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1 Introduction

The study of traveling wave solutions to nonlinear wave equations plays a major role in the fields of plasma,
elastic media, optical fibers, etc. Mathematicians and physicists have made significant progress toward
determining the exact traveling wave solutions. Various methods have been presented, such as the Darboux
transformation, the inverse scattering method, the Hirota bilinear method, the tanh method, the homo-
geneous balance method, and the Jacobi elliptic function expansion method (see [1-28]). To obtain exact
solutions for nonlinear partial differential equations (PDEs), Jibin Li employed the dynamical system
method to study nonlinear PDEs (see [29]). In addition, based on the theory of rings of commutative
algebra, Feng introduced the first integral method to solve nonlinear PDEs and obtain many exact solutions
(see [33]). It is worth noting that using the bifurcation theory of dynamical systems method to calculate
exact solutions is a new and effective method that can be utilized to study fractional PDEs in a conformal
sense (see [34-38]).

In this article, we discuss the exact solutions to the following generalized Davey-Stewartson equations
with arbitrary power nonlinearities:

{iut + Uy + Uy + Y|ulPu + auv + SlulPu = 0, (L1)

Vix + Vyy — B(|u|p)xx =0,
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where a, B, y, and § are real parameters, p is a positive integer, v is a real function, and u is a complex
function. Davey-Stewartson equations are significant for describing the motion of long and short waves in
shallow water. Many researchers have used various methodologies to solve these problems. For example,
Mirzazadeh applied the trial equation method and the ansatz approach to establish solitary waves solitons,
dark solitons, and singular solitary-wave soliton solutions to Davey-Stewartson equations (see [41]). Song
and Miswas studied Davey-Stewartson equations with power-law nonlinearity and carried out several
different solutions for bifurcation analysis (see [42]). Zinati and Manafian used He’s semi-inverse varia-

¢

tional principle method, the improved tan ~ -expansion method and the generalized (%)-expansion method

to find more exact solutions to Davey-Stewartson equations (see [43]). The generalized Kudryashov method

is introduced to obtain new soliton solutions from the Davey-Stewartson equations with power-law non-
H
methods to find the exact solitary wave solutions of Davey-Stewartson equations with power-law nonlin-
earity (see [45]). As a result, a more comprehensive study is necessary for equation (1.1).

This article is structured as follows: Sections 2 and 3 introduce the dynamical system and the first
integral methods. Sections 4 and 5 address equation (1.1) by implementing these two proposed methods.

Briefly, Section 6 outlines some of the findings.

linearity (see [44]). Aghdaei and Adibi applied the generalized tan= and He’s semi-inverse variational

2 Description of the dynamical system method

In this section, we consider the following nonlinear PDEs:
P(t, Xis Uty uxi’ ux,-xi) uXin! Uyt )’ (2-1)

wherei,j =1, 2,..., n. P is a polynomial in u(x, t) and its partial derivatives, in which nonlinear terms and
the highest order derivatives are involved. u(x, t) is an unknown function.

The main steps of the dynamical system method (see [30-32]) in this document are as follows:

Step 1. Transform

n
ut, X, Up, ... Un) = P(E), &= Y ki — ct. 2.2)
i=1
Equation (2.1) can be reduced to the following nonlinear ordinary differential equations (ODEs):

D(f, ¢§’ ¢{§’ ¢{{§’ .)=0, (2.3)

where k; are nonzero constants and c is the wave speed. Multiple integrations are performed for equation
(2.3), if equation (2.3) can be reduced to the following the second-order nonlinear ODEs:

E(f’ ¢5, ¢gg) =0. (2.4)

