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Abstract: In this article, we are concerned with the periodic solutions of first-order difference equation
Au(t -1 =f(t,ult)) -s, tez, P)

wheres € R, f: Z x R — R is continuous with respect tou € R, f(t,u) = f(t + T, u), T > 1is an integer,
Au(t — 1) = u(t) — u(t — 1). We prove a result of Ambrosetti-Prodi-type for (P) by using the method of lower
and upper solutions and topological degree. We relax the coercivity assumption on f in Bereanu and
Mawhin [1] and obtain Ambrosetti-Prodi-type results.
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1 Introduction

Let T > 1 be an integer, [1, T]z = {1, 2, ..., T}. In this article, we establish Ambrosetti-Prodi-type results
of first-order difference equation

Au(t - 1) =f(t,u(t)) -s, teZ, (1.1)

wheres € R, f: Z x R — R is continuous with respect tou € R, f(t,u) = f(t + T,u), t € Z.
The Ambrosetti-Prodi problem for an equation of the form

F(u)=s (1.2)

consists of determining how varying the parameter s affects the number of solutions u. Usually,
an Ambrosetti-Prodi-type result yields the existence of a number so such that (1.2) has zero, at least one
or two solutions according to s < s, S = Sg Or S > Sg.

The founding work is in the study by Ambrosetti and Prodi [2], which received immediate attention
from several authors. In 1975, Fucik [3] was concerned with the weak solvability of the elliptic equation and
obtained Ambrosetti-Prodi-type results. In 1980, Hess [4] studied Ambrosetti-Prodi-type results of elliptic
equation, he extended the works of Ambrosetti and Prodi [2] and Kazdan and Warner [5]. After that, several
studies have sprung up [1,7-11, 13-19,22,24].

Most of the aforementioned literature is about differential equations. Periodic problems for differential
equations were studied in [12, 20, 21] Zhou [25, 26] studied periodic solutions of difference equations. Since
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there are many essential differences between difference equations and differential equations, such as in the
continuous case, the minimum or maximum points t, satisfy u’(ty) = 0, but in discrete case, the minimum
or maximum points fo do not necessarily satisfy Au(ty) = 0, and the definition of generalized zeros in
difference is complex, and chaotic behaviors in Strogatz [23]; there are few researches on Ambrosetti-
Prodi-type results of difference equations. Through searching for an analogue for Ambrosetti-Prodi-type
results of difference equations, in 2006, Bereanu and Mawhin [1] were concerned with the first-order
difference equation

Ax(t-1) + f(t,x(t))=s, teZ. (1.3)

They obtained the following:

Theorem A. [1, Theorem 6] Assume f: Z x R — R is continuous, with T-periodicity in the t variable, s € R.
If
lim f(t,x) = +oo,t € [1, T]z. (1.4)

|x|— 00
Then there exists an sy € R such that
® if s < s, there is no T-periodic solution of equation (1.3),
® if s = sy, there is at least one T-periodic solution of equation (1.3),
® if s > sg, there are at least two T-periodic solutions of equation (1.3).

Nonlinearity f in [1] satisfies the coercivity condition, under the coercivity condition, the periodic Ambrosetti-
Prodi problem has been investigated by several authors [1,13,15,16,17,21]. Inspired by Obersnel and Omari
[15], in this short note, we want to push further into the direction of relaxing the coercivity assumption on f.
We assume:

(H1) f: Z xR — R is continuous uponu € R, f(t,u) = f(t + T, u).

(H2) Thereexista,b:[1,T]z —» R, p € (0, 1], such that f(t,u) = a(t)lu |’ + b(t), t € [1, Tlz, for allu € R.

(H3) YI_a(t) > 0.

Theorem 1.1. Assume (H1)-(H3) hold, there exists s, € R, such that

® if s < s, there is no T-periodic solution of equation (1.1),

® if s = s, there is at least one T-periodic solution of equation (1.1),

® if s > sg, there are at least two T-periodic solutions of equation (1.1).

Remark 1.2. Obersnel and Omari [15] investigated an Ambrosetti-Prodi-type result of first-order differential
equation; they studied the existence and multiplicity of solutions when the parameter s exceeds a constant
Sp using normal-order upper and lower solutions and reverse-order upper and lower solutions. However, for
first-order difference equations, reverse order upper and lower solutions cannot be used; in addition, lower
solutions must be smaller than the upper solutions to make the method conclusive, and relevant conclu-
sions can be found in [6]. Hence, the multiplicity of solutions when the parameter s exceeds a constant
is the difficulty in this article.

