

Research Article

Juhong Kuang* and Weiyi Chen

Minimal period problem for second-order Hamiltonian systems with asymptotically linear nonlinearities

<https://doi.org/10.1515/math-2022-0473>

received October 19, 2021; accepted June 28, 2022

Abstract: By applying the combination of discrete variational method and approximation, developed in a previous study [J. Kuang, W. Chen, and Z. Guo, *Periodic solutions with prescribed minimal period for second-order even Hamiltonian systems*, Commun. Pure Appl. Anal. **21** (2022), no. 1, 47–59], we overcome some difficulties in the absence of Ambrosetti-Rabinowitz condition and obtain new sufficient conditions for the existence of periodic solutions with prescribed minimal period for second-order Hamiltonian systems with asymptotically linear nonlinearities.

Keywords: minimal period, second-order Hamiltonian system, discrete variational method, approximation

MSC 2020: 34A12, 39A23, 39A70

1 Introduction and main result

In the pioneering work [1] of 1978, Rabinowitz conjectured that the first- and second-order Hamiltonian systems have nonconstant solutions with any prescribed minimal period. In 1985, Ekeland and Hofer [2] made important progress and confirmed the conjecture for a first-order Hamiltonian system with strictly convex assumptions. Since then, the minimal periodic problem of the Hamiltonian system has been extensively studied in the literature. The reader may refer to [3–21]. In particular, Kuang et al. [8] recently introduced a discrete variational method and approximation to study the minimal period problem for second-order even Hamiltonian systems under the assumption of the Ambrosetti-Rabinowitz condition. Note that discrete variational methods are very effective tools for difference equations, to mention a few, see [22–37].

Fan and Zhang [3] dealt with the minimal periodic problem for a first-order Hamiltonian system under the assumption of asymptotically linear nonlinearities. However, little work has been done that has referred to the minimal periodic problem for second-order Hamiltonian systems with such assumptions. Therefore, in this article, we mainly consider the minimal periodic problem for the classical second-order Hamiltonian system

$$x'' + f(x) = 0, \quad (1)$$

where $x \in \mathbb{R}$ and $f(x)$ is asymptotically linear at infinity.

Now, we state our main result.

* Corresponding author: Juhong Kuang, School of Mathematics and Computational Sciences, Wuyi University, Jiangmen, P. R. China, e-mail: juhongkuang@163.com

Weiyi Chen: School of Mathematics and Computational Sciences, Wuyi University, Jiangmen, P. R. China

Theorem 1.1. Assume that the following conditions hold:

(f_1) $f \in C(\mathbb{R}, \mathbb{R})$ and $f(-x) = -f(x)$ for all $x \in \mathbb{R}$.
 (f_2)

$$\lim_{x \rightarrow \infty} \frac{f(x)}{x} = d_* > 0 \quad \text{and} \quad \lim_{x \rightarrow 0} \frac{f(x)}{x} = 0.$$

(f_3) There exist two positive constants η_* and β such that

$$f(x)x - 2F(x) \geq \beta f(x) \quad (2)$$

for $x \geq \eta_*$, where $F(x) = \int_0^x f(s)ds$ for $x \in \mathbb{R}$.

Then, for each $T_* > 2\pi / \sqrt{d_*}$, problem (1) has at least one nonconstant periodic solution x_* with minimal period T_* .

Remark 1.1. The famous Ambrosetti-Rabinowitz condition in the case when x is scalar, there exist two positive constants η and $\mu > 2$ such that

$$xf(x) \geq \mu F(x) > 0 \quad \text{for all } |x| \geq \eta,$$

which implies

$$xf(x) - 2F(x) = \left(1 - \frac{2}{\mu}\right)xf(x) + \frac{2}{\mu}[xf(x) - \mu F(x)] \geq \left(1 - \frac{2}{\mu}\right)\eta f(x)$$

for $x \geq \eta$, that is, (f_3) in Theorem 1.1 is weaker than that in the Ambrosetti-Rabinowitz condition.

Corollary 1.1. Assume that conditions (f_1)–(f_3) hold and $d_* = +\infty$. Then, for each $T_* > 0$, problem (1) has at least one nonconstant periodic solution x_* with minimal period T_* .

Example 1.1. Let $f(x)$ be odd with

$$f(x) = \begin{cases} c_1 x - c_2 x^m, & \text{for } x \geq 1, \\ (c_1 - c_2)x^r, & \text{for } 0 \leq x \leq 1, \end{cases} \quad (3)$$

where $c_1 > c_2 > 0$, $r > 1$ and $0 < m < 1$. It is easy to check that (f_1)–(f_3) are satisfied; however, the Ambrosetti-Rabinowitz condition is not fulfilled. Then, for each $T_* > 2\pi / \sqrt{c_1}$, problem (1) has at least one nonconstant periodic solution x_* with minimal period T_* by Theorem 1.1.

The rest of this article is organized as follows. In Section 2, we give some preliminary results. In Section 3, we prove Theorem 1.1 by using discrete variational method and approximation.

2 Preliminary results

Let $\mathbb{Z}^+ = \{k > 0 : k \in \mathbb{Z}\}$ and $\mathbb{R}_* = \{x \geq 0 : x \in \mathbb{R}\}$. For each $T_* > 0$ and $x \in C([0, T_*/2], \mathbb{R}_*)$, we define x_* by

$$x_*(t) = \begin{cases} x(t - kT_*), & \text{for } t \in [kT_*, kT_* + T_*/2], \\ -x(kT_* + T_* - t), & \text{for } t \in [kT_* + T_*/2, kT_* + T_*] \end{cases} \quad (4)$$

for all $k \in \mathbb{Z}$, provided that $x \in C([0, T_*/2], \mathbb{R}_*)$ is a nontrivial solution of the following system:

$$\begin{cases} x'' + f(x) = 0, \\ x(0) = x(T_*/2) = 0. \end{cases} \quad (5)$$

Then, it follows from (f_1) that x_* is a nonconstant solution with minimal period T_* of problem (1).