Then, assuming ¢5 = % =y, equation (2.4) can be reduced to the following two-dimensional dynam-

ical system:

d¢ dy
— N —_— 3 s 2-
FERRAT: f@.y) (2.5)
where f(¢, y) is an integral expression or a fraction. If f(¢, y) is a fraction, we make f(¢, y) = F;Z;), when
g(@)=0,¢ =4¢, % does not exist. Then, if we transform d{ = g(¢)dé, equation (2.5) can be rewritten as
do dy
— = , — =F(¢,y), 2.6
ac s@y. 4 R (¢, ) (2.6)

where { is a parameter. If it is possible to reduce equation (2.1) to equation (2.5) (or equation (2.6)), then we
can proceed to the next step.
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Step 2. If equation (2.5) is an integrable system, then we can reduce equation (2.5) (or equation (2.6))
for subsequent differential equations as follows:

d _f@y) dy _F@y _f@y) 2.7)

dp y  dp g@)y y
Then equations (2.5) and (2.6) have the same first integral (i.e., Hamiltonian) as follows:
H(¢,y) = h, (2.8)

where h is an integral constant, and we can obtain all kinds of phase portraits in the parametric space using
the first integral. Since the phase orbit of the vector field that defines equation (2.5) (or equation (2.6))
determines all the traveling wave solutions of equation (2.1), we study the bifurcation of the phase diagram
of equation (2.5) (or equation (2.6)) to find the traveling wave solutions of equation (2.1). As a rule,
a periodic orbit corresponds to a periodic wave solution, a homoclinic orbit corresponds to a solitary
wave solution, and a heteroclinic orbit (or the so-called connected orbit) corresponds to a kink (or anti-
kink) wave solutions. Once we obtain all the phase orbits, we can derive the value of h or its range.
Step 3. If h is determined, then we can obtain the following relationship from equation (2.8):

y=y(,y), 2.9)
that i 1s, d : = y(¢, y). When equation (2.9) is an integrable expression, we can substitute it into the first term
of equation (2.5) and integrate it to obtain

§dg, (2.10)
—[ y(@, h) I

where ¢, and 0O are initial constants. Usually, the initial constants can be taken by a root of equation (2.9)
or infection points of the traveling waves. Making proper initial constants and integrating equation (2.10),
we obtain the exact traveling wave solutions of equation (2.1) through the elliptic Jacobian functions.

3 Description of the first integral method

The main steps of the first integral method (see [39,40]), summarized as follows:
Step 1. The simplification of equation (2.1) gives

u(x, t) = u(é), (3.1

where ¢ = x — ct, and c is the wave speed. Then

—()——go —()—go To=c a—gz() ...... (3.2

Step 2. Depending on the transformation, equation (3.1) shows the following nonlinear ODEs:
Qu, ug, Uy, ... = 0. (3.3)
Step 3. Assuming X and Y as new independent variables
X&) =u®), YY) =ug ), B.4)
we have the following system of ODEs:

{X;(‘f) = Y(&), (3.5)

Y:(§) = F(X(§), Y(£)).
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Step 4. The general solutions are found if we obtain the first integrals to equation (3.7) under the same
conditions. However, no systematic theory tells us how to find its first integrals. Thankfully, we apply the
division theorem to reduce equation (3.4) to a first-order integrable ODE. Thus, by solving these equations,
we arrive at the exact solutions to equation (3.1).

4 Applications of the dynamical system method

Consider the solutions to equation (1.1) with the following form:

u(Xa Y, t) = ¢i(€)em9 V(Xa Y, t) = lp(é’)’ (41)

where £ = x +y — 2(k + M)t, n = kx + Ay — wt, A, k, and w are constants.
Substituting equation (4.1) into equation (1.1), we obtain that

_B
y="9 (4.2)

and

1

w-A-k+ %(; - 1)¢‘2¢’¢’ +=¢ P +yp+ap +6¢p>=0 (4.3)

2
p
el

where “” is the derivative as regards &.
Separating the real and imaginary parts in equation (4.3), respectively, it is possible to obtain

y a9’ + ¢*(Ap’ + B + C)

¢ 3
where 1 - % —a<1,A=-2 B-= —g(y + %), and C = §(A2 + k? — w). Equation (4.4) refers to the planar
dynamical system

