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Abstract: This paper intend to study the following critical fractional Schrédinger-Kirchhoff-Poisson
equations with electromagnetic fields in R3:

eXM([uB DD)3u + VOOu + (X3 # [ufu = fOx, [uPu + [uPs2u, xeR

Under suitable assumptions, together with the concentration compactness principle and variational
method, we prove that the existence and multiplicity of semiclassical solutions for above problem as € — 0.
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1 Introduction

This paper deals with the existence and multiplicity of solutions for the critical fractional Schrédinger-
Kirchhoff-Poisson equations with electromagnetic fields in R3:

eXM([uls DD3u + VOO + (X uu = fOx [uPu + u2u,  xeR?, (11

where € > 0 is a positive parameter, 3/4 <s<1, 0 <t <1, 25=6/(3 - 2s) is the usual Sobolev critical
exponent, V is an electric potential, and (-A)5 and A are called the magnetic operator and magnetic
potential, respectively. According to d’Avenia and Squassina in [1], the fractional operator (-A)3, which
up to normalization constants, can be defined on smooth functions u as follows

X+y

u(x) - eiy-A(% )u(y)
|X _ y|N+Zs

(~A)5u(x) = 2lim j dy, xeRV,
£—-0

RN\ Be(x)
and magnetic potential A is given by

X+y

([ G — AT ypp
[, = jl | dxdy.

X — y|N+25

Throughout the paper, the electric potential V, Kirchhoff function 91, and f satisfy the following
assumptions:
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(V) V(x) € C(R3,R), V(0) = min, g3V (x) = 0, and thereis b > 0 such that the set V? = {x ¢ RN : V(x) < b}
has finite Lebesgue measure.

() (My) The Kirchhoff function 9t :R{ — R* is continuous, and there exists mg > O such that

infs. oM(s) = mg. (M) There exists o€ (2/2;,1] satisfying o.Z(t) > M(t)t for all t =0,

where .Z(t) = I;ﬁﬁ(s)ds.
(9 (fi) fe CR?x R,R)and f(x, t) = o(|t|) uniformly in x ast — 0. (f>) There exist ¢, > 0 and q € (2, 2%)
such that |f(x, t)] < co(l + t%). (f3) There exist ly > 0, max{2/0, 4} < r, and max{2/0, 4} < p < 2

such that F(x, t) > lo|t['/?, and uF(x, t) < 2f(x, t)t for all (x, t) € R3 x R, where F(x, t) = J;f(x, s)ds.

First, our motivation to study problem (1.1) mainly comes from the application of the fractional mag-
netic operator. We note that the equation with fractional magnetic operator often arises as a model for
various physical phenomena, in particular in the study of the infinitesimal generators of Lévy stable
diffusion processes [2]. Also, the number of literature on nonlocal operators and their applications has
been studied, and hence, we refer interested readers to [3-7]. To further research this kind of equation by
variational methods, many scholars have established the basic properties of fractional Sobolev spaces,
readers are referred to [8,9].

Next, we note that some works that appeared in recent years concerning the follwing magnetic
Schrédinger equation without Poisson term:

—(Vu — iA)%u + Vu = f(x, |u)u, (1.2)
where the magnetic operator in (1.2) is given by
—(Vu — iA)%u = —Au + 2iAX)-Vu + |[A()Pu + iudivA(x).

As stated in the study by Squassina and Volzone [10], up to correcting the operator by the factor (1 - s),
it follows that (-A)5u converges to —(Vu — iA)?u as s — 1. Thus, up to normalization, the nonlocal case can
be seen as an approximation of the local one. Recently, many researchers have paid attention to the
equations with fractional magnetic operator. In particular, Mingqi et al. [11] studied some existence results
of Schrodinger-Kirchhoff type equation involving the fractional p-Laplacian and the magnetic operator:

M([uE D(-0ju + VOOu = f(x, [uDu  in RY, (1.3)

where f satisfies the subcritical growth condition. For the critical growth case, the authors in [12] first
considered the following fractional Schrodinger equations:

e5(=A)j,u + VOu = f(x, [uu + KOOuP«2u in RV, (1.4)

They obtained the existence of ground state solution u, by using variational methods. Subsequently, Liang
et al. [13] proved the existence and multiplicity of solutions to a class of Schrodinger-Kirchhoff type
equation in the non-degenerate case. We draw the attention of the reader to the degenerate case involving
the magnetic operator in the study by Liang et al. [14].

On the other hand, for case A = 0 in problem (1.1), there have been numerous articles dedicated to the
study of the fractional Schrédinger-Poisson system as it appears in an interesting physical context. For
example, Giammetta in [15] first studied the local and global well-posedness of a fractional Schrédinger-
Poisson system in one dimension. Zhang et al. in [16] obtained the existence of radial ground state solution
to the fractional Schrédinger-Poisson system with a general subcritical or critical nonlinearity by using the
perturbation approach. In [17], Murcia and Siciliano proved that the number of positive solutions for a class
of doubly singularly perturbed fractional Schrodinger-Poisson system via the Ljusternick-Schnirelmann
category. Liu in [18] concerned with the existence of multibump solutions for the fractional Schrédinger-
Poisson system through the Lyapunov-Schmidt reduction method. Chen et al. in [19] admitted the exis-
tence of the Nehari-type ground state solutions for fractional Schrédinger-Poisson system by using
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the non-Nehari manifold approach. For more related results, we can cite the recent works [20-24] and the
references therein.