For each fixed positive integer n , we denote by $h_n = \frac{T}{4n}$ and $u(k) = x(kh_n)$ for all $k \in [0, 2n]_{\mathbb{Z}}$, where $[0, 2n]_{\mathbb{Z}}$ denotes the discrete interval $[0, 1, \dots, 2n]$. The following system can be regarded as a discrete analog of (5)

$$\begin{cases} -\Delta^2 u(k-1) = h_n^2 f(u(k)) & \text{for } k \in [1, 2n-1]_{\mathbb{Z}}, \\ u(0) = u(2n) = 0, \end{cases} \quad (6)$$

where Δ is the forward difference operator defined by $\Delta u(k) = u(k+1) - u(k)$ and $\Delta^2 u(k) = \Delta(\Delta u(k))$. Define

$$K_{n,j} = \frac{u_n(j+1) - u_n(j)}{h_n} \quad \text{for } 0 \leq j \leq 2n-1. \quad (7)$$

Then, (6) can be written as

$$\begin{cases} K_{n,0} - K_{n,1} = h_n f(u_n(1)), \\ K_{n,1} - K_{n,2} = h_n f(u_n(2)), \\ \dots, \\ K_{n,2n-2} - K_{n,2n-1} = h_n f(u_n(2n-1)), \end{cases} \quad (8)$$

where $u_n(0) = u_n(2n) = 0$.

Now, we present the variational framework. Let $E_n = \{u = \{u(k)\}_{k=0}^{2n} : u(0) = u(2n) = 0\}$ and $E_n^* = \{u \in E_n : u(k) \geq 0 \text{ for } 0 \leq k \leq 2n\}$. So, E_n is isomorphic to \mathbb{R}^{2n-1} . Then, E_n can be equipped with the inner product $\langle \cdot, \cdot \rangle_n$ and norm $\|\cdot\|_n$ as

$$\langle u, v \rangle_n = \sum_{k=1}^{2n-1} u(k)v(k), \quad u, v \in E_n$$

and

$$\|u\|_n = \left(\sum_{k=1}^{2n-1} |u(k)|^2 \right)^{1/2},$$

respectively. For the convenience of notations, we will identify $u = (0, u(1), \dots, u(2n-1), 0)$ with $(u(1), \dots, u(2n-1)) \in \mathbb{R}^{(2n-1)}$.

Consider the functional I_n defined by

$$I_n(u) = \sum_{k=0}^{2n-1} \frac{|u(k+1) - u(k)|^2}{2} - h_n^2 \sum_{k=1}^{2n-1} F(u(k)). \quad (9)$$

Then, we find that I_n is Fréchet differentiable in E_n , and its Fréchet derivative is given by

$$\langle I_n'(u), v \rangle = \sum_{k=1}^{2n-1} [-\Delta^2 u(k-1) - h_n^2 f(u(k))] v(k) \quad (10)$$

for u and $v \in E_n$. In view of (9) and (10), it is easy to obtain that a critical point of the functional I_n in E_n is a solution of problem (6).

In order to construct an equivalent form for the functional I_n , define the matrix B by

$$B = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & \dots & 0 & 0 \\ 0 & -1 & 2 & \dots & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 2 & -1 \\ 0 & 0 & 0 & \dots & -1 & 2 \end{pmatrix}.$$

Then, it is easy to see that

$$I_n(u) = \frac{1}{2}uBu^T - h_n^2 \sum_{k=1}^{2n-1} F(u(k)) \quad (11)$$

and

$$\begin{pmatrix} -\Delta^2 u(0) \\ -\Delta^2 u(1) \\ \dots \\ -\Delta^2 u(2n-2) \end{pmatrix} = B \begin{pmatrix} u(1) \\ u(2) \\ \dots \\ u(2n-1) \end{pmatrix}, \quad (12)$$

for $u \in E_n$. By direct computations, we obtain that the eigenvalues of B are given by

$$\lambda_k = 4 \sin^2 \frac{k\pi}{4n}, \quad k = 1, 2, \dots, 2n-1,$$

and the eigenvector ζ_k corresponding to λ_k is given by

$$\zeta_k = \left(\sin \frac{k\pi}{2n}, \sin \frac{2k\pi}{2n}, \dots, \sin \frac{(2n-1)k\pi}{2n} \right)^T.$$

Now, we recall the definition of the Palais-Smale (PS) condition and the classical mountain pass lemma needed in the proof of our Theorem 1.1. As usual, let H be a real Banach space, we denote by B_r the open ball in H with radius r and center 0, and ∂B_r its boundary.

Definition 2.1. Let H be a real Banach space. A functional $I \in C^1(H, \mathbb{R})$ is said to satisfy the PS condition if every sequence $\{x_j\}$ in H , such that $\{I(x_j)\}$ is bounded and $I'(x_j) \rightarrow 0$ as $j \rightarrow +\infty$, has a convergent subsequence.

Lemma 2.1. (Mountain pass lemma) *Let H be a real Banach space and $I \in C^1(H, \mathbb{R})$ satisfies the PS condition. Assume that $I(0) = 0$ and the following two conditions hold.*

- (J₁) *There exist constants $a > 0$ and $\rho > 0$ such that $I_{\partial B_\rho} \geq a$;*
- (J₂) *There exists $e \in H \setminus B_\rho$ such that $I(e) \leq 0$.*

Then I possesses a critical value $\alpha \geq a$. Moreover, α can be characterized as

$$\alpha = \inf_{\varphi \in \Gamma} \max_{s \in [0,1]} I(\varphi(s)),$$

where

$$\Gamma = \{\varphi \in C([0, 1], H) : \varphi(0) = 0, \varphi(1) = e\}.$$

3 Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following lemma.

Lemma 3.1. Define $E_n^* = \{u \in E_n : u(k) \geq 0 \text{ for all } 0 \leq k \leq 2n\}$. If conditions (f₁)–(f₃) are satisfied, then (6) has at least a nontrivial solution u_n in E_n^* . Moreover, there exist positive numbers M_* and n_* such that

$$|u_n(k)| \leq T_* M_*$$

for $n \geq n_*$ and $1 \leq k \leq 2n-1$, where M_* is independent of n .