Remark 1.3. In [6], Bereanu and Mawhin showed counterexamples when T > 2 is odd, T > 2 is even and
T = 2, respectively. These counterexamples show that first-order difference equations have no solution
when lower solutions are larger than upper solutions.

Example 1.4. First-order difference equation
Au(t — 1) = (sint + 1/2)|Ju(t) + 1] + cost —s, teZ. (1.5)

We take f(t, u) = (sint + 1/2)|Vu + 1| + cost, f(t + T, u) = f(t, u), and T = 271; hence, (H1) holds. There
exist a(t) = sint + 1/3, b(t) = cost — 1/2 and p = 1/3 such that f(t, u) = a(t)|u |P + b(t), t € [1, T]z, for all
u € R; hence, (H2) holds. Obviously, Z[Tﬂa(t) > 0, and hence, (H3) holds. According to Theorem 1.1, we can
obtain sy € R such that
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(i) if s < sg, there is no T-periodic solution of equation (1.5);
(ii) if s = sg, there is at least one T-periodic solution of equation (1.5);
(iii) if s > sq, there are at least two T-periodic solutions of equation (1.5).

2 Preliminary results

Let X ={ulu : [1, T]z — R, u(0) = u(T)} be a Banach space under norm

lul = max |u(t)].
te[1, Tz

For convenience, we only need to consider the first-order periodic boundary value problem

{Au(t -1 =ft,ult) -s, tel1,Tlz,

u(0) = u(T). 1)

The definition of the upper and lower solutions of problem (2.1) is given as follows:

Definition 2.1. a : [1, T]z — R is a lower solution of problem (2.1), referring to a satisfies

Aa(t - 1) < f(t,a(t)) —s, tell, Tz,
a(0) < a(T).

B:[1, Tz — R is an upper solution of problem (2.1), referring to f satisfies

{Aﬂ(t - 1) >f(t! ﬁ(t)) =S, te [1’ T]Z’
B0) > B(T).

a:[1, T]z — R is a strict lower solution of problem (2.1), referring to a satisfies

Aa(t — 1) < f(t,a(t)) —s, te]l, T]z,
a(0) < a(T).

B :[1, T]z — R is a strict upper solution of problem (2.1), referring to S satisfies

{Aﬁ(t - > ft, BM) -5, tell, Tz,
B(0) > B(T).

Lemma 2.2. Problem (2.1) has a lower solution a and an upper solution f3, such that a(t) < B(t), t € [1, Tz,
then problem (2.1) has at least one solution u(t), such that a(t) < u(t) < (t), t € [1, T]z.

Proof. Construct auxiliary functiony : [1, T]z x R - R by

B@®), u(t) > B(o),
y(t, u() = {u(t), at) < u(t) < B(),
a(t), u(t) < a(t).

Consider the modified problem

Au(t - 1) - f(t, y(t, u(®))) + s + u®) -y, ut)) =0, te[1,Tlg, 2.2)
u(0) = u(T). '
Using Brouwer fixed point theorem, at least one solution can be obtained for problem (2.2) in X, whose

elements can be characterized by the coordinates u(1),..., u(T). Indeed, the operator L is given by
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Lu(1) = 2u(1) — u(0),..., Lu(T - 1) = 2u(T — 1) — u(T - 2), Lu(T) = 2u(0) — u(T - 1)

which is one to one, hence invertible, and (2.2) is equivalent to the fixed point problem
u(t) = Lil(f(ty Y(t» u)) -S+ )’(t, u))) te [17 T]Z

in X. It remains to show that if u(t) is a solution of (2.2), t € [1, Tz, then a(t) < u(t) < B(t), so that u(t)
is a solution of (2.1), t € [1, T]z. Suppose by contradiction that there exists a 1 € [1, T]z, such that
a(t) — u(t) > 0, then
a(t - 1) —u(t-1) <0< a(r) — u(r),
we can obtain
Aa(t - 1) - f(r,a(T)) + s =z Au(t - 1) — f(1, y(t,u)) + s = —u(t) + a(t) > O,

which contradicts with the definition of the lower solution.

u(t). Similarly, u(t) < B(t) can be proved. Then problem (2.1) has at least one solution u(t),

Thus, a(t) <
) <u(t) < B, tell, Tlg. O

such that a(t

Remark 2.3. Assume that a is a strict lower solution of (2.1), B is the strict upper solution
of (2.1), then the problem (2.1) admits at least one solution u such that a < u < . Define the open
set Oqp = {ulu € X, a < u < B} and the open ball B, with the radius of p. The mapping ® : R x X - R
is defined by ®(s, u(t)) = Au(t — 1) — f(t, u(t)) + s, t € [1, T]z. If p is large enough, using the additivity-
excision property of Brouwer degree, we have

|deg[®, Qqp, O]| = |deg[D, B,, 0]| = 1.