Once we turn our attention to the Schrédinger-Kirchhoff-Poisson equations with electromagnetic fields,
we immediately see that the literature is relatively scarce. In this case, we can cite the recent works [25,26].
We call attention to Ambrosio in [27] proved that the multiplicity and concentration results for a class of
fractional Schrodinger-Poisson type equation with magnetic field and subcritical growth. For the critical
growth case, Ambrosio in [28] also obtained the multiplicity and concentration of nontrivial solutions to the
fractional Schrédinger-Poisson equation with the magnetic field. However, to the best of our knowledge,
semiclassical solutions to fractional magnetic Schrédinger-Poisson equations problem (1.1) have not ever
been considered until now.

Inspired by the previously mentioned works, our main objective is to study the critical fractional
Schrédinger-Kirchhoff-Poisson equations with electromagnetic fields. The proof of these assertions is given
by means of concentration compactness principle and variational method. For this purpose, we will use
some minimax arguments. Moreover, due to the appearance of the critical term, the Sobolev embedding
does not possess compactness. To this end, we need some technical estimations.

We are now in a position to state the existence result as follows.

Theorem 1.1. Let (V) and (F) hold. If 9 satisfies (M;) and (M,), then the following statements hold:
(1) For any x > O, there is &, > O such that if 0 < € < &, then problem (1.1) has at least one solution
U, satisfying

ou-1 2 1 «
- j F(x, lugP)dx + (; - z—z)ngﬁsdx < &%, (1.5)
R3 R>
9 Dagerup, + [ - L jV(x)wgde < xe. (1.6)
2 u 2 u e

Moreover, u, > 0OinEase — 0.

(2) Foranym € Nandx > 0, there is Epy > 0 such that if 0 < € < Eyy, then problem (1.1) has at least m pairs
of solutions ug ;, ug, i, i = 1, 2,..., m which satisfy the estimates (1.5) and (1.6). Moreover, u.; — 0 in E as
e—0,i=1,2,...,m.

The main feature of our consequence in the present paper is to establish the multiplicity result for
problem (1.1) under the critical growth condition. There is no doubt that we encounter serious difficulties
because of the lack of compactness. To overcome the challenge, we use the concentration-compactness
principles for fractional Sobolev spaces according to [29—31] to prove the (PS). condition at special levels c.
On the other hand, we need to develop new techniques to construct sufficiently small minimax levels.

The rest of our paper is organized as follows. In Section 2, we briefly review some properties of the
Sobolev spaces with fractional order. In Section 3, we prove the Palais-Smale condition at some special
energy levels by using the concentration-compactness principles for fractional Sobolev spaces. Section 4
deals with the existence and multiplicity result for problem (1.1).

2 Preliminaries

In this section, we briefly review the definitions and list some basic properties of the Lebesgue spaces,
which we use throughout this article.
For any s € (0, 1), fractional Sobolev space H3(R3, C) is defined by

Hi([R3, C) = {u € 2R3, C) : [ulsa < oo},
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where s € (0, 1) and [u]s 4 denotes the so-called Gagliardo semi-norm, that is,

1/2
_ iy A 2
s - | [0 CP g |
[RG

|X _ y|N+Zs

and H3(R?, C) is endowed with the norm
Nullgsre ey = (Qul2a + Iul):.
For the reader’s convenience, we will use the following embedding theorem, see Lemma 3.5 in [1].
Proposition 2.1. The space H5(R3, C) is continuously embedded in LY(R3, C) for all 9 € [2, 2]. Furthermore,

the space H;5(R3, C) is continuously compact embedded in L9(K, C) for all 9 € [2,2;] and any compact
set K ¢ R3,

Next, we have the following diamagnetic inequality, and its proof can be found in the study by d’Avenia
and Squassina [1].

Lemma 2.1. Let u € H;(RY), then |u| € H(R3). That is,
ullls < Nulls,a-

From Proposition 3.6 in [2], for all u € HS(R3), we have

[uls = "(_A)%”LZ(R3) ,
ie.

J‘ ux) — u(y)P

dxdy = I|(—A)§u(x)|2dx.
|X _ y|3+25 %

Moreover,

J‘ (u(x) - u(y)(v)

IX _ y|3+29

=YD gy = I(—A)%u(x)-(—A)%v(x)dx.
[R3
For problem (1.1), we will use the Banach space E defined by
E=lueHR,C): IV(X)lulzdx <o
[R3

with the norm

1
2

s = | [P + jV(x)luFdx
[R3

By the assumption (V), we know that the embedding E — H3(R3, C) is continuous. Note that the norm |-||g
is equivalent to the norm |-|. defined by

