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Abstract: In this article, we are concerned with the periodic solutions of first-order difference equation

u t f t u t s t PΔ 1 , , ,�( ) ( ( )) ( )− = − ∈

where s �∈ , f : � � �× → is continuous with respect to u �∈ , f t u f t T u, ,( ) ( )= + , T 1> is an integer,
u t u t u tΔ 1 1( ) ( ) ( )− = − − . We prove a result of Ambrosetti-Prodi-type for P( ) by using the method of lower

and upper solutions and topological degree. We relax the coercivity assumption on f in Bereanu and
Mawhin [1] and obtain Ambrosetti-Prodi-type results.
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1 Introduction

Let T 1> be an integer, T T1, 1, 2, ,�[ ] { }≔ … . In this article, we establish Ambrosetti-Prodi-type results
of first-order difference equation

u t f t u t s tΔ 1 , , ,�( ) ( ( ))− = − ∈ (1.1)

where s �∈ , f : � � �× → is continuous with respect to u �∈ , f t u f t T u, ,( ) ( )= + , t �∈ .
The Ambrosetti-Prodi problem for an equation of the form

F u s( ) = (1.2)

consists of determining how varying the parameter s affects the number of solutions u. Usually,
an Ambrosetti-Prodi-type result yields the existence of a number s0 such that (1.2) has zero, at least one
or two solutions according to s s0< , s s0= or s s0> .

The founding work is in the study by Ambrosetti and Prodi [2], which received immediate attention
from several authors. In 1975, Fucik [3]was concerned with the weak solvability of the elliptic equation and
obtained Ambrosetti-Prodi-type results. In 1980, Hess [4] studied Ambrosetti-Prodi-type results of elliptic
equation, he extended the works of Ambrosetti and Prodi [2] and Kazdan and Warner [5]. After that, several
studies have sprung up [1,7–11, 13–19,22,24].

Most of the aforementioned literature is about differential equations. Periodic problems for differential
equations were studied in [12, 20, 21] Zhou [25, 26] studied periodic solutions of difference equations. Since
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there are many essential differences between difference equations and differential equations, such as in the
continuous case, the minimum or maximum points t0 satisfy u t 00( )′ = , but in discrete case, the minimum
or maximum points t0 do not necessarily satisfy u tΔ 00( ) = , and the definition of generalized zeros in
difference is complex, and chaotic behaviors in Strogatz [23]; there are few researches on Ambrosetti-
Prodi-type results of difference equations. Through searching for an analogue for Ambrosetti-Prodi-type
results of difference equations, in 2006, Bereanu and Mawhin [1] were concerned with the first-order
difference equation

x t f t x t s tΔ 1 , , .�( ) ( ( ))− + = ∈ (1.3)

They obtained the following:

Theorem A. [1, Theorem 6] Assume f : � � �× → is continuous, with T-periodicity in the t variable, s �∈ .
If

f t x t Tlim , , 1, .
x

�( ) [ ]
∣ ∣

= +∞ ∈

→∞

(1.4)

Then there exists an s0 �∈ such that
• if s s0< , there is no T-periodic solution of equation (1.3),
• if s s0= , there is at least one T-periodic solution of equation (1.3),
• if s s0> , there are at least two T-periodic solutions of equation (1.3).

Nonlinearity f in [1] satisfies the coercivity condition, under the coercivity condition, the periodic Ambrosetti-
Prodi problem has been investigated by several authors [1,13,15,16,17,21]. Inspired by Obersnel and Omari
[15], in this short note, we want to push further into the direction of relaxing the coercivity assumption on f.
We assume:
(H1) f : � � �× → is continuous upon u �∈ , f t u f t T u, ,( ) ( )= + .
(H2) There exist a b T, : 1, ��[ ] → , p 0, 1( ]∈ , such that f t u a t u b t, p( ) ( )∣ ∣ ( )⩾ + , t T1, �[ ]∈ , for all u �∈ .

(H3) a t 0t
T

1 ( )∑ >

=

.

Theorem 1.1. Assume (H1)–(H3) hold, there exists s0 �∈ , such that
• if s s0< , there is no T-periodic solution of equation (1.1),
• if s s0= , there is at least one T-periodic solution of equation (1.1),
• if s s0> , there are at least two T-periodic solutions of equation (1.1).

Remark 1.2. Obersnel and Omari [15] investigated an Ambrosetti-Prodi-type result of first-order differential
equation; they studied the existence and multiplicity of solutions when the parameter s exceeds a constant
s0 using normal-order upper and lower solutions and reverse-order upper and lower solutions. However, for
first-order difference equations, reverse order upper and lower solutions cannot be used; in addition, lower
solutions must be smaller than the upper solutions to make the method conclusive, and relevant conclu-
sions can be found in [6]. Hence, the multiplicity of solutions when the parameter s exceeds a constant
is the difficulty in this article.