3 Proof of the main result

Proof of Theorem 1.1. Step 1. We verify that for every s € R, there is {, € R, such that, for all £ < &,
any solution u of the Cauchy problem

{Au(t - =a®u@)P +bt)-s, te[l,Tlg, 6.1
u(0) = ¢
is a strict lower solution of the T-periodic problem
{Au(t —- 1D =a®u@)P +bt)-s, tell,Tlg, 32)
u(0) = u(T).

Hence, by (H2), u is a strict lower solution of problem (2.1).

We consider the case p € (0, 1) and prove the following claim first.

Claim For any m € R, there is { < m such that, for every {< ¢, , any solution u of (3.1) satis-
fies maxyepy, r,u(t) < m.

Assume, by contradiction, that there exists my € R such that, for everyn € Z-, withn < —|mg|, there is a
solution u, of problem (3.1) satisfying u,(0) < n and maX¢p, 1, Un(t) = mo. Let sp, t; € [1, T]z be such
that s, + 1 < t, on [Sy, talz, [Sns talz = {Sns Sn + 1, ..., tn — 1, t}, N < U(t) < Mo, t € [Sp, tulz, Un(Sy) = n and
uy(t,) = mg, then

Iy

Mo = N = Un(tn) — Un(Sp) = Y. Aup(t - 1)

t=sp+1
t, t,
< Y la®lu®)P + Y 1b(E) - s
t=sp+1 t=sp+1

T T
<lmo 1Y la(®)] + Y |b(t) - s|.

t=1 t=1
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For fixed s, we obtain a contradiction if n — —oo; thus, our claim is proved.

In the case of p € (0, 1), suppose that there is a sequence (¢,), € R, with lim,_,_,¢, = —co and the
solution (up), of problem (3.1) with § = £ , foranyn € Z-, satisfies u,(T) < uy(0). By the claim above, we can
assume that maxyeq;, r),Us(t) < n. Thus,

Auy(t - b(t) -
> a(t) +
tzl |u n(t)lp tzl tzl | n(t)lp
We obtain the contradiction 0 > Z[Tﬂa(t) > 0 when n —» —co. Hence, we have u(T) > u(0), and u is
a solution of (3.1).

The validity of step 1 when p = 1 can be verified by a direct inspection is obtained as follows:

t T

1 b(t)
t ) C s t 1, T ’
u(t) f([[ll - a(s)) rzlfl_lflu a(s) o

where C is an arbitrary constant, choose
&< (1 -a(T+ 1)B(T) -s) + C.

Then, we have u(0) < u(T) and u(t) is a solution of (3.1).
Step 2. We show that there exists s* such that, for all s > s*, equation (1.1) has at least one T-periodic
solution. Indeed, it is easily verified that there exists s* € R such that, for all s > s*, the constant 8 € R,

sup f(t,B) < +oo, B is a strict upper solution of problem (2.1). Furthermore, by the results proved in Step 1,
te[1,T]z

problem (2.1) admits one strict lower solution oy satisfying ay(t) <  forallt € [1, T]z. Therefore, equation (1.1)
has at least one T-periodic solution uy, satisfying oy(t) < wy(t) < S forallt € [1, Tz, u; # ay, B.

Step 3. We prove that the set of the parameters s for which equation (1.1) has at least one T-periodic
solution is bounded from below. Define the set

¥ ={s € R : equation (1.1) has at least one T -periodic solution}.