Nl

lull = | [l 4 + e-Bj VooluPdx

[R3

for each € > 0.
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Obviously, for each 0 < [2, 2¢], there is ¢y > O such that
[ulo < collulle < collulle, (2.1

where 0 < € < 1. Hereafter, we shortly denote by |- |, the norm of Lebesgue space L(Q) with v > 1.
Now, let s, t € (0, 1) such that 4s + 2t > 3, we can see that

HS(R3,R) — L3%(R3, R). (2.2)
Then, by (2.2), we have
quvdx < IIulliBu ||V||2[ < CIIuIIHs([Rs LTS
[R3

for u € H5(R3, R), where

_ 2
VR s, = J‘ ) - uP o dxdy.

|3+2t

Then, by the Lax-Milgram theorem, there exists a unique l,bli | such that 1/J|fl| € D4(R3, R) such that
(—A)tll)lill = [u in R3. (2.3)

Therefore, we obtain the following ¢-Riesz formula:

3o TG =20 u(y)P
Y0 = mi j oy, YR 2.4)

We note that the aforementioned integral is convergent at infinity since |uf® € Lﬁ(ﬂ@, R). Next we collect
some properties of !,[)lfl I’ which will be used in this paper. The following proposition can be proved by using

similar arguments as [27,28].

Proposition 2.2. Assume that 4s + 2t > 3 holds, for any u € E, we have
Q) l[)lzl : HS(R3,R) — D%2(R3, R) is continuous and maps bounded sets into bounded sets;

(ii) ifu, — uinkE, then ‘/’ﬁm - l,blf” in D42(R3, R);
(iii) l,blfwl = “zlpﬁu for any « € R and "DILCW)I(X) = 'P|L|(X +Y);

(iv) l[)lf” > O for all u € E. Moreover,

t 2 2
t2m3ny < Cllu < Clu
W o) < Ol . < Clul}
and

ty2 4 4
ul?dx < Cllu < Cllull?.
[l/),u|l Pdx < Clull s . < Clulf

3 Behavior of (PS) sequences

In this section, to overcome the lack of compactness caused by the critical exponents, we intend to employ
the second concentration-compactness principle, see [29-31] for more details. Moreover, to obtain the
solution of problem (1.1), we will use the following equivalent form:

M2 ) (-D)53u + ESVOOU + plu = e 25FCx, [uP I + e luf-2u, (3.1)
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for x € R3. Now, let us consider the Euler-Lagrange functional J; : E — R associated with (1.1), defined by

—2s -2s
=Ly + 27 £v<x>|u|2dx - £w|;||u|2dx

. : (3.2)

R
25
—E T Fox, upydx - EZ J|u|2§dx.
2 2
R? R?

It is clear that 7, is of class C}(E, R) under the assumptions () (see [32]). Moreover, for all u, v € E,
the Fréchet derivative of 7, is given by

Xty

ALY u(y)(v(x) — el AL y(yy)
dx

|X _ y|3+25

(7160, vy =M(uE ) Re | [ e dy
. (3.3)

+ £ %Re IV(X)quX + & 5Re J.lplf”u\?dx - & 5Re I(|u|22-2u + f(x, [u?)u)vdx.
R3 R3 R?

Thus, the weak solutions of (1.1) coincide with the critical points of 7.
The main result of this section is the following compactness result.

Lemma 3.1. Let (V) and () hold. If 9 satisfies (M) and (M), then for any O < € < 1, J. satisfies (PS),
condition, for all ¢ € (0, 0ye3~%), where 0y = (% - %)(mOS)%, that is, any (PS).-sequence {u,}, C E has

a strongly convergent subsequence in E.

Proof. Let (u,), be a (PS),, sequence for 7, we first claim that (u,), is bounded in E. In fact, by J(u,) — ¢
and 7 .(u,) — 0 in E', it follows from (M,) and (f;) that

c+ 0(1)"un”£ = js(un) - %(jfg(un)’ un) = %/%([un]g,A) - %m([un]g,A)[un]g,A

" (l _ 1)825 IV(X)|Un|2dX " (l - l)gzs Ilplt I|u,,|2dx
2 u 4 p o
R® R’

-2s 1 2 21 2 1 1) J 2%
.y I(Hf(x, [t )t 4F(X, [un|*) |dx + vz € i dx (3.4)
R3 R’
- (i - l]M([un];A)[unlﬁ,A : (1 - 1)6'25 | veonpax
200 u 2 s
R

vV

(g - l)mo[un g,A + (l - l)ezs IV(X)lunlde-
2 u 2 u e

We know that {u,}, is bounded in E from max{2/ 0, 4} < u < 2;. Furthermore, we can obtain ¢ > 0 by passing
to the limit in (3.4). Hence, by diamagnetic inequality, {|u,|}, is bounded in H5(R3). Then, by using the
fractional version of concentration compactness principle in the fractional Sobolev space (see [29-31]),
up to a subsequence, we have

u, - u a.e.in R3, (3.5)

