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Abstract: This paper intend to study the following critical fractional Schrödinger-Kirchhoff-Poisson
equations with electromagnetic fields in �3:
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Under suitable assumptions, together with the concentration compactness principle and variational
method, we prove that the existence and multiplicity of semiclassical solutions for above problem as →ε 0.
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1 Introduction

This paper deals with the existence and multiplicity of solutions for the critical fractional Schrödinger-
Kirchhoff-Poisson equations with electromagnetic fields in �3:

M �([ ] )( ) ( ) (∣ ∣ ∣ ∣ ) ( ∣ ∣ ) ∣ ∣− + + * = + ∈

− −

∗ε u u V x u x u u f x u u u u xΔ , , ,s
s A A

s t2
,

2 2 3 2 2 2 2 3s (1.1)

where >ε 0 is a positive parameter, / < <s3 4 1, < <t0 1, ( )= / −

∗ s2 6 3 2s is the usual Sobolev critical

exponent, V is an electric potential, and ( )−Δ A
s and A are called the magnetic operator and magnetic

potential, respectively. According to d’Avenia and Squassina in [1], the fractional operator ( )−Δ A
s , which

up to normalization constants, can be defined on smooth functions u as follows
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and magnetic potential A is given by
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Throughout the paper, the electric potential V , Kirchhoff function M, and f satisfy the following
assumptions:
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(V) � �( ) ( )∈V x C ,3 , �( ) ( )= =

∈

V V x0 min 0x 3 , and there is >b 0 such that the set �{ ( ) }= ∈ <V x V x b:b N

has finite Lebesgue measure.
(ℳ) ( )M1 The Kirchhoff function M � �→

+

+: 0 is continuous, and there exists m > 00 such that
M m( ) =

≥

sinfs 0 0. ( )M2 There exists ( ]∈ /

∗σ 2 2 , 1s satisfying M M( ) ( )≥σ t t t for all ≥t 0,

where M M( ) ( )
∫

=t s sd
t

0
.

(ℱ) ( f1) � � �( )∈ ×f C ,3 and ( ) (∣ ∣)=f x t o t, uniformly in x as →t 0. ( f2) There exist >c 00 and ( )∈

∗q 2, 2s

such that ∣ ( )∣
( )

≤ +

−

f x t c t, 10
q 1

2 . ( f3) There exist >l 00 , { }/ <σ rmax 2 , 4 , and { }/ < <

∗σ μmax 2 , 4 2s

such that ( ) ∣ ∣≥

/F x t l t, r
0

2, and ( ) ( )≤μF x t f x t t, 2 , for all � �( ) ∈ ×x t, 3 , where ( ) ( )
∫

=F x t f x s s, , d
t

0
.

First, our motivation to study problem (1.1) mainly comes from the application of the fractional mag-
netic operator. We note that the equation with fractional magnetic operator often arises as a model for
various physical phenomena, in particular in the study of the infinitesimal generators of Lévy stable
diffusion processes [2]. Also, the number of literature on nonlocal operators and their applications has
been studied, and hence, we refer interested readers to [3–7]. To further research this kind of equation by
variational methods, many scholars have established the basic properties of fractional Sobolev spaces,
readers are referred to [8,9].

Next, we note that some works that appeared in recent years concerning the follwing magnetic
Schrödinger equation without Poisson term:

( ) ( ) ( ∣ ∣)− ∇ − + =u iA u V x u f x u u, ,2 (1.2)

where the magnetic operator in (1.2) is given by

( ) ( ) ∣ ( )∣ ( )− ∇ − = − + ⋅∇ + +u iA u u iA x u A x u iu A xΔ 2 div .2 2

As stated in the study by Squassina and Volzone [10], up to correcting the operator by the factor ( )− s1 ,

it follows that ( )− uΔ A
s converges to ( )− ∇ −u iA u2 as →s 1. Thus, up to normalization, the nonlocal case can

be seen as an approximation of the local one. Recently, many researchers have paid attention to the
equations with fractional magnetic operator. In particular, Mingqi et al. [11] studied some existence results
of Schrödinger-Kirchhoff type equation involving the fractional p-Laplacian and the magnetic operator:

�([ ] )( ) ( ) ( ∣ ∣)− + =M u u V x u f x u uΔ , in ,s A A
s N

,
2 (1.3)

where f satisfies the subcritical growth condition. For the critical growth case, the authors in [12] first
considered the following fractional Schrödinger equations:

�( ) ( ) ( ∣ ∣) ( )∣ ∣− + = +

−

*ε u V x u f x u u K x u uΔ , in .s
A
s N2 2 2

ε
α (1.4)

They obtained the existence of ground state solution uε by using variational methods. Subsequently, Liang
et al. [13] proved the existence and multiplicity of solutions to a class of Schrödinger-Kirchhoff type
equation in the non-degenerate case. We draw the attention of the reader to the degenerate case involving
the magnetic operator in the study by Liang et al. [14].

On the other hand, for case ≡A 0 in problem (1.1), there have been numerous articles dedicated to the
study of the fractional Schrödinger-Poisson system as it appears in an interesting physical context. For
example, Giammetta in [15] first studied the local and global well-posedness of a fractional Schrödinger-
Poisson system in one dimension. Zhang et al. in [16] obtained the existence of radial ground state solution
to the fractional Schrödinger-Poisson system with a general subcritical or critical nonlinearity by using the
perturbation approach. In [17], Murcia and Siciliano proved that the number of positive solutions for a class
of doubly singularly perturbed fractional Schrödinger-Poisson system via the Ljusternick-Schnirelmann
category. Liu in [18] concerned with the existence of multibump solutions for the fractional Schrödinger-
Poisson system through the Lyapunov-Schmidt reduction method. Chen et al. in [19] admitted the exis-
tence of the Nehari-type ground state solutions for fractional Schrödinger-Poisson system by using
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the non-Nehari manifold approach. For more related results, we can cite the recent works [20–24] and the
references therein.

Once we turn our attention to the Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields,
we immediately see that the literature is relatively scarce. In this case, we can cite the recent works [25,26].
We call attention to Ambrosio in [27] proved that the multiplicity and concentration results for a class of
fractional Schrödinger-Poisson type equation with magnetic field and subcritical growth. For the critical
growth case, Ambrosio in [28] also obtained the multiplicity and concentration of nontrivial solutions to the
fractional Schrödinger-Poisson equation with the magnetic field. However, to the best of our knowledge,
semiclassical solutions to fractional magnetic Schrödinger-Poisson equations problem (1.1) have not ever
been considered until now.

Inspired by the previously mentioned works, our main objective is to study the critical fractional
Schrödinger-Kirchhoff-Poisson equations with electromagnetic fields. The proof of these assertions is given
by means of concentration compactness principle and variational method. For this purpose, we will use
some minimax arguments. Moreover, due to the appearance of the critical term, the Sobolev embedding
does not possess compactness. To this end, we need some technical estimations.

We are now in a position to state the existence result as follows.

Theorem 1.1. Let �( ) and �( ) hold. If M satisfies ( )M1 and ( )M2 , then the following statements hold:
(1) For any >κ 0, there is � > 0κ such that if �< <ε0 κ, then problem (1.1) has at least one solution
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(1.6)

Moreover, →u 0ε in E as →ε 0.
(2) For any �∈m and >κ 0, there is � > 0mκ such that if �< <ε0 mκ, then problem (1.1) has at least m pairs

of solutions uε i, , −

uε i, , = …i m1, 2, , which satisfy the estimates (1.5) and (1.6). Moreover, →u 0ε i, in E as
→ε 0, = …i m1, 2, , .

The main feature of our consequence in the present paper is to establish the multiplicity result for
problem (1.1) under the critical growth condition. There is no doubt that we encounter serious difficulties
because of the lack of compactness. To overcome the challenge, we use the concentration-compactness
principles for fractional Sobolev spaces according to [29–31] to prove the ( )PS c condition at special levels c.
On the other hand, we need to develop new techniques to construct sufficiently small minimax levels.

The rest of our paper is organized as follows. In Section 2, we briefly review some properties of the
Sobolev spaces with fractional order. In Section 3, we prove the Palais-Smale condition at some special
energy levels by using the concentration-compactness principles for fractional Sobolev spaces. Section 4
deals with the existence and multiplicity result for problem (1.1).