(4.4)

%—y dy _ ay’ + ¢*(Ad* + Bp + )

¢ 7 d¢ ¢ ’
where equation (4.5) is a singular nonlinear traveling wave system with the singular straight line ¢ = 0 in
phase plane (¢, y). Equation (4.5) has an associated regular system

(4.5)

C-dy mwte pUs B O, (4.6)
where d¢ = ¢pd(. Equations (4.5) and (4.6) have the same first integrals as follows:
H=yp2 + (,1)*2“( A oy B g, C ¢>2) - h, 4.7)
a-2 2a -3 a-1

4.1 Bifurcations of phase portraits of equation (4.6)

Suppose that AB+ 0 and a # 1, 2, % Write that f(¢p) = Ap? + B¢ + C, and A = B> — 4AC. Clearly, when
A < 0, equation (4.6) receives only one equilibrium point Ey(0, 0). When A > 0, equation (4.6) receives
three equilibrium points Ey(0, 0), Ei(¢;, 0), and Ex(¢,, 0), where ¢, = B ;AJZ and ¢, = %. When A = 0,
equation (4.6) receives an equilibrium point Ey(0, 0) and a double equilibrium point Eq(¢,;, 0), where

B
ba = A
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Making M(¢;, 0) the coefficient matrix of the linearized system of equation (4.6) at an equilibrium point

9@ o)

J(0, 0) = detM(0,0) = 0, J(¢,, 0) = detM(¢h,, 0) = 0
](¢1,2: 0) = dEtM(¢1,z’ 0)=- 13:Zf,(¢1,2)'

By the theory of planar dynamical systems and an equilibrium point of a planar integrable system, we
obtain that if J < 0, then the equilibrium point is a saddle point; if J > 0 and (trace M)? — 4] < O(or > 0),
then it is a center point (a node point); if /] = 0 and the Poincaré index of the equilibrium point is 0, then the
equilibrium point is cusped. Thus, we note that the equilibrium point Ey(0, 0) is a high-order singular point.
Depending on the change of parameter pair (4, B) fora = % and a fixed C < 0, we obtain the bifurca-
tions of phase portraits of equation (4.6) as shown in Figure 1.
Similarly, we receive the bifurcations of phase portraits of equation (4.6) when C > O or a + %

E;, we obtain that

Then, we obtain

4.2 Exact solutions of equation (4.5)

When a = %, we study the exact solutions of equation (4.5) in this section to obtain some solutions to

equation (1.1). Then, only the case ¢p > 0 is considered. When a = %, we can deduce from equation (4.7) that

_y 2 3 2) =
H(¢p,y) = n 3<],')(3C+ 2B<l>+Aq§) h, (4.8)

hy = H(¢,, 0) = 6LA¢1(_8AC + B2+ BYA), and

hy = H($,, 0) = égbz(—SAC + B2~ BJR).

This shows that

¥ = %A(P(% + %(p + §¢2 + ¢3), for A > 0 and

2
:§| |¢(2|A| mgb mg{)z (;1)3), for A < 0.

Then, using the first equation of equation (4.5), we know that for A > 0, the following function holds

\/76 I\/¢ 3h 3c ¢;§¢’2+¢3)’ (4.9)

or for A < 0, the following function holds

\/7 &= J dé . (4.10)

|3AF|¢ Z\Alqbz ¢3)

Case 1. A > 0 and B > 0 (Figure 1). If so, we obtain ¢p; < 0 < ¢b,, h; < 0 < hs.



DE GRUYTER The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities =——— 899

(d) (e) ®

)

(€9)

Figure 1: Bifurcations of phase portraits of equation (4.6) whenC < 0.(a)A>0andB >0, (b)A >0,A<0,andB > 0,
(¢c)A=0,A<0,andB>0,(d)A<0andA<0,(e)A=0,A<0,B<0(f)A>0,A<0,andB<0,(g)A>0,B>0.