U, — u inE,

|(~A)u, 2 — p=|(-A):uf> + 1 + 26,(].]1}. in the sense of measures in M(R3), (3.6)
jel
> — v=|u + Zé‘x].vj in the sense of measures in M(R?3), 3.7)

jel
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v < (S for je ), (3.8)

where S is the best Sobolev constant, i.e.,
[ -myuP dx

S = R

ueHS(R3)\ {0} I[R3|u|2§dx

x € RV, and 6, are Dirac measures at x; and y;, and v; are constants. Moreover, we have

timsup [ 1-a)iuPax = [ dy + (3.9)
n—-oo [R3 [R3
limsup I |up | dx = Idv + Voos (3.10)
n—oo [R3 [R3

Voo < (573, (3.11)

where
Y, = lim limsup I [(=A)2uy * dx,

R0 po0
{xeR3:|x|>R}

Voo = lim limsup I un|% dx.
R—00 pnooo
{xeR3:|x|>R}
In the following, we shall prove that
J=9@ and vy,=0.
Now, we suppose on the contrary that J +# &. Then, we can construct a smooth cut-off function,
take ¢ € C°(R3) such that 0 < ¢ <1; ¢ =1 in B(x;, €), ¢(x) = 0 in R3\B(x;, 2¢). For any € > 0, define

. = ¢(X_)(j), where j € J. It is not difficult to see that {u,¢,}, is bounded in E. Then Ji(un), unp,) — 0,

€

which implies

_ all-p)-A(Y 2
(il [ 1,00 = € PR 4 o [ veonapa,coax
R® R>

|X _ y|3+25

(3.12)

IX _ y|3+Zs y

00 - A T
- Re{ M) ” (un(x) - Un(Y NP () — ¢.(¥) dd
[RG

- [l lunP g+ e [nPigde+ e [ F0 Pl $.000 + 0,01,
R? R’ R>

It is easy to verify that

IX _ y|3+25

J‘J‘||un(x)|—|un()/)||2¢g(y) dxdy — J ¢du as n— oo
R® R

and

fqbgdu - u(x}h) asp—0.
[R3

Note that the Holder inequality yields
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R

@

() — DA () CNB) — B.7))
N[ m” dxdy

|X y|3+19

e I 1) = A ()1 1,00 = g MO, o)
|X y|3+ls
1/2
c J‘ unCOP P00 - ¢, (y)l2
- ) |X y|3+23
R
Lemma 3.4 in [33] gives that
- [unCOP |, () — (Y
fm tm [ ey 0. G14)
Due to the fact that f has the subcritical growth and ¢, has the compact support, we have that
tim lim [ 05, P unP g x = [ £, luP)luf dx = 0 (3.15)
£=0n=00 R3 3
and
lim lim j¢|;n||un|2¢gdx = Iw,;,lulzcbgdx = 0. (3.16)
[R3

Since q,')p has compact support, so that, letting n — co in (3.12), we can deduce from (3.13)-(3.16)
the diamagnetic inequality and (M) that

mou({x}) < e,

Inserting this into (3.11), we obtain v; > (mOS)%€3. By J.(u,) — ¢y and J (u,) — 0asn — oo, it follows from
(3.4) that

Cc= nh—>IEo (je(un) - l(j:;(un)a un))

2(1——) J‘|u|2dx>(l—i)825v > 0%,
7 TR

where 0; = (i - %)(aOS)%. This is an obvious contradiction. Hence, | = @.

Next, we prove that v,, = 0. Suppose on the contrary that v,, > 0. To obtain the possible concentration
of mass at infinity, we similarly define a cut off function ¢, € C°(RY) such that ¢y(x) =0 on |x| <R
and ¢p(x) = 1 on [x| > R + 1. We can verify that {u,¢y}, is bounded in E, and hence, (7 (un), unpg) — O,
and this implies that asn — co

I(X )-A 2
M([unls 4) Jlun(x) A hun(y) $r(y)

P dxdy + e [ VOOl 0

[R3

l(X )-A —
el H (wn(0) = €40 )y (LGNGO — ) ey 517)

|X y|3+25

e Mu Jun2h,dx + &7 j s e + € jf(x It ()l + 04D

[R3



886 —— Zhongyi Zhang

As mentioned earlier, we have

limsup limsup j J ”“n("):; |_”ny(|§’+)2lf¢R(y) dxdy = o

and
Re lon(iu2 ) ”( U (x) — elonA('s )un(Y)3)u21;(X)(¢R(X) 2
b —yP*
-d| |un(X)|2||;l>}_z();|)3+—B¢R(y)|2 y "

Since

limsup limsup I I |un(x)|2|l;l>R(>yfT3+—2s¢R(y)I2 dxdy

unCOPI(1 = pp(x)) - (1 - ¢R()’))|2

|un
= limsup hmsup

R—c0 n—oo |X Y|3+2S

Similar to the proof of Lemma 3.4 in [33], we can show that

J‘ |un (P11 = p(x)) - (1 - ¢R(y))|2dx

dy = 0.
|X _ y|3+25

limsup limsup
R—o0 n—oo

Moreover, we proceed as in (3.15) and (3.16) to obtain

lim lim | 0, [un)unl 000X = 0

R—oon—o0
[R3

and

R—oon—oo

lim lim sz‘;n‘|un|2¢Rdx - j¢|;‘|u|2¢Rdx _o.
[R3

By (3.11) and letting R — oo in (3.17), we obtain
Mot < € SV
By (3.17), we obtain v, > (aoS)x€3. Thus, we have
c2 (l - i*)ezsj‘ [up[%dx > (l - i*)ezsvOO > 0pe37%,
woz) ) no2

where 0y = (% - i)(mOS)%. Thus,
[ ke — [ lusax
R’ R?