Proof. We divide the proof of Lemma 3.1 into three steps.

Step 1. We prove that problem (6) has a nonzero solution. For this, we first prove that I_n satisfies the PS condition. Let $\{I_n(u_j)\}$ be a bounded sequence and $I'_n(u_j) \rightarrow 0$ as $j \rightarrow +\infty$, where $\{u_j\}$ is a sequence in E_n . Then, there exists a positive constant M_n such that $|I_n(u_j)| \leq M_n$ for all $j \in \mathbb{Z}^+$. By (f_2) , we have

$$\lim_{u \rightarrow \infty} \frac{F(u)}{u^2} = \frac{1}{2} \lim_{u \rightarrow \infty} \frac{f(u)}{u} = \frac{1}{2} d_* \quad (d_* = +\infty \text{ is also valid}).$$

Since $T_* > 2\pi / \sqrt{d_*}$, we can choose $L > 0$ such that $d_* > L > 4\pi^2 / T_*^2$. Then,

$$\lim_{u \rightarrow \infty} \frac{F(u)}{u^2} = \frac{1}{2} d_* > \frac{1}{2} L \quad \text{and} \quad \lim_{u \rightarrow \infty} \frac{f(u)}{u} = d_* > L \quad (d_* = +\infty \text{ is also valid}).$$

Hence, there exists $\eta_0 > 0$ such that

$$F(u) > \frac{L}{2}u^2 \quad \text{and} \quad |f(u)| > L|u| \quad \text{for all } |u| > \eta_0. \quad (13)$$

Let

$$\bar{\eta} = \max\{\eta_*, \eta_0\}$$

and

$$M_0 = \max \left\{ \left| F(u) - \frac{L}{2}u^2 \right| : 0 \leq |u| \leq \bar{\eta} \right\}.$$

Then, we have

$$F(u) \geq \frac{L}{2}u^2 - M_0 \quad \text{for all } u \in \mathbb{R}. \quad (14)$$

By the continuity of f , there exist two positive constants σ and P_* such that

$$|f(u)| \leq \sigma \quad \text{and} \quad |f(u)u - 2F(u)| \leq P_* \quad (15)$$

for $|u| \leq \bar{\eta}$, which, combined with (f_1) , (f_3) , and (13), produces

$$\begin{aligned} \sum_{k=1}^{2n-1} [f(u_j(k))u_j(k) - 2F(u_j(k))] &= \left(\sum_{|u_j(k)| \leq \bar{\eta}} + \sum_{|u_j(k)| > \bar{\eta}} \right) [f(u_j(k))u_j(k) - 2F(u_j(k))] \\ &\geq -(2n-1)P_* + \sum_{|u_j(k)| > \bar{\eta}} [f(|u_j(k)|)|u_j(k)| - 2F(|u_j(k)|)] \\ &\geq -(2n-1)P_* + \beta \sum_{|u_j(k)| > \bar{\eta}} f(|u_j(k)|) \\ &\geq -(2n-1)P_* + L\beta \sum_{|u_j(k)| > \bar{\eta}} |u_j(k)| \\ &\geq -2nP_* + L\beta \sum_{|u_j(k)| > \bar{\eta}} |u_j(k)|, \end{aligned} \quad (16)$$

for each $j \in \mathbb{Z}^+$.

Denote $u_{j*} = \max\{|u_j(k)| : 1 \leq k \leq 2n-1\}$, then $u_{j*} \geq \|u_j\|_n / \sqrt{2n-1}$. Now, we claim that $\|u_j\|_n$ is bounded. Arguing by the contradiction, assume up to a subsequence which we still denote by $\{u_j\}$, that $\|u_j\|_n \rightarrow +\infty$ as $j \rightarrow +\infty$. By $I'_n(u_j) \rightarrow 0$ as $j \rightarrow +\infty$, we can choose j large enough such that

$$\|I'_n(u_j)\| < \varepsilon < \frac{Lh_n^2\beta}{\sqrt{2n-1}},$$

which, together with (16), produces

$$\begin{aligned}
2M_n + \varepsilon \|u_j\|_n &\geq 2I_n(u_j) - \langle I'_n(u_j), u_j \rangle \\
&= h_n^2 \sum_{k=1}^{2n-1} [f(u_j(k))u_j(k) - 2F(u_j(k))] \\
&\geq -2nh_n^2 P_* + L\beta h_n^2 \sum_{|u_j(k)| > \bar{\eta}} |u_j(k)| \\
&= -2nh_n^2 P_* + L\beta h_n^2 \left[\sum_{|u_j(k)| > \bar{\eta}} + \sum_{|u_j(k)| \leq \bar{\eta}} \right] |u_j(k)| - L\beta h_n^2 \sum_{|u_j(k)| \leq \bar{\eta}} |u_j(k)| \\
&\geq -2nh_n^2 P_* + L\beta h_n^2 u_{j*} - 2L\beta h_n^2 n \bar{\eta} \\
&\geq -2nh_n^2 P_* + \frac{Lh_n^2 \beta}{\sqrt{2n-1}} \|u_j\|_n - 2L\beta h_n^2 n \bar{\eta},
\end{aligned} \tag{17}$$

which contradicts the fact that $\|u_j\|_n \rightarrow +\infty$ as $j \rightarrow +\infty$. Hence, I_n satisfies the PS condition for each $n \in \mathbb{Z}^+$.