2 Preliminaries

In this section, we briefly review the definitions and list some basic properties of the Lebesgue spaces,
which we use throughout this article.

For any ( )∈s 0, 1 , fractional Sobolev space � �( )H ,A
s 3 is defined by

� � � �( ) { ( ) [ ] }= ∈ < ∞H u L u, , : ,A
s

s A
3 2 3

,
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where ( )∈s 0, 1 and [ ]u s A, denotes the so-called Gagliardo semi-norm, that is,
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and � �( )H ,A
s 3 is endowed with the norm

� � ([ ] )( )‖ ‖ = + ‖ ‖u u u .H s A L, ,
2 2

A
s 3 2

1
2

For the reader’s convenience, we will use the following embedding theorem, see Lemma 3.5 in [1].

Proposition 2.1. The space � �( )H ,A
s 3 is continuously embedded in � �( )L ,ϑ 3 for all [ ]∈

∗ϑ 2, 2s . Furthermore,
the space � �( )H ,A

s 3 is continuously compact embedded in �( )L K,ϑ for all [ ]∈

∗ϑ 2, 2s and any compact
set �⊂K 3.

Next, we have the following diamagnetic inequality, and its proof can be found in the study by d’Avenia
and Squassina [1].

Lemma 2.1. Let �( )∈u HA
s N , then �∣ ∣ ( )∈u Hs 3 . That is,

∣ ∣‖ ‖ ≤ ‖ ‖u u .s s A,

From Proposition 3.6 in [2], for all �( )∈u Hs 3 , we have

�[ ] ( ) ( )= ‖ − ‖u Δ ,s L
s
2 2 3
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Moreover,
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For problem (1.1), we will use the Banach space E defined by

� �
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By the assumption �( ), we know that the embedding � �( )↪E H ,A
s 3 is continuous. Note that the norm ‖⋅‖E

is equivalent to the norm ‖⋅‖ε defined by
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2

for each >ε 0.

On the critical fractional Schrödinger-Kirchhoff-Poisson equations  881



Obviously, for each [ ]∈

∗θ 2, 2s , there is >c 0θ such that

∣ ∣ ≤ ‖ ‖ ≤ ‖ ‖u c u c u ,θ θ E θ ε (2.1)

where < <ε0 1. Hereafter, we shortly denote by ‖⋅‖ν the norm of Lebesgue space ( )L Ων with ≥ν 1.
Now, let ( )∈s t, 0, 1 such that + ≥s t4 2 3, we can see that

� � � �( ) ( )↪

+H L, , .s 3 3t
12

3 2 (2.2)

Then, by (2.2), we have
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for � �( )∈u H ,s 3 , where
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Then, by the Lax-Milgram theorem, there exists a unique
∣ ∣

ψ u
t such that � �( )∈

∣ ∣

ψ D ,u
t t,2 3 such that
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Therefore, we obtain the following t-Riesz formula:
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We note that the aforementioned integral is convergent at infinity since � �∣ ∣ ( )∈

+u L ,2 3t
6

3 2 . Next we collect

some properties of
∣ ∣

ψ u
t , which will be used in this paper. The following proposition can be proved by using

similar arguments as [27,28].

Proposition 2.2. Assume that + ≥s t4 2 3 holds, for any ∈u E, we have
(i) � � � �( ) ( )→

∣ ∣

ψ H D: , ,u
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3 Behavior of (PS) sequences
In this section, to overcome the lack of compactness caused by the critical exponents, we intend to employ
the second concentration-compactness principle, see [29–31] for more details. Moreover, to obtain the
solution of problem (1.1), we will use the following equivalent form:

M([ ] )( ) ( ) ( ∣ ∣ ) ∣ ∣− + + = +

−

∣ ∣

− − −

∗u u ε V x u ψ u ε f x u u ε u uΔ , ,s A A
s s

u
t s s

,
2 2 2 2 2 2 2s (3.1)
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for �∈x 3. Now, let us consider the Euler-Lagrange functional �→J E:ε associated with (1.1), defined by
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It is clear that �ε is of class �( )C E,1 under the assumptions �( ) (see [32]). Moreover, for all ∈u v E, ,
the Fréchet derivative of �ε is given by
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Thus, the weak solutions of (1.1) coincide with the critical points of �ε.
The main result of this section is the following compactness result.