Remark 1.3. In [6], Bereanu and Mawhin showed counterexamples when T 2≥ is odd, T 2> is even and
T 2= , respectively. These counterexamples show that first-order difference equations have no solution
when lower solutions are larger than upper solutions.

Example 1.4. First-order difference equation

u t t u t t s tΔ 1 sin 1 2 1 cos , .�( ) ( )∣ ( ) ∣− = + / + + − ∈

(1.5)

We take f t u t u t, sin 1 2 1 cos( ) ( )∣ ∣= + / + + , f t T u f t u, ,( ) ( )+ = , and T π2= ; hence, (H1) holds. There
exist a t tsin 1 3( ) = + / , b t tcos 1 2( ) = − / and p 1 3= / such that f t u a t u b t, p( ) ( )∣ ∣ ( )⩾ + , t T1, �[ ]∈ , for all
u �∈ ; hence, (H2) holds. Obviously, a t 0t

T
1 ( )∑ >

=

, and hence, (H3) holds. According to Theorem 1.1, we can
obtain s0 �∈ such that
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(i) if s s0< , there is no T -periodic solution of equation (1.5);
(ii) if s s0= , there is at least one T -periodic solution of equation (1.5);
(iii) if s s0> , there are at least two T -periodic solutions of equation (1.5).

2 Preliminary results

Let X u u T u u T: 1, , 0��{ ∣ [ ] ( ) ( )}= → = be a Banach space under norm

u u tmax .
t T1, �

∣ ( )∣
[ ]

‖ ‖ =

∈

For convenience, we only need to consider the first-order periodic boundary value problem

u t f t u t s t T
u u T
Δ 1 , , 1, ,

0 .
�⎧

⎨⎩

( ) ( ( )) [ ]

( ) ( )

− = − ∈

=

(2.1)

The definition of the upper and lower solutions of problem (2.1) is given as follows:

Definition 2.1. α T: 1, ��[ ] → is a lower solution of problem (2.1), referring to α satisfies

α t f t α t s t T
α α T
Δ 1 , , 1, ,

0 .
�⎧

⎨⎩

( ) ( ( )) [ ]

( ) ( )

− ⩽ − ∈

<

β T: 1, ��[ ] → is an upper solution of problem (2.1), referring to β satisfies

β t f t β t s t T
β β T
Δ 1 , , 1, ,

0 .
�⎧

⎨⎩

( ) ( ( )) [ ]

( ) ( )

− ⩾ − ∈

>

α T: 1, ��[ ] → is a strict lower solution of problem (2.1), referring to α satisfies

α t f t α t s t T
α α T
Δ 1 , , 1, ,

0 .
�⎧

⎨⎩

( ) ( ( )) [ ]

( ) ( )

− < − ∈

<

β T: 1, ��[ ] → is a strict upper solution of problem (2.1), referring to β satisfies

β t f t β t s t T
β β T
Δ 1 , , 1, ,

0 .
�⎧

⎨⎩

( ) ( ( )) [ ]

( ) ( )

− > − ∈

>

Lemma 2.2. Problem (2.1) has a lower solution α and an upper solution β, such that α t β t( ) ( )⩽ , t T1, �[ ]∈ ,
then problem (2.1) has at least one solution u t( ), such that α t u t β t( ) ( ) ( )⩽ ⩽ , t T1, �[ ]∈ .

Proof. Construct auxiliary function γ T: 1, � ��[ ] × → by

γ t u t
β t u t β t
u t α t u t β t
α t u t α t

,
, ,
, ,
, .

( ( ))
⎧

⎨
⎩

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

=

>

⩽ ⩽

<

Consider the modified problem

u t f t γ t u t s u t γ t u t t T
u u T
Δ 1 , , , 0, 1, ,

0 .
�⎧

⎨⎩

( ) ( ( ( ))) ( ) ( ( )) [ ]

( ) ( )

− − + + − = ∈

=

(2.2)