Next, we show that I_n satisfies (J_1) in Lemma 2.1. It follows from (f_2) that there exist two positive constants $b_0 < \pi^2 / T_*^2$ and ρ such that

$$|f(x)| \leq b_0|x| \quad \text{and} \quad F(x) \leq b_0|x|^2 \quad \text{for all } |x| \leq \rho. \tag{18}$$

By

$$\lim_{n \rightarrow \infty} \frac{\sin \frac{\pi}{4n}}{h_n} = \frac{\pi}{T_*},$$

there exists a positive integer n_* such that

$$\frac{\pi^2}{2T_*^2} \leq \left(\frac{\sin \frac{\pi}{4n}}{h_n} \right)^2 \leq \frac{\pi^2}{T_*^2} \quad \text{for } n \geq n_*. \tag{19}$$

Hence, for all $u \in \partial B_\rho$ and $n \geq n_*$,

$$I_n(u) \geq 2 \sin^2 \frac{\pi}{4n} \|u\|_n^2 - b_0 h_n^2 \|u\|_n^2 \geq \left(\frac{\pi^2}{T_*^2} - b_0 \right) h_n^2 \rho^2 > 0. \tag{20}$$

Thus, I_n satisfies (J_1) in Lemma 2.1.

Finally, we prove that I_n satisfies (J_2) of Lemma 2.1 for $n \geq n_*$. Let $e_n \in E_n$ with

$$e_n = d \left(\sin \frac{\pi}{2n}, \sin \frac{2\pi}{2n}, \dots, \sin \frac{(2n-1)\pi}{2n} \right)^T = d\zeta_1. \tag{21}$$

We can choose d large enough such that $d > \sqrt{M_0} / \sqrt{\frac{L}{4} - \frac{\pi^2}{T_*^2}}$, where the fixed number d is independent of n . By (14), we have

$$I_n(e_n) \leq 2d^2 \sin^2 \frac{\pi}{4n} \sum_{k=1}^{2n-1} \sin^2 \frac{k\pi}{2n} - h_n^2 \sum_{k=1}^{2n-1} \left(\frac{L}{2} \left(d \sin \frac{k\pi}{2n} \right)^2 - M_0 \right). \tag{22}$$

In view of

$$\begin{aligned}
\sum_{k=1}^{2n-1} \sin^2 \frac{k\pi}{2n} &= \frac{1}{2} \sum_{k=1}^{2n-1} \left[1 - \cos \frac{k\pi}{n} \right] \\
&= \frac{2n-1}{2} - \frac{2 \cos \frac{\pi}{n} \sin \frac{\pi}{2n} + 2 \cos \frac{2\pi}{n} \sin \frac{\pi}{2n} + \dots + 2 \cos \frac{2n\pi - \pi}{n} \sin \frac{\pi}{2n}}{4 \sin \frac{\pi}{2n}} \\
&= n,
\end{aligned} \tag{23}$$

which, combined with (22), gives us

$$I_n(e_n) \leq \frac{2nd^2h_n^2\pi^2}{T_*^2} - \frac{Lnd^2h_n^2}{2} + h_n^22nM_0 \leq 2nh_n^2 \left[-d^2 \left(\frac{L}{4} - \frac{\pi^2}{T_*^2} \right) + M_0 \right]. \quad (24)$$

Then, it follows from $d > \sqrt{M_0} / \sqrt{\frac{L}{4} - \frac{\pi^2}{T_*^2}}$ that $I_n(e_n) < 0$. Hence, we have verified all assumptions of Lemma 2.1. For $n \geq n_*$, we know that I_n possesses a critical value α_n , where

$$\alpha_n = \inf_{\varphi \in \Gamma} \max_{s \in [0,1]} I_n(\varphi(s)), \quad \Gamma = \{\varphi \in C([0,1], E_n) : \varphi(0) = 0, \varphi(1) = e_n\}.$$

Thus, (6) has at least a nontrivial solution in E_n .

Step 2. We prove that problem (6) has a nonzero solution $u_n \in E_n^*$ for any $n \geq n_*$. For each $\varphi \in \Gamma$ with

$$\varphi(t) = (\varphi_1(t), \varphi_2(t), \dots, \varphi_{2n-1}(t))$$

satisfying $\varphi(0) = 0$ and $\varphi(1) = e_n$, where e_n is given in (21), we denote by φ^* ,

$$\varphi^*(t) = (|\varphi_1(t)|, |\varphi_2(t)|, \dots, |\varphi_{2n-1}(t)|)$$

for $t \in [0, 1]$. It is easy to check that $\varphi^* \in \Gamma^*$, where

$$\Gamma^* = \{\varphi \in C([0,1], E_n^*) : \varphi(0) = 0, \varphi(1) = e_n\} \subset \Gamma.$$

By (f_1) , it is easy to obtain that

$$\max_{s \in [0,1]} I_n(\varphi(s)) \geq \max_{s \in [0,1]} I_n(\varphi^*(s))$$

and

$$\alpha_n = \inf_{\varphi \in \Gamma} \max_{s \in [0,1]} I_n(\varphi(s)) = \inf_{\varphi \in \Gamma^*} \max_{s \in [0,1]} I_n(\varphi(s)).$$

Thus, there exists a nonzero critical point $u_n \in E_n^*$ and $I_n(u_n) = \alpha_n > 0$ for $n \geq n_*$.

Step 3. For $n \geq n_*$, we claim that there exists a positive constant M_* , independent of n , such that $0 \leq u_n(k) \leq M_*$ for all $0 \leq k \leq 2n$. Choose

$$\bar{\varphi}(t) = \left(dt \sin \frac{\pi}{2n}, dt \sin \frac{2\pi}{2n}, \dots, dt \sin \frac{(2n-1)\pi}{2n} \right)^T \in \Gamma,$$

using the similar argument as (24), we have

$$\alpha_n \leq \max_{s \in [0,1]} I_n(\bar{\varphi}(s)) \leq 2nh_n^2M_0 = \frac{1}{2}h_nT_*M_0. \quad (25)$$

On the other hand, it follows from (9) and (10) that

$$\alpha_n = I_n(u_n) - \frac{1}{2}\langle I'_n(u_n), u_n \rangle = h_n^2 \sum_{k=1}^{2n-1} \left(\frac{1}{2}f(u_n(k))u_n(k) - F(u_n(k)) \right). \quad (26)$$