From the Brézis—Lieb lemma, we obtain

U, - u in L%R3) as n — oo.

DE GRUYTER

(3.18)

By the weak lower semicontinuity of the norm, condition (M), and the Brézis-Lieb lemma, we have
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O(utnll = (T eutn)> Un) = M([unl2 Dlunl2p + €% jV(X>Iun|2dX
[R3
+e> I¢lin|lun|2dx - J-Iunlzzdx - If(X, [ s [ dx
R3 R’ R’

> mo(unl2 s - [u,) + £ fV(x)qunP ~ uP)dx + MU DU 4
[R3

+ &5 IV(X)|u|2dx + % J‘l/)‘f”lulzdx - I|u|2§dx - J-f(x, [u?)|uf?dx
R> R’ R? R>

> min{mo, lu, — ulZ + o(D)ull,.

Here, we use the fact that J.(u) = 0. This fact implies that (u,), strongly converges to u in E. Hence,
the proof is complete. O

4 Proof of Theorem 1.1

To prove Theorem 1.1, let 0 < € < 1, and we first prove that functional J.(u) has the mountain pass
geometry.

Lemma 4.1. Let (V) and (¥) hold. If M satisfies (M;) and (M,), then
(Cy) there exist two positive constants B, p, > 0 such that J(u) > 0ifu € B, \{0} and J(u) = B, ifu € B,

where B, = {u € E : |ul: <p.};
(C,) for any finite dimensional subspace H C E,

Je(w) » —c0o as ueH with |ul, — co.

amp

-1
Proof. From condition (¥), we can take ¢ < (2 min{T, %}sz) &% and there exists ¢¢ > 0 such that

1 « 1 *
1 j ufdx + & fF(x, uP)dx < glu + coluf%,
2 2 2 -2

where c, is the embedding constant given by (2.1). From (3.2), we obtain that

. omg 1 2 _ 2 _ 2*
> min{ 220, 2hiul? - el - eeuf}
1 . omg 1 2 _ 2* *
> mln{—, —}Ilull‘g - e Bcgculz.
2 2 2 s

This fact implies that the conclusion (C;) in Lemma 4.1 holds true since 2; > 2.
Now we verify condition (G,) of Lemma 4.1. We note that (M) implies that

() < %tw = CotV? forall t >ty > 0. (4.1)
0
Thus, for all u € H, we have
C 2 1 e exs  »
Jew) < Sl + Sl + == Clully - ——Jul: — & loluly.
S

Since all norms in a finite-dimensional space are equivalent, 2 < 2/0 < 2; and 4 < 2 since % <s<l1,
we obtain that (G,) in Lemma 4.1 is valid. This completes the proof. O
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Next, we will prove that J.(u) satisfies (PS). on the special finite-dimensional subspace. To do this, by
assumption (V), we choose xo € RY such that V(xo) = min, x5V (x) = 0. Without loss of generality, we can
assume from now on that xo = 0.

Let I, € CY(E, R) be defined by

-2s
L) = %ﬂ([u]ﬁ,As) P j VOOluPdx — e f jufr dx
3 3

From (f;), we can obtain Jo(u) < I,(u) forallu € E.
On the other hand, from Lemma 3.5 in [12], we know that

inf j dedy Y ;EO(W), B, = 1! = o.

|3+Zs

Thus, for any 1 > { > 0, one can choose qb( € C§°(R3) with |¢(|, =1 and supp (;b( ¢ B,(0) so that

|¢((X) - ¢(()’)|2 6-G-25)r
” oy xdy = cg
Set
he(x) = eMO%,(x) (4.2)
and
he,¢(x) = he(e7x). (4.3)

From condition (f;), we have
1/o0

dxdy

2
to

Ie(the,() <

I e () — e DALY g ()P

_0
2 |X _ y|3+23

t4
" ?S_B J.V(x)lhg,glzdx v e I|¢|§1sﬂ||hg,(|2dx e Ilhg,d’dx
[R3

1/o0

i(x-y)-A
C | Cops [ Ihe0) = A IR

2 ) |X y|3+25
R

t2 t*
+ S J-V(sx)|h(|2dx v e j|¢l;d||h(|2dx ~tl, J‘lhglrdx
3 [R3 3

< 351 (thy),

where

1/0

J juCo) — e AL uy)p dxdy

|X _ y|3+29

R
. j VieluPdx + - jwlulnude loj|u|f
[R

Since r > 2/ 0, there exists a finite number £, € [0, +co) such that
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1/0

z(x )-A
mang(th()< J-J‘lh{(X) | (% )h((J’)|2

X — |3+25

£
+ ?O IV(SX)Ih(|2dX + ZO J‘ll)|§?(|||h(|2dx.
3 |R3
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Let l,D((X) = eiA(O)Xd)((x), where (;b((x) is as defined earlier. From Lemma 3.6 in [12], we have the following

lemma.