Lemma 3.1. Let �( ) and �( ) hold. If M satisfies ( )M1 and ( )M2 , then for any < <ε0 1, �ε satisfies ( )PS c

condition, for all ( )∈

−c σ ε0, s
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3 2 , where m( )
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σ Sμ0
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2 , that is, any ( )PS c-sequence { } ⊂u En n has

a strongly convergent subsequence in E.

Proof. Let ( )un n be a ( )PS cλ sequence for �ε, we first claim that ( )un n is bounded in E. In fact, by � ( ) →u cε n

and � ( )′

→u 0ε n in ′E , it follows from ( )M2 and ( )f3 that
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(3.4)

We know that { }un n is bounded in E from { }/ < <

∗σ μmax 2 , 4 2s. Furthermore, we can obtain ≥c 0 by passing

to the limit in (3.4). Hence, by diamagnetic inequality, {∣ ∣}un n is bounded in �( )Hs 3 . Then, by using the
fractional version of concentration compactness principle in the fractional Sobolev space (see [29–31]),
up to a subsequence, we have

�→u u a.e. in ,n
3 (3.5)

⇀u u Ein ,n

��∣( ) ∣ ∣( ) ∣ ( )͠
∑

− ⇀ = − + +
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u μ u μ δ μΔ Δ in the sense of measures in ,n
j I

x j
2 2 3s s
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j (3.7)
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( ({ }))≤ ∈
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ν S μ x j Jfor ,j j
1 s2
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where S is the best Sobolev constant, i.e.,
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(3.12)

It is easy to verify that
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Note that the Hölder inequality yields
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Lemma 3.4 in [33] gives that
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Due to the fact that f has the subcritical growth and ϕε has the compact support, we have that
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Since ϕρ has compact support, so that, letting → ∞n in (3.12), we can deduce from (3.13)–(3.16)
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Similar to the proof of Lemma 3.4 in [33], we can show that
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Moreover, we proceed as in (3.15) and (3.16) to obtain
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From the Brézis–Lieb lemma, we obtain
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By the weak lower semicontinuity of the norm, condition ( )M1 , and the Brézis–Lieb lemma, we have
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Here, we use the fact that � ( )′

=u 0ε . This fact implies that ( )un n strongly converges to u in E. Hence,
the proof is complete. □

4 Proof of Theorem 1.1

To prove Theorem 1.1, let < <ε0 1, and we first prove that functional � ( )uε has the mountain pass
geometry.

Lemma 4.1. Let �( ) and �( ) hold. If M satisfies ( )M1 and ( )M2 , then
(C1) there exist two positive constants >β ρ, 0ε ε such that � ( ) >u 0ε if { }∈ ⧹u B 0ρε and � ( ) ≥u βε ε if ∈ ∂u Bρε,

where { }= ∈ ‖ ‖ ≤B u E u ρ:ρ ε εε ;

(C2) for any finite dimensional subspace ⊂H E,

� ( ) → −∞ ∈ ‖ ‖ → ∞u as u H with u .ε ε

Proof. From condition �( ), we can take m

( )
{ }

≤

−

ς c ε2 min ,σ s
2

1
2 2

2 1
20 and there exists >c 0ς such that

� �

∣ ∣ ( ∣ ∣ ) ∣ ∣ ∣ ∣
∫ ∫

+ ≤ +

∗

∗

∗

∗

u x F x u x ς u c u1
2

d 1
2

, d ,
s

ς
2 2

2
2

2
2s

s
s

3 3

where cς is the embedding constant given by (2.1). From (3.2), we obtain that

m

m

� ( ) ∣ ∣ ∣ ∣
{ }

{ }

≥ ‖ ‖ − −

≥ ‖ ‖ − ‖ ‖

− −

−

∗

∗

∗

∗

∗

u σ u ε ξ u ε c u

σ u ε c c u

min
2

, 1
2

1
2

min
2

, 1
2

.