Combining (f_3) , (15), (25), and (26) together, we obtain that

$$\begin{aligned} \left| h_n \sum_{k=1}^j f(u_n(k)) \right| &\leq h_n \sum_{|u_n(k)| \leq \bar{\eta}} |f(u_n(k))| + h_n \sum_{|u_n(k)| > \bar{\eta}} |f(u_n(k))| \\ &\leq \frac{1}{2}\sigma T_* + \frac{2}{\beta}h_n \sum_{|u_n(k)| > \bar{\eta}} \left(\frac{1}{2}f(u_n(k))u_n(k) - F(u_n(k)) \right) \\ &\leq \frac{1}{2}\sigma T_* + \frac{2}{\beta}h_n \sum_{|u_n(k)| > \bar{\eta}} \left(\frac{1}{2}f(u_n(k))u_n(k) - F(u_n(k)) \right) \\ &\quad + \frac{2}{\beta}h_n \sum_{|u_n(k)| \leq \bar{\eta}} \left(\frac{1}{2}f(u_n(k))u_n(k) - F(u_n(k)) \right) + \frac{1}{\beta}h_n \sum_{|u_n(k)| \leq \bar{\eta}} P_* \\ &\leq \frac{1}{2}\sigma T_* + \frac{2\alpha_n}{\beta h_n} + \frac{1}{2\beta}T_*P_* \leq \frac{1}{2}\sigma T_* + \frac{M_0T_*}{\beta} + \frac{1}{2\beta}T_*P_*, \end{aligned} \quad (27)$$

for each $1 \leq j \leq 2n-1$. Let

$$M_* = \frac{1}{2}\sigma T_* + \frac{M_0 T_*}{\beta} + \frac{1}{2\beta} T_* P_*, \quad (28)$$

then, it is easy to check that M_* is independent of n . By Step 2, $u_n \in E_n^*$ is a nonzero solution to (6), then

$$0 \leq K_{n,0} \leq M_* \quad \text{and} \quad 0 \geq K_{n,4n-1} \geq -M_*, \quad (29)$$

which, combined with (8) and (27), gives us

$$|K_{n,j}| = \left| K_{n,0} - h_n \sum_{k=1}^j f(u_n(k)) \right| \leq |K_{n,0}| + \left| h_n \sum_{k=1}^j f(u_n(k)) \right| \leq 2M_* \quad (30)$$

for all $1 \leq j \leq 2n-1$. Hence,

$$\left| \frac{u_n(k)}{h_n} \right| = \left| \frac{(u_n(k) - u_n(k-1)) + \dots + (u_n(1) - u_n(0))}{h_n} \right| \leq 4nM_*$$

and

$$|u_n(k)| \leq 4nM_* h_n = T_* M_*$$

for all $n \geq n_*$ and $0 < k \leq 2n$, where T_* and M_* are independent of n , n_* is given in (19). This completes the proof of the lemma. \square

By Lemma 3.1, there exists a nonzero solution $u_n \in E_n^*$ to (6) for $n \geq n_*$. We define x_n by

$$x_n(t) = \begin{cases} tK_{n,0}, & \text{for } 0 \leq t \leq h_n, \\ tK_{n,1} - K_{n,1}h_n + u_n(1), & \text{for } h_n \leq t \leq 2h_n, \\ tK_{n,2} - 2K_{n,2}h_n + u_n(2), & \text{for } 2h_n \leq t \leq 3h_n, \\ \dots, \\ tK_{n,2n-1} - (2n-1)h_n K_{n,2n-1} + u_n(2n-1), & \text{for } (2n-1)h_n \leq t \leq T_*/2. \end{cases} \quad (31)$$

Then, $x_n \in C([0, T_*/2], \mathbb{R}_*)$ with $x_n(0) = x_n(T_*/2) = 0$ for $n \geq n_*$.

Now, we are in a position to prove Theorem 1.1.

Proof. First, we prove that there exists a subsequence of $\{x_n\}_{n=n_*}^{+\infty}$, which converges uniformly on $[0, T_*/2]$. For any s and t with $0 \leq s \leq t \leq T_*/2$, there exist two integers j_1 and j_2 such that

$$j_1 h_n \leq s \leq t \leq j_2 h_n,$$

satisfying $0 \leq s - j_1 h_n < h_n$ and $0 \leq j_2 h_n - t < h_n$. Then, by (29) and (30), we have

$$|x_n(t) - x_n(s)| = \begin{cases} 0 \leq 2M_*(t-s), & \text{for } j_2 = j_1, \\ |K_{n,j_1}(t-s)| \leq 2M_*(t-s), & \text{for } j_2 = j_1 + 1, \\ |x_n(t) - x_n(j_1 h_n + h_n) + x_n(j_1 h_n + h_n) - x_n(s)| \leq 2M_*(t-s), & \text{for } j_2 = j_1 + 2, \\ |x_n(t) - x_n(j_2 h_n - h_n) + \dots + x_n(j_1 h_n + h_n) - x_n(s)| \leq 2M_*(t-s), & \text{for } j_2 \geq j_1 + 3. \end{cases} \quad (32)$$

Moreover,

$$|x_n(t)| = |x_n(t) - x_n(0)| \leq 2M_* t \leq M_* T_* \quad (33)$$

for $0 \leq t \leq T_*/2$ and $n \geq n_*$. By Arzela-Ascoli theorem, we can choose a subsequence, still denoted by $\{x_n\}_{n=n_*}^{+\infty}$, such that $\{x_n(t)\}_{n=n_*}^{+\infty}$ converges uniformly to $x(t)$ on $[0, T_*/2]$, where $x \in C([0, T_*/2], \mathbb{R}_*)$ with $x(0) = x(T_*/2) = 0$.