Using Brouwer fixed point theorem, at least one solution can be obtained for problem (2.2) in X , whose
elements can be characterized by the coordinates u u T1 , ,( ) ( )… . Indeed, the operator L is given by
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Lu u u Lu T u T u T Lu T u u T1 2 1 0 , , 1 2 1 2 , 2 0 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − … − = − − − = − −

which is one to one, hence invertible, and (2.2) is equivalent to the fixed point problem

u t L f t γ t u s γ t u t T, , , , 1,1
�( ) ( ( ( )) ( )) [ ]= − + ∈

−

in X . It remains to show that if u t( ) is a solution of (2.2), t T1, �[ ]∈ , then α t u t β t( ) ( ) ( )⩽ ⩽ , so that u t( )

is a solution of (2.1), t T1, �[ ]∈ . Suppose by contradiction that there exists a τ T1, �[ ]∈ , such that
α τ u τ 0( ) ( )− > , then

α τ u τ α τ u τ1 1 0 ,( ) ( ) ( ) ( )− − − ⩽ < −

we can obtain

α τ f τ α τ s u τ f τ γ τ u s u τ α τΔ 1 , Δ 1 , , 0,( ) ( ( )) ( ) ( ( )) ( ) ( )− − + ⩾ − − + = − + >

which contradicts with the definition of the lower solution.

Thus, α t u t( ) ( )⩽ . Similarly, u t β t( ) ( )⩽ can be proved. Then problem (2.1) has at least one solution u t( ),
such that α t u t β t( ) ( ) ( )⩽ ⩽ , t T1, �[ ]∈ . □

Remark 2.3. Assume that α is a strict lower solution of (2.1), β is the strict upper solution
of (2.1), then the problem (2.1) admits at least one solution u such that α u β< < . Define the open
set u u X α u βΩ ,α β, { ∣ }= ∈ < < and the open ball Bρ with the radius of ρ. The mapping XΦ : � �× →

is defined by s u t u t f t u t sΦ , Δ 1 ,( ( )) ( ) ( ( ))= − − + , t T1, �[ ]∈ . If ρ is large enough, using the additivity-
excision property of Brouwer degree, we have

Bdeg Φ, Ω , 0 deg Φ, , 0 1.α β ρ,∣ [ ]∣ ∣ [ ]∣= =

3 Proof of the main result

Proof of Theorem 1.1. Step 1. We verify that for every s �∈ , there is ξ0 �∈ , such that, for all ξ ξ0⩽ ,
any solution u of the Cauchy problem

u t a t u t b t s t T
u ξ
Δ 1 , 1, ,

0

p
�⎧

⎨⎩

( ) ( )∣ ( )∣ ( ) [ ]

( )

− = + − ∈

=

(3.1)

is a strict lower solution of the T -periodic problem

u t a t u t b t s t T
u u T
Δ 1 , 1, ,

0 .

p
�⎧

⎨⎩

( ) ( )∣ ( )∣ ( ) [ ]

( ) ( )

− = + − ∈

=

(3.2)

Hence, by (H2), u is a strict lower solution of problem (2.1).
We consider the case p 0, 1( )∈ and prove the following claim first.
Claim For any m �∈ , there is ξ mm ⩽ such that, for every ξ ξm⩽ , any solution u of (3.1) satis-

fies u t mmaxt T1, �
( )[ ] <

∈

.
Assume, by contradiction, that there existsm0 �∈ such that, for every n �∈

−, with n m0∣ ∣< − , there is a
solution un of problem (3.1) satisfying u n0n( ) ⩽ and u t mmax .t T n1, 0�

( )[ ] ⩾

∈

Let s t T, 1,n n �[ ]∈ be such
that s t1n n+ < on s t,n n �[ ] , s t s s t t, , 1, , 1,n n n n n n�[ ] { }≔ + … − , n u t mn 0( )⩽ ⩽ , t s t,n n �[ ]∈ , u s nn n( ) = and
u t mn n 0( ) = , then

m n u t u s u t

a t u t b t s

m a t b t s

Δ 1

.

n n n n
t s

t

n

t s

t

n
p

t s

t

p

t

T

t

T

0
1

1 1

0
1 1

n

n

n

n

n

n

( ) ( ) ( )

∣ ( )∣∣ ( )∣ ∣ ( ) ∣

∣ ∣ ∣ ( )∣ ∣ ( ) ∣

∑

∑ ∑

∑ ∑

− = − = −

⩽ + −

⩽ + −

= +

= + = +

= =
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For fixed s, we obtain a contradiction if n → −∞; thus, our claim is proved.
In the case of p 0, 1( )∈ , suppose that there is a sequence ξn n �( ) ∈ , with ξlimn n = −∞

→−∞

and the
solution un n( ) of problem (3.1)with ξ ξn= , for any n �∈

−, satisfies u T u 0n n( ) ( )⩽ . By the claim above, we can
assume that u t nmaxt T n1, �

( )[ ] ⩽

∈

. Thus,

u t
u t

a t b t s
u t

0 Δ 1 .
t

T
n

n
p

t

T

t

T

n
p

1 1 1

( )

∣ ( )∣
( )

( )

∣ ( )∣
∑ ∑ ∑

⩾

−

= +

−

= = =

We obtain the contradiction a t0 0t
T

1 ( )⩾ ∑ >

=

when n → −∞. Hence, we have u T u 0( ) ( )> , and u is
a solution of (3.1).