ε ε
s s

ς

ε
s

ς ε

0 2 2
2
2 2

2
2

0 2 2
2
2 2

s
s

s
s s

This fact implies that the conclusion ( )C1 in Lemma 4.1 holds true since >
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we obtain that ( )C2 in Lemma 4.1 is valid. This completes the proof. □
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Next, we will prove that ( )J uε satisfies ( )PS c on the special finite-dimensional subspace. To do this, by
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Since > /r σ2 , there exists a finite number [ )∈ +∞t 0,0 such that
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0 , where ( )ϕ xζ is as defined earlier. From Lemma 3.6 in [12], we have the following
lemma.
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for all < <ε ε0 0 and some constant >C 0 depending only on [ ]ϕ s,0.
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Thus, we have the following result.

Lemma 4.3. Let �( ) and �( ) hold. IfM satisfies ( )M1 and ( )M2 , for any >κ 0, there exists � > 0κ such that for
each �< <ε0 κ, there is  ∈e Eε with 

‖ ‖ >e ϱε ε, ( ) ≤J e 0ε ε and

( )
[ ]

≤

∈

−J te κεmax .
t

ε ε
s

0,1
3 2 (4.7)

Proof. Let >ζ 0 satisfies �( ) ≤ζ κ. Set � { }=

∗ε εmin ,κ 0 and >t̂ 0ε be such that ‖ ‖ >t ψ^ ϱε ε ζ ε ε, and

( ) ≤J tψ 0ε ε ζ, for all ≥t t̂ε. Choose  =e t ψ^
ε ε ε ζ, , by (4.6), we know that the conclusion of Lemma 4.3 holds.

□

To obtain the multiplicity of solutions, one can choose �∈

∗m functions �( )∈

∞ϕ Cζ
i

0
3 such that

supp ϕζ
i
∩ supp = ∅ϕζ

k , ≠i k, ∣ ∣ =ϕ 1ζ
i

s and

�

∣ ( ) ( )∣

∣ ∣

( )

∬

−

−

≤

+

− −

ϕ x ϕ y
x y

x y Cζd d .ζ
i

ζ
i

s

2

3 2
s r

r

6

6 3 2
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Let >

∗

r 0ζ
m be such that supp ( )⊂ϕ B 0ζ

i
r
i
ζ for = …

∗i m1, 2, , . Set

( ) ( )( )
=h x ϕ xeζ

i iA x
ζ
i0 (4.8)

and

( ) ( )=

−h x h ε x .ε ζ
i

ζ
i

,
1 (4.9)

Denote

{ }

= …

∗ ∗

H h h hspan , , , .εζ
m

ε ζ ε ζ ε ζ
m

,
1

,
2

,

Let = ∑ ∈

=

∗

∗

u c ψ Hi
m

i ε ζ
i

εζ
m

1 , , thus

[ ] ∣ ∣ [ ]
∑

≤

=

∗

u C c h ,s A
i

m

i ε ζ
i

s A,
2

1

2
, ,

2
ε ε

� �

( )∣ ∣ ∣ ∣ ( )∣ ∣
∫ ∫

∑

=

=

∗

V x u x c V x h xd d
i

m

i ε ζ
i2

1

2
,

2

3 3

and

� � � �

∣ ∣ ( ∣ ∣ )
⎛

⎝

⎜
⎜

∣ ∣ ( ∣ ∣ )
⎞

⎠

⎟
⎟

∫ ∫ ∫ ∫
∑

+ = +

∗

=

∗

∗

∗

∗u x F x u x c h x F x c h x1
2

d 1
2

, d 1
2

d 1
2

, d .
s i

m

s
i ε ζ

i
i ε ζ

i2 2

1
,

2
,

2s s

3 3 3 3

Therefore,

( ) ( )
∑

≤

=

∗

J u C J c hε
i

m

ε i ε ζ
i

1
,

for some constant >C 0. By a similar argument as earlier, we know that

�( ) (∣ ∣ )≤

−J c h ε c h .ε i ε ζ
i s

ε i ζ
i

,
3 2

As mentioned earlier, we can obtain the following estimate:

�( ) ( )≤

∈

∗ −

∗

J u Cm ζ εmax
u H

ε
s3 2

εδ
m (4.10)

for all ζ small enough and some constant >C 0. Now, let
{ }

= = ⋯

∗

∗ ∗

F H h h hspan , , ,εm εζ
m

ε ζ ε ζ ε ζ
m

,
1

,
2

, . From (4.10),
we have the following lemma.