(i) For every h € (0, hy), the level curves defined by H, =%(¢, y) = h contain two open branches passing

through the points (¢;, 0) and (¢, 0) (¢, < 0 < ¢y, < P, < ¢;), respectively. A close branch contacts
to the singular straight line ¢p = 0 at the equilibrium point Ey(0, 0). Based on the finite-time interval
theorem, we have the family of close branches that causes a family of periodic solutions to equation
(4.5). Then, y? = %A(qu - )Py — P)P(P — ¢)). Thus, by equation (4.9), we receive the parametric
representation of periodic solutions to equation (4.5) as follows:

 Puld, — G, k)
¢L - ¢MSH2(QI£’ k)

where k2 = %, Q= % / W. Equation (4.11) shows the following exact periodic wave solu-
L\PM~ ¥l

tions to equation (1.1):

, (4.11)

(&) = by
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PPy — Py)sn’*( g, k) )Zi)eiﬂ
¢ — Pysn*(Qué, k) ’
by - ¢M)Sn2(91£’ k) )

u(x, t) = ((],’)M -
(4.12)

1
v(x, t) = §(¢M ) ¢ — Pysn*(Qi, k)

(i) Corresponding to the level curves defined by H,-1(¢,y) = hy, there are two heteroclinic orbits of

equation (4.5) for y? = %A((j)2 - ¢)’¢p(¢ — ¢)). Hence, we obtain the parametric representation of the
kink wave and anti-kink wave solutions to equation (4.5) as follows:

440 Py

=@, - - s 413
PO = D2 ot s DRt — 2B,P, (413)
[A1(A + B 2 +B 24
where 0 < ¢0 < ¢2’ A4 = ¢2(¢2 - ¢1)’ B; = —(2¢)2 - ¢1)’ Wy = %l’ and P, = 2,/ A4+ 1¢‘o;:50) +Bigpy + 1
Then, we draw the exact solutions to equation (1.1) as follows:
2p
u(x, t) = [¢, - — 4:311? ein,
PPe*w + ¢ple™é — 2BPy
(4.14)
1 4A P,
V(X,t):— ¢2_ > 21_1 .
3 Ple*v + ¢ple™@s — 2B Py

Case 2. A < 0,B > 0, and A > 0 (Figure 1(b)). If so, we obtain 0 < ¢, < ¢, h; < 0 < h,.
(i) When h € (b, 0), the level curves defined by H, :;(qb, y) = h contain a close branch enclosing the

equilibrium point Ej(¢;, 0), for which we have

2 3B 3C 3h 2
2=Z|Al1Pp| - + —¢? + — + — | = Z|A|p(n - - n)¢p - n).
y 3| I¢( ¢ 2|A|¢ A 2IAI) 3I lp(r — $)@ — )P — 1)
Thus, we know from equation (4.10) that the family of periodic orbits has the parametric representation
n
$(¢) = - , )
1 - AZsm(Quf, k) (4.15)
where Q, = 1 [310e-r) 2 _ (a=m anq 42 _non
273 2141 ° rn-nn’ 1 no'
Equation (4.15) indicates the following exact solutions to equation (1.1):
%
P
u(x,t)=( — rzz p ) e,
1 - A sn*(Q,¢,
sn2(Qaf, k) 16

_1 :
vix, t) = 3(1 — Asn3(Qu¢, k)].