Next, we claim that, for each $n \geq n_*$, there exists a positive integer $k_* \in [1, 2n-1]_{\mathbb{Z}}$ such that

$$|u_n(k_*)| > \rho. \quad (34)$$

Suppose by contrary that $|u_n(k)| \leq \rho$ for all $k \in [1, 2n-1]_{\mathbb{Z}}$. By (18), we have

$$\sum_{k=1}^{2n-1} f(u_n(k))u_n(k) \leq b_0 \|u_n\|_n^2,$$

which, together with (19), produces

$$\langle I'_n(u_n), u_n \rangle \geq 4 \sin^2 \frac{\pi}{4n} \|u_n\|_n^2 - h_n^2 \sum_{k=1}^{2n-1} f(u_n(k))u_n(k) \geq \left(\frac{2\pi^2}{T_*^2} - b_0 \right) h_n^2 \|u_n\|_n^2 > 0 \quad (35)$$

for $n \geq n_*$, which contradicts the fact that $\langle I'_n(u_n), u_n \rangle = 0$. Thus, our claim is proved.

Now, we claim that x is a nonzero function. Arguing by the contradiction, assume that $x = 0$. Since $\{x_n\}_{n=n_*}^{+\infty}$ converges uniformly to x on $[0, T_*/2]$ for $n \geq n_*$, there exists a positive integer $\bar{n} > n_*$ such that

$$|x_n(t)| \leq \rho \quad \text{for all } n \geq \bar{n}, 0 \leq t \leq T_*/2, \quad (36)$$

which contradicts (34). Hence, x is a nonzero function.

Finally, we show that $x \in C([0, T_*/2], \mathbb{R}_*)$ is a nonzero solution of problem (5) and x_* is a nonconstant periodic solution with prescribed minimal period T_* of problem (1), where x_* is given in (4). It follows from (29) that there exists a subsequence of $\{x_n\}_{n=n_*}^{+\infty}$, still denoted by $\{x_n\}_{n=n_*}^{+\infty}$, such that

$$K_{n,0} \rightarrow K_* \quad \text{as } n \rightarrow +\infty.$$

It is easy to check that $K_* \geq 0$. By the definition of $\{x_n\}_{n=n_*}^{+\infty}$, we have that $x_n(t)$ is left differentiable on $(0, T_*/2]$ for $n \geq n_*$. For every $t \in (0, T_*/2]$, there exists $j \in [0, 2n-1]_{\mathbb{Z}}$ such that $jh_n < t \leq (j+1)h_n$. Then, the left derivative $x'_{n-}(t)$ is given by

$$x'_{n-}(t) = K_{n,j} = K_{n,0} - h_n \sum_{k=1}^j f(u_n(k)) = K_{n,0} - \int_0^t f(x_n(s))ds + \tau_n(t), \quad (37)$$

where

$$\tau_n(t) = \int_0^t f(x_n(s))ds - h_n \sum_{k=1}^j f(u_n(k)) = \int_0^{jh_n} f(x_n(s))ds - h_n \sum_{k=1}^j f(x_n(kh_n)) + \int_{jh_n}^t f(x_n(s))ds. \quad (38)$$

By (33) and the continuity of f , there exists a positive constant \bar{M} such that

$$-\bar{M} \leq f(x_n(t)) \leq \bar{M},$$

then,

$$-\bar{M}h_n \leq \int_{jh_n}^t f(x_n(s))ds \leq \bar{M}h_n \quad (39)$$

for all $t \in [0, T_*/2]$ and $n \geq n_*$. Since $\{x_n(t)\}_{n=n_*}^{+\infty}$ converges uniformly to $x(t)$ on $[0, T_*/2]$, we have

$$\begin{aligned} & \int_0^{jh_n} f(x_n(s))ds - h_n \sum_{k=1}^j f(x_n(kh_n)) \\ & \leq - \int_0^{jh_n} f(x(s))ds + \int_0^{jh_n} f(x_n(s))ds + h_n \sum_{k=1}^j f(x(kh_n)) - h_n \sum_{k=1}^j f(x_n(kh_n)) + \int_0^{jh_n} f(x(s))ds \\ & \quad - h_n \sum_{k=1}^j f(x(kh_n)) \rightarrow 0 \quad \text{as } n \rightarrow +\infty, \end{aligned} \quad (40)$$

which, together with (39), produces

$$\tau_n(t) \rightarrow 0 \quad \text{as } n \rightarrow +\infty. \quad (41)$$

Similarly, we can prove that $x_n(t)$ is right differentiable on $[0, T_* / 2]$, and the right derivative is given by

$$x'_{n-}(t) = K_{n,0} - \int_0^t f(x_n(s))ds + \gamma_n(t), \quad (42)$$

where $\gamma_n(t) \rightarrow 0$ as $n \rightarrow \infty$. Given $t > 0$ and $\delta < 0$, for any s , satisfying $0 \leq t + \delta < s \leq t \leq T_* / 2$, there exist two integers j_3 and j_4 such that

$$j_3 h_n < s \leq \dots \leq t \leq j_4 h_n,$$

satisfying $0 < s - j_3 h_n \leq h_n$ and $0 \leq j_4 h_n - t < h_n$. By (8) and (30), it is easy to see that, $j_4 h_n - j_3 h_n \leq t - s + 2h_n \leq -\delta + 2h_n$ and

$$|x'_{n-}(t) - x'_{n-}(s)| = |x'_{n-}(j_4 h_n) - x'_{n-}((j_3 + 1)h_n)| = |K_{n,j_4-1} - K_{n,j_3}| \leq 2(j_4 - j_3 - 1)h_n M_* \leq 2M_*(-\delta + h_n),$$

then,

$$x'_{n-}(t) - 2M_*(-\delta + h_n) \leq x'_{n-}(s) \leq x'_{n-}(t) + 2M_*(-\delta + h_n). \quad (43)$$

Similarly, for any $t > 0$ and $\delta < 0$, satisfying $0 \leq t + \delta < t \leq T_* / 2$, there exist two integers j_5 and j_6 such that

$$t + \delta < j_5 h_n \leq \dots \leq j_6 h_n \leq t,$$

satisfying $0 < j_5 h_n - (t + \delta) \leq h_n$ and $0 \leq t - j_6 h_n < h_n$. By direct computations, we have

$$\begin{aligned} \frac{x_n(t + \delta) - x_n(t)}{\delta} &= \frac{x_n(t + \delta) - x_n(j_5 h_n)}{\delta} + \dots + \frac{x_n(j_6 h_n) - x_n(t)}{\delta} \\ &= \frac{x'_{n-}(j_5 h_n) \cdot (t + \delta - j_6 h_n)}{\delta} + \dots + \frac{x'_{n-}(t) \cdot (j_6 h_n - t)}{\delta}, \end{aligned}$$

which, combined with (43), gives us

$$x'_{n-}(t) - 2M_*(-\delta + h_n) \leq \frac{x_n(t + \delta) - x_n(t)}{\delta} \leq x'_{n-}(t) + 2M_*(-\delta + h_n). \quad (44)$$