The validity of step 1 when p 1= can be verified by a direct inspection is obtained as follows:

u t ξ
a s

b t s
ξ

C t T1
1

, 1, ,
s

t

t

T

s
t

a s1 1 1
1 1

1
�⎜ ⎟( )

⎛

⎝
( )

⎞

⎠

⎛

⎝

⎜⎜

( ) ⎞

⎠

⎟⎟
[ ]

( )

∏ ∑

=

−

−

∏

+ ∈

= =

=

+

−

where C is an arbitrary constant, choose

ξ a T b T s C1 1 .( ( ))( ( ) )< − + − +

Then, we have u u T0( ) ( )< and u t( ) is a solution of (3.1).
Step 2. We show that there exists s∗ such that, for all s s>

∗, equation (1.1) has at least one T -periodic
solution. Indeed, it is easily verified that there exists s �∈

∗ such that, for all s s>

∗, the constant β �∈ ,
f t βsup ,

t T1, �

( )
[ ]

< +∞

∈

, β is a strict upper solution of problem (2.1). Furthermore, by the results proved in Step 1,

problem (2.1) admits one strict lower solution α1 satisfying α t β1( ) ⩽ for all t T1, �[ ]∈ . Therefore, equation (1.1)
has at least one T -periodic solution u1, satisfying α t u t β1 1( ) ( )⩽ ⩽ for all t T1, �[ ]∈ , u α β,1 1≠ .

Step 3. We prove that the set of the parameters s for which equation (1.1) has at least one T -periodic
solution is bounded from below. Define the set

s TΨ : equation 1.1 has at least one periodic solution .�{ ( ) }= ∈ -

We prove there exists s0 �∈ , such that s infΨ0 = . Assume, by contradiction, that infΨ = −∞. Then, there
exists a sequence sn n �( ) ∈ with slimn n = −∞

→+∞

, and a sequence un n( ) ofT -periodic solutions of equation
(1.1) with s sn= . We claim that ulimn n‖ ‖ = +∞

→+∞

, otherwise, we would obtain

u t f t u t s T0 Δ 1 , .
t

T

n
t

T

n n
1 1

( ) ( ( ))
∑ ∑

= − = −

= =

There would exist a function φ T: 1, ��[ ] → , such that

s T f t u t φ t, ,n
t

T

n
t

T

1 1
∣ ∣ ( ( )) ( )

∑ ∑

= ⩽ < +∞

= =

which is a contradiction. Moreover, by (H2) we have

u t f t u t s f t u t a t u t b t t TΔ 1 , , , 1, .n n n n n
p

�( ) ( ( )) ( ( )) ( )∣ ( )∣ ( ) [ ]− = − ⩾ ⩾ + ∈

Thus, we obtain

u t
u t

a t b t
u t

0 Δ 1 .
t

T
n

n
p

t

T

t

T

n
p

1 1 1

( )

∣ ( )∣
( )

( )

∣ ( )∣
∑ ∑ ∑

=

−

⩾ +

= = =

Let n → +∞, and using (H3) yields the contradiction a t0 0t
T

1 ( )⩾ ∑ >

=

.
Step 4. We show the existence of at least one T -periodic solution of equation (1.1) for s s0= . Let sn n( )

be a sequence in Ψ converging to s0 and let un n( ) be the corresponding sequence of T-periodic solutions
of equation (1.1) with s sn= . Let us verify that there is R 0> , such that u Rn‖ ‖ ⩽ for all n �∈ . Indeed,
otherwise, we can find a subsequence of un n( ) , we still denote by un n( ) , such that ulimn n n( ) = +∞

→+∞

.
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Arguing similarly as in the proof of Step 3, thus easily leading to a contradiction as above. Therefore, un n( )

is bounded in X; according to Weierstrass concentration theorem, we can obtain u t u tlimn n 0( ) ( )=

→+∞

,
t T1, �[ ]∈ . Besides, f t u t f t u tlim , ,n n 0( ( )) ( ( ))=

→+∞

, t T1, �[ ]∈ , and when n is large enough,
f t u t φ t, n∣ ( ( ))∣ ( )⩽ . Sequence f u s, n n n( ( ) )⋅ − , i.e., uΔ n n( ) , convergence to f u s, 0 0( )⋅ − in X , with
u t f t u t s u TΔ 1 , ,0 0 0 0( ) ( ( )) ( )− = − =u 00( ), t T1, �[ ]∈ , u0 is a T -periodic solution of equation (1.1) for s s0= .