(i) When h € (0, hy), we are aware that the level curves defined by H,-1(¢,y) = h contain two close
branches, for which one family encloses the equilibrium point E;(¢,, 0), while the other contacts to
singular straight line ¢p = 0 at the equilibrium point Ey(0, 0). We have y? = §|A|¢>(r1 - ) - )P -1r)
and y? = §|A|¢)(r1 - @), — )13 — @), respectively . Thus, the left family of periodic orbits has the
parametric representation

n
~ 2 2 ’
1 - A;3"sn*(Q3¢, k)

$(&) =n - (4.47)

and the right family of periodic orbits has the parametric representation



DE GRUYTER The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities =——— 901

n—-n
1- Alsn2(Qs¢, k)

1 - - ~ 2 - 5 2 -
where Q; = £ 3n(rn-n) , k2 = w, A = n rz, and A;” = L
2 21A| n-mn n-n n-n

From equations (4.17) and (4.18), we are able to find the following two families of exact solutions:

$p@E) =r+ (4.18)

1

-t ¥
ulx,t) =+ - 22 3 e,
1-4 snz(ng, k)

(4.19)

v(x,t):l B+ ~2rz—r3 .
3 1-4 Snz(Q3€, k)

1

2
ulx,t) =|n- — i e,
1- AZ SnZ(Q:,;{, k)

v(x,t)zlrl— ~2r1 .
3 1 - A)°sn*(Qs¢, k)

(iii) The level curves defined by H, :%(¢, y) = h, contain a homoclinic orbit enclosing the equilibrium points

(4.20)

Ei(¢,, 0) and two heteroclinic orbits connecting the equilibrium points: E(¢h,, 0) and Ey(O, 0).

We receive that y2 = 2]A|(¢y, - )@ - b,
In addition, matching to the homoclinic orbit, we sketch the next solitary wave solutions

20,(by — ¢,)

D) =, + ’ o)
2 ¢cosh(Qoé) — (P, — 2¢,)
where Qg = |22 @u=%2)
24
Writing to the two heteroclinic orbits, we gain the following kink and anti-kink wave solutions:
4A,P
$&) = ¢, - 252 .

Pzzeiwzf + ¢A2/Ie?(ﬂzf - 2B2P2,

2./Ax(As + Bagpy + D) + Bapy + 24
where 0 < ¢O < ¢2’ wy = %,Az = ¢2(¢M_ ¢2)’ B2:2¢)2— ¢M’ and P, = 2 5 (A + z¢’o;j‘o)+ 2o + 2

From equations (4.21) and (4.22), we obtain the exact solutions to equation (1.1) as follows:

4A,P, » i
uG, t) = ¢ - —— - ] e,
< ( 2 pletwsd 4 Py e™U® — 2B,P, 4.23)
B l B 4A2P2
v(x, t) = 3((;[’2 Pzzei‘”Zf + ¢A2/!e:w2$ _ Zszz]'
u(x, t) = (¢2 + }f‘lg@”’ - 92 > )Zp etn,
* ¢Py,c0sh(Qoé) — () — 2¢,) (4.24)
v(x, t) = l((f’z + 20/ bu = $,) )
3 ¢cosh(Qo) — (Py — 2¢,)

(iv) When h € (h,, 00), we know that the level curves defined by H, :%((j), y) = h are a global family of
close orbits of equation (4.5). At the same time, it encloses the equilibrium points Ei(¢,, 0) and
Ey(¢,, 0). Besides, it also contacts the singular straight line ¢p = 0 at Ey(0, 0). Next, we can obtain

y2 = §|A|(¢M — ¢)[(¢ - b))% + af]p. Thus, equation (4.10) exists the following periodic solutions:
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PuB5(1 — cn(Q4é, k)

d() = , (4.25)
(A3 + B3) — (43 + B3)cn(Q4¢, k)
h _ 1 [3ABs j2_ dy-A-B3)* o — b)) 2 and B2 = a2 + b2
where Q, = o K= s , A3 = (Py 1V + af, and By = af + b;.
Hence, equation (4.25) can gain the exact solutions to equation (1.1) as follows:
1
ux, €) = ((A ??(1@ cn(}s;z;{, z(?)) k))”’em,
3 + B3) — (43 + B3)cn(Q4é, (4.26)
B3(1 - Q.é, k
v(x, t) = 1( PuBs(1 — cn(0ud, 1)) )
3\ (43 + B3) — (43 + B3)cn(Q4¢, k)

Case3. A <0,B >0, A =0 (Figure 1(c)). If so, we obtain ¢, = ¢, = % and hy = h, = %.