Lemma 4.4. Let �( ) and �( ) hold. IfM satisfies ( )M1 and ( )M2 , for any �∈

∗m and >κ 0, there exists � >

∗ 0m κ
such that for each �< <

∗ε0 m κ, there exists an ∗m -dimensional subspace ∗Fεm satisfying

( ) ≤

∈

−

∗

J u κεmax .
u F

ε
s3 2

λm

We now establish the existence and multiplicity results.

Proof of Theorem 3.1 (1). For any < <κ σ0 0, we choose � > 0κ and define for �< <ε0 κ, the minimax
value

( )
[ ]

≔

∈ ∈

c J teinf max ,ε
γ Ξ t

ε ε
0,1ε

where

{ ([ ] ) ( ) ( ) }≔ ∈ = =Ξ γ C E γ γ e0, 1 , : 0 0 and 1 .ε ε

890  Zhongyi Zhang



By Lemma 4.1, we have ≤ ≤

−α c κεε ε
s3 2 . From Lemma 3.1, we know that Jε satisfies the ( )PS cε condition,

and there is ∈u Eε such that ( )′

=J u 0ε ε and ( ) =J u cε ε ε. Then uε is a nontrivial solution of problem (3.1).
Moreover, it is well known that a mountain pass solution is a ground state solution of problem (3.1).

On the other hand, for [ ]∈

∗τ 2, 2s , we have

m

�

� �

⎜ ⎟

( ) ( ) ( )

⎛
⎝

⎞
⎠

[ ] ⎛
⎝

⎞
⎠

( )∣ ∣

⎛

⎝

⎞

⎠
∣ ∣ ⎛

⎝
⎞
⎠

( ∣ ∣ )

∫

∫ ∫

≥ = −

′

≥ − + −

+ − + −

−

−

∗

− −

∗

κε J u J u
τ

J u u

σ
τ

u
τ

ε V x u x

τ
ε u x μ

τ
ε F x u x

1

2
1 1

2
1 d

1 1
2

d 1
2

, d .

s
ε ε ε ε ε ε ε

ε s A
s

ε

s

s
ε

s
ε

3 2

0 ,
2 2 2

2 2 2 2

ε

s

3

3 3

(4.11)

Taking = /τ σ2 , we obtain the estimate (1.5), and taking =τ μ, we obtain the estimate (1.6). This completes
the proof of Theorem 3.1 (1). □

Proof of Theorem 3.1 (2). Denote the set of all symmetric (in the sense that − =Z Z) and closed subsets of
E by Σ , for each ∈Z Σ . Let gen( )Z be the Krasnoselski genus and

( ) ( )
( )

≔ ∩ ∂

∈

∗

j Z ι Z Bmingen ,
ι Ξ

ϱ
m

ε

where ∗Ξm is the set of all odd homeomorphisms ( )∈ι C E E, and ϱε is the number from Lemma 4.1. Then j is
a version of Benci’s pseudoindex [34]. Let

( )
( )

≔ ≤ ≤

≥

∈

∗c J u i minf sup , 1 .εi
j Z i u Z

ε

Since ( ) ≥J u αε ε for all ∈ ∂

+u Bϱε
and since

( )
= =

∗

∗ ∗j F F mdimεm εm , we obtain

( )≤ ≤⋯≤ ≤ ≤

∈

−

∗

∗

α c c J u κεsup .ε ε εm
u H

ε
s

1
3 2

εm

It follows from Lemma 3.1 that Jε satisfies the ( )PS cε condition at all levels <

−c σ ε s
0

3 2 . By the usual critical
point theory, all cεi are critical levels and Jε has at least ∗m pairs of nontrivial critical points satisfying

( )≤ ≤

−α J u κε .ε ε ε
s3 2

Hence, problem (3.1) has at least ∗m pairs of solutions. Finally, as in the proof of Theorem 3.1, we see that
these solutions satisfy the estimates (1.5) and (1.6). □
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