Step 5. We show that for all s s0> , equation (1.1) has at least two T -periodic solutions.
Claim For any constant c �∈ , there exists ρ 0> , such that, for all s c⩽ , all possible periodic solutions

u of equation (1.1) belong to open ball Bρ.
For every s c⩽ , we have

u t f t u t Ts

u T u f t u t Ts

f t u t Ts

Δ 1 , ,

0 , ,

, .

t

T

t

T

t

T

t

T

1 1

1

1

( ) ( ( ))

( ) ( ) ( ( ))

( ( ))

∑ ∑

∑

∑

− = −

− = −

=

= =

=

=

We need to show there exists a constant c1, such that

u t cΔ 1 .
t

T

1
1∣ ( )∣

∑

− ⩽

=

By (H2), we can obtain f t u t a t u t b t, p( ( )) ( )∣ ( )∣ ( )⩾ + , then

f t u t a t u t b t f t u t a t u t b t
f t u t a t u t b t
f t u t a t u t b t

, ,
,
, .

p p

p

p

∣ ( ( ))∣ ∣ ( )∣∣ ( )∣ ∣ ( )∣ ∣ ( ( )) ( )∣ ( )∣ ( )∣

( ( )) ( )∣ ( )∣ ( )

( ( )) ∣ ( )∣∣ ( )∣ ∣ ( )∣

− − ⩽ − −

= − −

⩽ + +

Thus,

f t u t f t u t a t u t b t, , 2 2 ,p∣ ( ( ))∣ ( ( )) ∣ ( )∣∣ ( )∣ ∣ ( )∣⩽ + +

f t u t f t u t a t u t b t

Ts T a u T b c

, , 2 2

2 2 .
t

T

t

T

t

T
p

t

T

p
1 1 1 1

1

∣ ( ( ))∣ ( ( )) ∣ ( )∣∣ ( )∣ ∣ ( )∣
∑ ∑ ∑ ∑

⩽ + +

⩽ + ‖ ‖‖ ‖ + ‖ ‖ ≕

= = = =

Hence, all possible solutions of problem (2.1) belong to open ball Bρ.
Using the Brouwer degree theory, obviously, u t( ) is a solution of problem (2.1) if and only if u t( ) is a zero

of sΦ ,( )⋅ , t T1, �[ ]∈ . Let s s s2 0 1< < , according to the claim above, we can find the corresponding ρ such
that, for all s s s,2 1[ ]∈ , every possible zero points u of sΦ ,( )⋅ satisfy u Bρ∈ . Consequently, the Brouwer
degree s Bdeg Φ , , , 0ρ[ ( ) ]⋅ is well defined and does not depend upon s. Using the conclusion of step 3, for
u X∈ , u sΦ , 02( )− ⋅ ≠ . This implies that s Bdeg Φ , , , 0 0ρ2[ ( ) ]⋅ = , so that s Bdeg Φ , , , 0 0ρ1[ ( ) ]⋅ = . By exci-
sion property, s Bdeg Φ , , , 0 0ρ1[ ( ) ]⋅ =

′

if ρ ρ′ > .

Let û be a solution of (2.1) with s s s,0 1( )∈ , then û is a strict upper solution of problem (2.1) with s s1= .
From Step 1, α1 is a strict lower solution of problem (2.1). Consequently, using Remark 2.3, (2.1) with s s1=

has a solution in Ωα u, ˆ1 , and

sdeg Φ , , Ω , 0 1.α u1 , ˆ1∣ ( ) ∣
[ ]

⋅ =

Taking ρ′ sufficiently large, we deduce from the additivity property of Brouwer degree that

s B s B s

s

deg Φ , , \Ω , 0 deg Φ , , , 0 deg Φ , , Ω , 0

deg Φ , , Ω , 0 1.
ρ α u ρ α u

α u

1 , ˆ 1 1 , ˆ

1 , ˆ

1 1

1

∣ ( ) ∣ ∣ [ ( ) ] ( ) ∣

∣ ( ) ∣

[ ] [ ]

[ ]

⋅ = ⋅ − ⋅

= ⋅ =

′ ′

When s s1= , (2.1) has the second solution in B \Ωρ α u, ˆ1′

. □
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