(i) Whenh € (0, hy) and h € (hy, 00), the level curves defined by H,-1(¢, y) = h are two families of periodic
orbits of equation (4.5). Then, we recognize that they can obtain the same representation of the param-
eters as in equation (4.25). Thus, equation (1.1) has the same exact solutions as equation (4.26).

(i) The level curves defined by H,.i(¢,y) = h, are two heteroclinic orbits. Then, we know that

y? = %lAl((],’)2 - ¢)3¢. So, we can hold the following kink and anti-kink wave solutions:

_ 3 3B
o6 = 8|A| + 3(;[)2252 T o6uAt + 6|A|B2¢2 (4.27)

Equation (4.26) receives the exact solutions to equation (1.1) as follows:

33362 le )
————| e,
64A" + 6|A|B%2

1

3B3¢2
V(X, t) = — % .
3\ 644 + 6|A|B¥%

u(x, t) = (
(4.28)

Case 4. A < 0 and A < 0 (Figure 1(d)).

When h € (0, 00), the level curves defined by H,-1(¢, y) = h are a family of periodic orbits of equation
(4.5) contacting to the singular straight line ¢ = 0 at E¢(0, 0). So, we can see that it has the same parametric
representations as equation (4.26). From here, we can deduce that equation (1.1) has the same exact
solutions as equation (4.27).

Then, we can make a similar discussion for the cases in Figure 1(e—g). We omit them.

5 Applications of the first integral method

Accordingly, we use the first integral method to solve equation (1.1). Assume that
U(X, Y, t) = f(f)em, V(X’ Y, t) = fO(‘f)) (5'1)

where é = x +y — 2(k + )t and n = kx + Ay — wt. A, k, and w are real parameters, f(¢) is a real function.
Putting equation (5.1) into equation (1.1), then making real and imaginary part be zero, respectively,

(W~ K2~ A + 2" + yf71 + affy + 6% =0,
B (5.2)

fO = Efp’

we gain
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= —%5f21’+1 - %(y " ?)ﬂm N %(AZ £ K2 - Wy, (53)

Having simplified, we arrive at the following equation:
f" = Af?+1 4 Bfr+l 4 Cf, (5.4)
where —%6 =A(A+0),B= —%(y + %), and C = %(}lz + k2 - w).

Substituting equation (3.6) into equation (5.4), we are able to obtain

X =Y,
{Y’ = AX®+! + BXP*1 + CX. 5.5)

According to the first integral method, we assume that X = X(¢) and Y = Y(¢) are the nontrivial solutions
of equation (5.5), and

P(X,Y) = ) a(X)Y! (5.6)
i=0
is an irreducible polynomial in the complex domain C[X, Y]. Then, we make
P(X(£), Y(&)) = Y aX@E)Y () =0, (5.7)
i=0

where g;(X)(i = 0, 1, ...,m) are polynomials of X and a,,(X) # 0. After that, equation (5.2) is called the first

integral of equation (5.5). Note that P(X(¢), Y(&)) is a polynomial in X and Y, and 3—2’ implies % ‘ =
(5.6)
There exists a polynomial H(X, Y) = h(X) + g(X)Y in C(X, Y). Thus,
dp (dP dx dp dY) & ,
e T = (h(X) + g(X)Y)(Zai(X)YI : (5.8)
dé¢ G.2) dX d¢ dYy dé 52 =
Case 1. Let us assume m = 1 in equation (5.2). From equation (5.3), we have
1 1 1
Y XY + Y iaX)YUY'(E)) = (h(X) + g(X)Y)(Zai(X)Y"), (5.9)
i=0 i=0 i=0

where the prime denotes differentiating with respect to the variable X. Comparing to the coefficient
of Yi(i = 2,1, 0) on equation (5.4), we receive

a;(X) = a;(X)h(X), (5.10)
ay(X) = a(X)g(X) + ap(X)h(X), and (5.11)
ao(X)g(X) = a(X)(AX®+! + BXP*! + CX). (5.12)