Lemma 4.2. For any { > 0, there exists € = £€o({) > O such that

6-(3-25)r 1
T + —

1(x )-A 2
I | (x) — el 3(+25 )h((y)l <t 5y Ao,
~yl t-s' s

for all 0 < € < gy and some constant C > 0 depending only on [¢];s o.

On the one hand, since V(0) = 0 and note that supp¢( C B,,(0), there is &* > 0 such that
¢

2
¢l2

V(ex) < | forall x| <r; and O<e<e"

This fact together with Proposition 2.2 imply that
max I (thy) < N({),
t=0

where

6-G-2) 1 1o g2
r ?{zs + %(25) + _0(

MO =L (cc :

6— (3 Zs)r

+ c(cc ! e %(25 + ()2.

Therefore, for all 0 < € < min{e,, £*}, we have

m%xjg(th;) < N(()e3%,
t>

Thus, we have the following result.

(4.4)

(4.5)

(4.6)

Lemma 4.3. Let (V) and (¥) hold. If 9 satisfies (M) and (M), for any k > 0, there exists E, > O such that for

each 0 < € < &, there is é; € E with |&| > p,, J:(é:) < 0 and

max J,(t&,) < ke3~%,
te[0,1]

(4.7)

Proof. Let { > O satisfies N({) < k. Set &y = min{ey, £} and ﬁ> 0 be such that ?glll,bg’(llg > p, and
Je(t,, () <Oforallt> /tl Choose &, = /tl!,bg’ o by (4.6), we know that the conclusion of Lemma 4.3 holds.

O

To obtain the multiplicity of solutions, one can choose m* ¢ N functions ¢(" € C§°(R3 such that

supp ¢;n supp ¢f = @, 1 # k, |¢jls = 1 and

_ 2
J‘J‘ |¢((X) ¢((J/)| dxdy < C(ef(a;zs)r.
|X y|3+25
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Let r(’"* > 0 be such that supp (;b(" C B,"((O) fori=1,2,..., m". Set
hi(x) = eiA(O)X(p{"(x) (4.8)
and
R ((0) = hi(e™). (4.9)
Denote
-

= span{héc, h., ,hs'“{}

Letu = Z?;Ci g",( € E’?*, thus

ot
[u]g,As < CZ|Ci|2 [hé,(]g,As,

i=1
m* )
[ veowpax = Yiap [ Vool Pax
R3 i=1 R3
and
(a2 (Foompyax = S L [1ant mars L [ Foc iehtax
> | uPsdx+ = | FOx, [uP) —Z; e, ¢ dx + = | FOx lehe, g P)dx |
SR R3 T Rs R’
Therefore,

Jeu) < €Y Je(chl o)
i=1

for some constant C > 0. By a similar argument as earlier, we know that
Je(cihi o) < 51 cilh}).

As mentioned earlier, we can obtain the following estimate:

max J,(u) < Cm*N({)e>~> (4.10)
ueH" °
for all { small enough and some constant C > 0. Now, let Fyy = g"g = span {hg,(, hé(, ,hgm(} From (4.10),

we have the following lemma.

Lemma 4.4. Let (V) and () hold. If M satisfies (My) and (M), for any m* € N and x > 0, there exists Epc > 0
such that for each 0 < € < Eyyy, there exists an m*-dimensional subspace F.,; satisfying

max Jo(u) < ke37%,
ueFy,#

We now establish the existence and multiplicity results.

Proof of Theorem 3.1 (1). For any O < k < gy, we choose &, > 0 and define for 0 < € < &, the minimax
value

Cg = lnf maX]g(té\S))
yeEte[0,1]

where

Ee={y e C(0,1,E): y(0) =0 and y(1) = &;}.
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By Lemma 4.1, we have a, < ¢, < ke>~%. From Lemma 3.1, we know that J, satisfies the (PS)., condition,
and there is u, € E such that Ji(u,) = 0 and J.(u;) = ¢.. Then u, is a nontrivial solution of problem (3.1).

Moreover, it is well known that a mountain pass solution is a ground state solution of problem (3.1).
On the other hand, for t € [2, 2§], we have

k3= > Je(ug) = Je(ug) - %]é(us)us

> (9 . 1)mo[u£]§A + (l - 1)525 [veonerax
2 T e 2 T ,
R

N (l . i*)gk [ e+ (E _ 1)8’25 [ Fox, upyax.
T 25 R3 T 2 R3

Taking 7 = 2/0, we obtain the estimate (1.5), and taking T = u, we obtain the estimate (1.6). This completes
the proof of Theorem 3.1 (1). O

(4.11)

Proof of Theorem 3.1 (2). Denote the set of all symmetric (in the sense that —-Z = Z) and closed subsets of
E by X, for each Z € X. Let gen(Z) be the Krasnoselski genus and

j(Z) == mingen (l(Z) n aBQS),
L5
where Zy; is the set of all odd homeomorphisms € C(E, E) and g, is the number from Lemma 4.1. Then j is

a version of Benci’s pseudoindex [34]. Let

¢ = inf supje(u), 1<i<m".
J@)2iyez

Since J.(u) > a, forallu € ang and since j(E,) = dimE,, = m*, we obtain

Qe < Cea<-< Conr < SUP Jo(u) < k&35,
ueH,,»

It follows from Lemma 3.1 that J; satisfies the (PS),, condition at all levels ¢ < 0ye3~%. By the usual critical
point theory, all c.; are critical levels and J; has at least m* pairs of nontrivial critical points satisfying

a; < Jo(ue) < x5,

Hence, problem (3.1) has at least m* pairs of solutions. Finally, as in the proof of Theorem 3.1, we see that
these solutions satisfy the estimates (1.5) and (1.6). O

Acknowledgments: The authors would like to thank the anonymous referee for his/her useful comments
and suggestions which help to improve and clarify the paper greatly.