Taking the limit $n \rightarrow +\infty$ implies

$$K_* - \int_0^t f(x(s))ds + 2M_* \delta \leq \frac{x(t + \delta) - x(t)}{\delta} \leq K_* - \int_0^t f(x(s))ds - 2M_* \delta. \quad (45)$$

Then,

$$\lim_{\delta \rightarrow 0^-} \frac{x(t + \delta) - x(t)}{\delta} = K_* - \int_0^t f(x(s))ds \quad (46)$$

for $0 < t \leq T_* / 2$. Using a similar argument as above, we have

$$\lim_{\delta \rightarrow 0^+} \frac{x(t + \delta) - x(t)}{\delta} = K_* - \int_0^t f(x(s))ds \quad (47)$$

for $0 \leq t < T_* / 2$. Thus, $x \in C^1([0, T_* / 2], \mathbb{R}_*)$, $x(0) = x(T_* / 2) = 0$, and

$$x'(t) - K_* = - \int_0^t f(x(s))ds \quad (48)$$

for $0 \leq t \leq T_* / 2$. Hence, $x \in C([0, T_* / 2], \mathbb{R}_*)$ is a nontrivial solution of (5). By (f_1) , it is easy to obtain that x_* is a nonconstant periodic solution with prescribed minimal period T_* of problem (1), where x_* is given in (4). This completes the proof of Theorem 1.1. \square

Funding information: This work was supported by the National Natural Science Foundation of China (No. 11901438) and the Natural Science Foundation of Guangdong Province, China (No. 2021A1515010062).

Conflict of interest: The authors state no conflict of interest.

References

- [1] P. Rabinowitz, *Periodic solutions of Hamiltonian systems*, Comm. Pure Appl. Math. **31** (1978), 157–184, DOI: <https://doi.org/10.1002/cpa.3160310203>.
- [2] I. Ekeland and H. Hofer, *Periodic solutions with prescribed period for convex autonomous Hamiltonian systems*, Invent. Math. **81** (1985), 155–188, DOI: <https://doi.org/10.1007/BF01388776>.
- [3] Z. Fan and D. Zhang, *Minimal period solutions in asymptotically linear Hamiltonian system with symmetries*, Discrete Contin. Dyn. Syst. **41** (2021), no. 5, 2095–2124, DOI: <https://doi.org/10.3934/dcds.2020354>.
- [4] G. Fei and Q. Qiu, *Minimal periodic solutions of nonlinear Hamiltonian systems*, Nonlinear Anal. **27** (1996), no. 7, 821–839, DOI: [https://doi.org/10.1016/0362-546X\(95\)00077-9](https://doi.org/10.1016/0362-546X(95)00077-9).
- [5] G. Fei and T. Wang, *The minimal period problem for nonconvex even second-order Hamiltonian systems*, J. Math. Anal. Appl. **215** (1997), no. 2, 543–559, DOI: <https://doi.org/10.1006/jmaa.1997.5666>.
- [6] G. Fei, S. Kim, and T. Wang, *Solutions of minimal period for even classical Hamiltonian systems*, Nonlinear Anal. **43** (2001), no. 3, 363–375, DOI: [https://doi.org/10.1016/S0362-546X\(99\)00199-6](https://doi.org/10.1016/S0362-546X(99)00199-6).
- [7] M. Girardi and M. Matzeu, *Solutions of minimal period for a class of nonconvex Hamiltonian systems and applications to the fixed energy problem*, Nonlinear Anal. **10** (1986), no. 4, 371–382, DOI: [https://doi.org/10.1016/0362-546X\(86\)90134-3](https://doi.org/10.1016/0362-546X(86)90134-3).
- [8] J. Kuang, W. Chen, and Z. Guo, *Periodic solutions with prescribed minimal period for second-order even Hamiltonian systems*, Commun. Pure Appl. Anal. **21** (2022), no. 1, 47–59, DOI: <http://dx.doi.org/10.3934/cpaa.2021166>.
- [9] C. Liu, *Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian system*, Discrete Contin. Dyn. Syst. **27** (2010), no. 1, 337–355, DOI: <http://dx.doi.org/10.3934/dcds.2010.27.337>.
- [10] C. Liu and Y. Long, *Iteration inequalities of the Maslov-type index theory with applications*, J. Differential Equations **165** (2000), no. 2, 355–376, DOI: <https://doi.org/10.1006/jdeq.2000.3775>.
- [11] C. Liu and X. Zhang, *Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth*, Discrete Contin. Dyn. Syst. **37** (2017), no. 3, 1559–1574, DOI: <http://dx.doi.org/10.3934/dcds.2017064>.
- [12] C. Liu, L. Zuo, and X. Zhang, *Minimal periodic solutions of first-order convex Hamiltonian systems with anisotropic growth*, Front. Math. China **13** (2018), 1063–1073, DOI: <https://doi.org/10.1007/s11464-018-0721-0>.
- [13] Y. Long, *The minimal period problem of periodic solutions for autonomous superquadratic second-order Hamiltonian systems*, J. Differential Equations **111** (1994), no. 1, 147–174, DOI: <https://doi.org/10.1006/jdeq.1994.1079>.
- [14] Y. Long, *The minimal period problem of classical Hamiltonian systems with even potentials*, Ann. Inst. H. Poincaré Anal. C Non Linéaire **10** (1993), no. 6, 605–626, DOI: [https://doi.org/10.1016/S0294-1449\(16\)30199-8](https://doi.org/10.1016/S0294-1449(16)30199-8).
- [15] C. Souissi, *Orbits with Minimal Period for a class of Autonomous Second Order Onedimensional Hamiltonian System*, Georgian Math. J. **25** (2018), no. 1, 117–122, DOI: <https://doi.org/10.1515/gmj-2016-0054>.
- [16] C. Souissi, *Generalized Ambrosetti-Rabinowitz Condition for Minimal Period Solutions of Autonomous Hamiltonian System*, Arch. Math. (Basel) **109** (2017), 73–82, DOI: <https://doi.org/10.1007/s00013-017-1029-0>.
- [17] Q. Wang, Z. Wang, and J. Shi, *Subharmonic oscillations with prescribed minimal period for a class of Hamiltonian systems*, Nonlinear Anal. **28** (1997), no. 7, 1273–1282, DOI: [https://doi.org/10.1016/S0362-546X\(97\)82874-X](https://doi.org/10.1016/S0362-546X(97)82874-X).
- [18] Y. Xiao, *Periodic solutions with prescribed minimal period for the second-order Hamiltonian systems with even potentials*, Acta Math. Sin. (Engl. Ser.) **26** (2010), 825–830, DOI: <https://doi.org/10.1007/s10114-009-8305-2>.
- [19] H. Xiao and Z. Shen, *Periodic solutions with prescribed minimal period to Hamiltonian systems*, J. Inequal Appl. **2020** (2020), 257, DOI: <https://doi.org/10.1186/s13660-020-02524-4>.
- [20] D. Zhang, *Symmetric period solutions with prescribed minimal period for even autonomous semipositive Hamiltonian systems*, Sci. China Math. **57** (2014), 81–96, DOI: <https://doi.org/10.1007/s11425-013-4598-9>.
- [21] D. Zhang, *Minimal period problems for brake orbits of nonlinear autonomous reversible semipositive Hamiltonian systems*, Discrete Contin. Dyn. Syst. **35** (2015), no. 5, 2227–2272, DOI: <https://doi.org/10.3934/dcds.2015.35.2227>.
- [22] G. Bonanno, P. Candito, and G. D. Agùì, *Variational methods on finite dimensional Banach spaces and discrete problems*, Adv. Nonlinear Stud. **14** (2014), no. 4, 915–939, DOI: <https://doi.org/10.1515/ans-2014-0406>.
- [23] G. Bonanno, P. Jebelean, and C. Serban, *Superlinear discrete problems*, Appl. Math. Lett. **52** (2016), 162–168, DOI: <https://doi.org/10.1016/j.aml.2015.09.005>.