We prove there exists sy € R, such that sy = inf¥W. Assume, by contradiction, that inf¥ = —co. Then, there
exists a sequence (s,), € R with lim,,_, .S, = —00, and a sequence (u,), of T-periodic solutions of equation
(1.1) with s = s,. We claim that lim,,_, ,||ux]| = +00, otherwise, we would obtain

T T
0= Y Aun(t = 1) = Y f(t, un(t)) ~ suT

t=1 t=1

There would exist a function ¢ : [1, T]z — R, such that

T
Yt un(t))

t=1

[snT| =

T
< Y o(t) < +oo,
t=1

which is a contradiction. Moreover, by (H2) we have
Aun(t = 1) = f(t, un(t)) = sn = f(£, un(t)) = a®Olun(OIP + b(t), te[1,T]z.
Thus, we obtain
Auy(t — Loob(t
z n( > > za( ) Z ( )p
I n(t)l Pt 1 un(O)l

Let n — +00, and using (H3) yields the contradiction O > Zlea(t) > 0.

Step 4. We show the existence of at least one T-periodic solution of equation (1.1) for s = sq. Let (Sp)»
be a sequence in ¥ converging to so and let (u,), be the corresponding sequence of T-periodic solutions

of equation (1.1) with s = s,. Let us verify that there is R > 0, such that |lu,] < R for all n € N. Indeed,
otherwise, we can find a subsequence of (u,),, we still denote by (u,),, such that lim,_,.,(up), = +0co.
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Arguing similarly as in the proof of Step 3, thus easily leading to a contradiction as above. Therefore, (uy,),
is bounded in X; according to Weierstrass concentration theorem, we can obtain lim,_, . Un(t) = up(t),
te[1,T]z. Besides, lim,_ of(t, u,(t)) = f(t, uo(t)), te[1,T]z, and when n is Ilarge enough,
[f(t, un(t))] < (). Sequence (f(-,un) — Sp)n, i.e., (Auy),, convergence to f(-,up) —So in X, with
Aug(t — 1) = f(¢t, up(t)) — So, Ug(T) =up(0), t € [1, T]z, ug is a T-periodic solution of equation (1.1) for s = sq.

Step 5. We show that for all s > s, equation (1.1) has at least two T -periodic solutions.

Claim For any constant c € R, there exists p > 0, such that, for all s < c, all possible periodic solutions
u of equation (1.1) belong to open ball B,,.

For every s < ¢, we have

T T
Y Au(t - 1))=Y f(t, ut)) - Ts,

t=1 t=1

T
u(T) - u(0) = Y f(t, u(t)) - Ts,

t=1

T
Y f(t, u(t) =Ts.

t=1

We need to show there exists a constant ¢, such that

T
Z|Au(t -1 <a.

t=1
By (H2), we can obtain f(t, u(t)) = a(t)|u(t)|” + b(t), then

IF(t, uO) = la®lu@P - [bO]<If(E, u(t)) - a®u®)F - b(t)
= f(t, u(t)) — a(®Olu®)F - b(t)
< St u(®) + la@Olu®P + b

Thus,
[F(t, u(®)] < f(t, u@®) + 2la®|u(O)P + 2|b(t)],

T T T T
DI u)l < Y ft, u®) + 2 ) la@®)lu)P + 2 Y |b()|
t=1 t=1 t=1 t=1

< Ts + 2T|a||lull? + 2T||b|| = .

Hence, all possible solutions of problem (2.1) belong to open ball B,.

Using the Brouwer degree theory, obviously, u(t) is a solution of problem (2.1) if and only if u(t) is a zero
of O(s, -), t € [1, T]z. Let s; < sg < 51, according to the claim above, we can find the corresponding p such
that, for all s € [s,, s1], every possible zero points u of @(s, -) satisfy u € B,. Consequently, the Brouwer
degree deg[d(s, -), B,, 0] is well defined and does not depend upon s. Using the conclusion of step 3, for
ueX,u- (s, )+ 0. This implies that deg[®(s,, -), By, 0] = 0, so that deg[®(s;, -), By, 0] = 0. By exci-
sion property, deg[®(s;, -), By, 0] = 0if p' > p.

Let & be a solution of (2.1) with s € (so, s1), then i is a strict upper solution of problem (2.1) with s = s;.
From Step 1, o is a strict lower solution of problem (2.1). Consequently, using Remark 2.3, (2.1) with s = 5;
has a solution in Q,, 3, and

|deg[q)(517 ')s Qal,ﬁa 0]| =1
Taking p’ sufficiently large, we deduce from the additivity property of Brouwer degree that
|deg[®@(s1, ), By\Qa, 2> O] | = |deg[®(sy, -), By, O] - deg[D(sy, +), Qe O]
= |deg[q)(sl’ '), Qal,ﬁ’ O]| =1L

When s = s;, (2.1) has the second solution in B, \Qg, . O
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