Funding information: Z. Zhang was supported by 2020 Nanjing Vocational College of Information
Technology Doctoral special fund project “Study on the Climate Ensemble Forecast Model Based on
the East Asian Monsoon Region” (YB20200902) and the National Natural Science Foundation of China
(No. 12001061).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: The authors state no conflict of interest.



892 —— Zhongyi Zhang DE GRUYTER

References

(1]

(2]

3]

(4]

9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. d’Avenia and M. Squassina, Ground states for fractional magnetic operators, ESAIM Control Optim. Calc. Var. 24 (2018),
no. 1, 1-24, DOI: https://doi.org/10.1051/cocv/2016071.

E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolevspaces, Bull. Sci. Math. 136 (2012),
no. 5, 521-573, DOI: https://doi.org/10.1016/j.bulsci.2011.12.004.

F. G. Dilizgiin and A. lannizzotto, Three nontrivial solutions for nonlinear fractional Laplacian equations, Adv. Nonlinear
Anal. 7 (2018), no. 2, 211-226, DOI: https://doi.org/10.1515/anona-2016-0090.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305,

DOI: https://doi.org/10.1016/S0375-9601(00)00201-2.

L. Ledesma and E. César, Multiplicity result fornon-homogeneous fractional Schrédinger-Kirchhoff-type equations in RV,
Adv. Nonlinear Anal. 7 (2018), no. 3, 247-257, DOI: https://doi.org/10.1515/anona-2015-0096.

S. Liang, V. Radulescu, and B. Zhang, Least-energy nodal solutions of critical Kirchhoff problems with logarithmic non-
linearity, Anal. Math. Phys. 10 (2020), no. 4, 1-31, DOI: https://doi.org/10.1007/s13324-020-00386-z.

S. Liang, H. Pu, and V. Radulescu, High perturbations of critical fractional Kirchhoff equations with logarithmic non-
linearity, Appl. Math. Lett. 116 (2021), no. 6, 107027, DOI: https://doi.org/10.1016/j.aml.2021.107027.

G. Molica Bisci, V. Radulescu, and R. Servadei, Variational methods for nonlocal fractional equations, Encyclopedia of
Mathematics and its Applications, Cambridge University Press, Cambridge, 2016.

N. Papageorgiou, V. Radulescu, and D. Repovs, Nonlinear Analysis-Theory and Methods, Springer, Berlin

Heidelberg, 2019.

M. Squassina and B. Volzone, Bourgain-Brézis-Mironescu formula for magnetic operators, C. R. Math. Acad. Sci. Paris 354
(2016), no. 8, 825-831, DOI: https://doi.org/10.1016/j.crma.2016.04.013.

X. Minggqi, P. Pucci, M. Squassina, and B. Zhang, Nonlocal Schrédinger-Kirchhoff equations with external magnetic field,
Discrete Contin. Dyn. Syst. 37 (2017), no. 3, 1631-1649, DOI: https://doi.org/10.3934/dcds.2017067.

Z. Binlin, M. Squassina, and X. Zhang, Fractional NLS equations with magnetic field, critical frequency and critical growth,
Manuscripta Math. 155 (2018), no. 1-2, 115-140, DOI: https://doi.org/10.1007/s00229-017-0937-4.

S. Liang, D.D. Repovs, and B. Zhang, On the fractional Schrodinger-Kirchhoff equations with electromagnetic fields and
critical nonlinearity, Comput. Math. Appl. 75 (2018), no. 5, 1778-1794, DOI: https://doi.org/10.1016/j.camwa.2017.11.033.
S. Liang, D.D. Repovs, and B. Zhang, Fractional magnetic Schrodinger-Kirchhoff problems with convolution and critical
nonlinearities, Math. Models Methods Appl. Sci. 43 (2020), no. 5, 2473-2490, DOI: https://doi.org/10.1002/mma.6057.
A. R. Giammetta, Fractional Schrddinger-Poisson-Slater System in One Dimension, arXiv:1405.2796.

). Zhang, J. M. Do O, and M. Squassina, Fractional Schrédinger-Poisson systems with a general subcritical or critical
nonlinearity, Adv. Nonlinear Stud. 16 (2016), no. 1, 15-30, DOI: https://doi.org/10.1515/ans-2015-5024.

E. Murcia and G. Siciliano, Positive semiclassical states for afractional Schrédinger-Poisson system, Differential Integral
Equations (2017), no. 3-4, 231-258, DOI: http://projecteuclid.org/euclid.die/1487386824.