Since a;(X)(i = 0, 1) are polynomials, we obtain that a;(X) is a constant from equation (5.3) and make
a(X) = 1. According to equations (5.11) and (5.12), we obtain

deglao(x)] + deg[g(X)] = 2p + 1,
deg[g(X)] = p,
deglap(X)] =p + 1.
Making it
p
g(X) = Y AX, (5.13)
i=0

where 4, # 0, from equation (5.11), we obtain
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p
1 .
ao(X) = Y ——AX"! + By, (5.14)
i+l

where By is an arbitrary integration constant. By entering ay(X), a;(X), and g(X) into equation (5.12),
the coefficients of Xi(i = 0, 1, ...,8) can be compared and obtained as follows:

XO : AOBO = 0,

X': A2 + AB, = C,

X2 : %A()Al + A()AO + AzBO =0,

1

XP lAOAp—l + 1A1Ap,2 + ot % p—ZAl + Ap—lAO + ApB() = O,
p

1 1 1
Xp+1, AgA, + —AA, | +--+ =A, 1A + A Ao + A By = B,
p i1 04p p 14p-1 P p-1411 p£10 pP0
Xp+2 ., ! AA, + lAzAp_l +eeet lAp_lAz + lApAl =0,
+1 P 3 2
Xpn . 1 An1Ap + lA,IAIH +ee lAI,A,H =0,
p+1 p n

1 1
X¥: ——A, A, + —AyA, | =0,
PRt A

L oa2-a

X2p+1:
p+17?

Substituting ao(X), ay(X), and h(X) into equation (5.12) and making all the coefficients of X to be zero,
we receive a system of nonlinear algebraic equations and use Maple to solve them. Therefore, we obtain

Ay=+Jp+DA, A, 1=A4,,=-=A=0, Ay=%JC, By=0, (5.15)
where A, C > 0, and (p + 1)B? = (p + 2)?AC.
Next, we obtain ag(X) = AgX + ﬁApo”. Take it into equation (5.8) and obtain

1

AOX+
p+1

A XP+ Y = 0. (5.16)

From equation (5.16), we have

1
X' =-AoX - mApXP”. (5.17)

. 1
(i) When 4, = —/(p + DA, and Ay = —/C, we hold X’ = J/CX + ﬁJ(p + 1DAXP*1, Let us have
1
pVC(E+Ey) P
X = (_ V(p + DCe o ] , (5.18)

\/Z(ep\/f(f*"fm) + 1)

Moreover, one can obtain the exact solutions to equation (1.1) as follows
/(p + 1)Cep\/f(§y+fo1) % .
ulx, t) =|- el
JA (ePVCE + 1)

B[ /(p + 1)Cep\/E('f+$ol))

yt =
V(X ) \/Z(epﬁ(&gm) + 1)

(5.19)

2

where &, is an arbitrary constant.



DE GRUYTER The exact solutions of generalized Davey-Stewartson equations with arbitrary power nonlinearities =—— 905

(ii) When 4, = \/(p + DA and Ao = —/C, we hold X' = J/CX - ﬁﬂl(p + 1)AXP*, Let us have
1
PVCE+E) \P
X = (V(p ¥ DCert e ] , (5.20)

\/Z(ep\/f(éerfoz) + 1)

Moreover, one can obtain the exact solutions to equation (1.1) as follows:
/(p + 1)Cep\/f($+§oz) ; .
u(x, t) = e,
\/Z(ep\/f(f+foz) + 1)

IC ePVCErE
v(x,t):E(\/(er )Ce }

2| VA (eP e £ 1)

(5.21)

where ¢, is an arbitrary constant.

