and j4 such that

j h s t j h ,n n3 4< ≤⋯≤ ≤

satisfying s j h h0 n n3< − ≤ and j h t h0 n n4≤ − < . By (8) and (30), it is easy to see that, j h j hn n4 3− ≤

t s h δ h2 2n n− + ≤ − + and

x t x s x j h x j h K K j j h M M δ h1 2 1 2 ,n n n n n n n j n j n n4 3 , 1 , 4 34 3∣ ( ) ( )∣ ∣ ( ) (( ) )∣ ∣ ∣ ( ) ( )′ − ′ = ′ − ′ + = − ≤ − − ≤ − +
− − − − − ∗ ∗

then,

x t M δ h x s x t M δ h2 2 .n n n n n( ) ( ) ( ) ( ) ( )′ − − + ≤ ′ ≤ ′ + − +
− ∗ − − ∗

(43)

Similarly, for any t 0> and δ 0< , satisfying t δ t T0 2≤ + < ≤ /
∗

, there exist two integers j5 and j6 such that

t δ j h j h t,n n5 6+ < ≤⋯≤ ≤

satisfying j h t δ h0 n n5 ( )< − + ≤ and t j h h0 n n6≤ − < . By direct computations, we have

x t δ x t
δ

x t δ x j h
δ

x j h x t
δ

x j h t δ j h
δ

x t j h t
δ

,

n n n n n n n n

n n n n n

5 6

5 6 6

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ −

=

+ −

+ ⋯+

−

=

′ ⋅ + −

+ ⋯+

′ ⋅ −
− −

which, combined with (43), gives us

x t M δ h x t δ x t
δ

x t M δ h2 2 .n n
n n

n n( ) ( )
( ) ( )

( ) ( )′ − − + ≤

+ −

≤ ′ + − +
− ∗ − ∗

(44)

Taking the limit n → +∞ implies

K f x s s M δ x t δ x t
δ

K f x s s M δd 2 d 2 .
t t

0 0

( ( ))
( ) ( )

( ( ))∫ ∫− + ≤

+ −

≤ − −
∗ ∗ ∗ ∗

(45)

Then,

x t δ x t
δ

K f x s slim d
δ

t

0
0

( ) ( )
( ( ))∫

+ −

= −

→

∗

−

(46)

for t T0 2.< ≤ /
∗

Using a similar argument as above, we have

x t δ x t
δ

K f x s slim d
δ

t

0
0

( ) ( )
( ( ))∫

+ −

= −

→

∗

+

(47)

for t T0 2≤ < /
∗

. Thus, x C T0, 2 ,1 �([ ] )∈ /
∗ ∗

, x x T0 2 0( ) ( )= / =
∗

, and

x t K f x s sd
t

0

( ) ( ( ))∫′ − = −
∗

(48)

for t T0 2.≤ ≤ /
∗

Hence, x C T0, 2 , �([ ] )∈ /
∗ ∗

is a nontrivial solution of (5). By f1( ), it is easy to obtain that x
∗

is a nonconstant periodic solution with prescribed minimal periodT
∗
of problem (1), where x

∗
is given in (4).

This completes the proof of Theorem 1.1. □
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