W. Liu, Existence of multi-bump solutions for the fractional Schrédinger-Poisson system, ). Math. Phys. 57 (2016), no. 9,
091502, 17 pp, DOI: https://doi.org/10.1063/1.4963172.

S. Chen, ). Peng, and X. Tang, Ground state solutions for asymptotically periodic fractional Schrddinger-Poisson problems
with asymptotically cubic or super-cubic nonlinearities, Math. Methods Appl. Sci. 40 (2017), no. 13, 4948-4961,

DOI: https://doi.org/10.1002/mma.4360.

V. Ambrosio, An existence result for a fractional Kirchhoff-Schrédinger-Poisson system, Z. Angew. Math. Phys. 69 (2018),
no. 2, 1-13, DOI: https://doi.org/10.1007/s00033-018-0921-1.

V. Ambrosio, Multiplicity and concentration results for a class of critical fractional Schrédinger-Poisson systems via
penalization method, Commun. Contemp. Math. 22 (2020), no. 1, 1850078, 45, DOI: https://doi.org/10.1142/
S50219199718500785.

S. Liang and B. Zhang, Sign-changing solutions for fourth-order elliptic equations of Kirchhoff type with critical exponent,
Electron. ). Qual. Theory Differ. Equ. 37 (2021), no. 23, 1-23, DOI: https://doi.org/10.14232/ejqtde.2021.1.37.

K. Teng, Existence of ground state solutions for the nonlinear fractional Schrédinger-Poisson system with critical Sobolev
exponent, ). Differential Equations 261 (2016), no. 6, 3061-3106, DOI: https://doi.org/10.1016/j.jde.2016.05.022.

M. Xiang, V. Radulescu, and B. Zhang, Combined effects for fractional Schrodinger-Kirchhoff systems with critical non-
linearities, ESAIM Control Optim. Calc. Var. 24 (2018), no. 3, 1249-1273, DOI: https://doi.org/10.1051/cocv/2017036.
L. Liu and H. Chen, The nontrivial solutions for fractional Schrddinger-Poisson equations with magnetic fields and critical
or supercritical growth, Appl. Math. Lett. 121 (2021) no. 9, 107358, DOI: https://doi.org/10.1016/j.am(.2021.107358.

S. Liang, C.N. Thanh, and B. Zhang, Multi-bump solutions for fractional Schrodinger equation with electromagnetic fields
and critical nonlinearity. Adv. Differential Equations 25 (2020), no. 7-8, 423-456, DOI: https://projecteuclid.org/euclid.
ade/1594692077.

V. Ambrosio, Multiplicity and concentration results for a fractional Schrddinger-Poisson type equation with magnetic field,
Proc. Roy. Soc. Edinburgh Sect. A 150 (2020), no. 2, 655-694, DOI: https://doi.org/10.1017/prm.2018.153.


https://doi.org/10.1016/S0375-9601(00)00201-2
https://doi.org/10.1142/S0219199718500785
https://doi.org/10.1142/S0219199718500785
https://projecteuclid.org/euclid.ade/1594692077
https://projecteuclid.org/euclid.ade/1594692077

DE GRUYTER On the critical fractional Schrddinger-Kirchhoff-Poisson equations =— 893

(28]

(29]

V. Ambrosio, Multiplicity and concentration results for fractional Schrédinger-Poisson equations with magnetic fields and
critical growth, Potential Anal. 52 (2020), no. 4, 565-600, DOI: https://doi.org/10.1007/s11118-018-9751-1.

G. Palatucci and A. Pisante, Improved Sobolev embeddings, profiled ecomposition, and concentration-compactness for
fractional Sobolev spaces, Calc. Var. Partial Differential Equations 50 (2014), no. 3-4, 799-829, DOI: https://doi.org/
10.1007/500526-013-0656-y.

M. Xiang, B. Zhang, and X. Zhang, A nonhomogeneous fractional p-Kirchhoff type problem involving critical exponent in
RM, Adv. Nonlinear Stud. 17 (2017), no. 3, 611-640, DOI: https://doi.org/10.1515/ans-2016-6002.

X. Zhang, B. Zhang, and M. Xiang, Ground states for fractional Schrédinger equations involving a critical nonlinearity, Adv.
Nonlinear Anal. 5 (2016), no. 3, 293-314.

M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, vol. 24, Birkhdser:
Boston/Basel/Berlin, 1996.

X.Zhang, B. Zhang, and D. D Repovs, Existence and symmetry of solutions for critical fractional Schrédinger equations with
bounded potentials, Nonlinear Anal. 142 (2016), 48-68.

V. Benci, On critical point theory for indefinite functionals in presence of symmetries, Trans. Amer. Math. Soc. 274 (1982),
no. 2, 533-572, DOI: https://doi.org/10.2307/1999120.


https://doi.org/10.1007/s00526-013-0656-y
https://doi.org/10.1007/s00526-013-0656-y

	1 Introduction
	2 Preliminaries
	3 Behavior of (PS) sequences
	4 Proof of Theorem 1.1
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