- [24] P. Chen and X. Tang, *Existence of homoclinic orbits for 2nth-order nonlinear difference equations containing both many advances and retardations*, J. Math. Anal. Appl. **381** (2011), no. 2, 485–505, DOI: <https://doi.org/10.1016/j.jmaa.2011.02.016>.
- [25] G. D. Agùì, J. Mawhin, and A. Sciammetta, *Positive solutions for a discrete two point nonlinear boundary value problem with p -Laplacian*, J. Math. Anal. Appl. **447** (2017), no. 1, 383–397, DOI: <https://doi.org/10.1016/j.jmaa.2016.10.023>.
- [26] Z. Guo and J. Yu, *The existence of periodic and subharmonic solutions of subquadratic second-order difference equations*, J. Lond. Math. Soc. **68** (2003), no. 2, 419–430, DOI: <https://doi.org/10.1112/S0024610703004563>.
- [27] Z. Guo and J. Yu, *Existence of periodic and subharmonic solutions for second-order superlinear difference equations*, Sci. China Math. **46** (2003), no. 4, 506–515, DOI: <https://doi.org/10.1007/BF02884022>.
- [28] Z. Guo and J. Yu, *Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems*, Nonlinear Anal. **55** (2003), 969–983, DOI: <https://doi.org/10.1016/j.na.2003.07.019>.
- [29] J. Kuang and Z. Guo, *Heteroclinic solutions for a class of p -Laplacian difference equations with a parameter*, Appl. Math. Lett. **100** (2020), 106034, DOI: <https://doi.org/10.1016/j.aml.2019.106034>.
- [30] J. Kuang, *Existence of homoclinic solutions for higher-order periodic difference equations with p -Laplacian*, J. Math. Anal. Appl. **417** (2014), 904–917, DOI: <https://doi.org/10.1016/j.jmaa.2014.03.077>.
- [31] J. Kuang and L. Kong, *Positive solutions for a class of singular discrete Dirichlet problems with a parameter*, Appl. Math. Lett. **109** (2020), 106548, DOI: <https://doi.org/10.1016/j.aml.2020.106548>.
- [32] Y. Long and J. Chen, *Existence of multiple solutions to second-order discrete Neumann boundary value problems*, Appl. Math. Lett. **83** (2018), 7–14, DOI: <https://doi.org/10.1016/j.aml.2018.03.006>.
- [33] Y. Long and S. Wang, *Multiple solutions for nonlinear functional difference equations by the invariant sets of descending flow*, J. Difference Equ. Appl. **25** (2019), no. 12, 1768–1789, DOI: <https://doi.org/10.1080/10236198.2019.1694014>.
- [34] Q. Zhang, *Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions*, Commun. Pure Appl. Anal. **18** (2019), no. 1, 425–434, DOI: <http://dx.doi.org/10.3934/cpaa.2019021>.
- [35] Z. Zhou and J. Ling, *Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕ_c -Laplacian*, Appl. Math. Lett. **91** (2019), 28–34, DOI: <https://doi.org/10.1016/j.aml.2018.11.016>.
- [36] Z. Zhou and D. Ma, *Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials*, Sci. China Math. **58** (2015), 781–790, DOI: <https://doi.org/10.1007/s11425-014-4883-2>.
- [37] Z. Zhou, J. Yu, and Y. Chen, *Homoclinic solutions in periodic difference equations with saturable nonlinearity*, Sci. China Math. **54** (2011), 83–93, DOI: <https://doi.org/10.1007/s11425-010-4101-9>.