(iii) When A, = \/(p + 1)A and A, = VC, we hold X’ = -J/CX - ﬁﬂl(p + 1)AXP*, Let us have
1
p
V(P + DC ) , (5.22)

[_ \/X(l + ep\/E({Jr{o;))
Moreover, one can obtain the exact solutions to equation (1.1) as follows:
1
Jp +1)C i
— e"T,
\/Z(l + eP\E(é/*fo}))

v(x,t) = E( V(p + 1C ),

2| VAQ1 + erVCGHa)

u(x, t) = (
(5.23)

where ¢, is an arbitrary constant.

(iv) When 4, = —/(p + 1)A and A, = JC, we hold X’ = -J/CX + ﬁ«/(p + 1A XP+1, Let us have
»
X:( Jp ¥ C J. (5.24)

\/Z(l + ePﬁ(f*foa))

Moreover, one can obtain the exact solutions to equation (1.1) as follows:
b
J(p +1)C .
u(x, t) = @+ D e,
VA (1 =+ epﬁ@k*éfoz;))

v 1) = E( Jp+1C )],

2 \/Z(l + epﬁ({‘f{oa)

(5.25)

where ¢, is an arbitrary constant.

Case 2. Suppose that m = 2. Compared to the coefficient of Yi(i = 3, 2, 1, 0) on equation (5.3), we have

a(X) = ;(XOhX), (5.26)

a/(X) = ;(X)g(X) + a(X)hX), (5.27)

ap(X) + 2a,(X)Y" = ;(X)g(X) + ao(X)h(X), (5.28)
a(X)Y' = ap(X)g(X) = a;(X)(AX?*1 + BXP+! 1+ CX). (5.29)

Since a;(X)(i = 0, 1, 2) = 0 are polynomials, we obtain deg[a,(X)] = 0, h(X) = 0, deg[ao(X)] = 2p + 2.
Then, we make a,(X) = 1.



906 —— Yanjie Wang et al. DE GRUYTER

Next, let us discuss a;(X) and g(X) in two cases.
(I) When a;(X) = 0 and g(X) = 0, we obtain

L axwe2 2 _pxpe2 _cxe,

apX) = -
oX) p+1 p+2

Then bringing ay(X), a;(X), and a,(X) into equation (5.8), we obtain

X =+ —1 AX?
p+1

2 _ 2 E £ 0
(XP) +(2 p+2)AXP+(p+1)A]. (5.30)

The simultaneous integration of equation (5.30) yields
1
ﬁ an_
x| ) e\ Ih E+ios),
e\lr“‘;ﬁp(f‘*fo;) -1

1

X= (L)p, (5.31)

e\‘c“‘%l’({*'{os) +1

where A>0,C>0, B, = (’; :21)2AC ,and D = %. Next, we have the exact solutions to equation (1.1)
as follows:

1
u(x, t) = (#]Pe\/ﬁ(f*{os)ein’
) e\fﬁp(€+505) -1 (5.32)
v(x, t) = E(_L]epvﬁ@{%)_
2 ev“‘%p({*&)s) -1
b
u(x, t) = (%) ein,
* e (5.33)
v(x, t) = E(#)
2 e@%ﬁ(f*‘fos) +1

(IT) When deg[a;(X)] = deg[g(X)] + 1, we make it to be two cases as follows:

When deg[g(X)] = n(n < p), deg[a;(X)] = n + 1, it is contradictory.

When deg[g(X)]=p and degla;(X)]=p +1, we make gX) = fioAiX"(Ap #0). Then a(X) =
r OﬁAiX i+1 + By, where By is a constant. Similar ones can be launched.

(i) When
Ay=+2J(p+ DA, A, =-=A=4A=B=0, (5.34)

we have ¢;(X) = +2 /ﬁXP“ and ag(X) = ﬁsz’fz, where ay(X) is a constant, Co = 0 and B= C = 0.

Bringing it into equation (5.8), we obtain X’ = + /ﬁXP“.

xo4f (P11 / (5.35)
VA pE+g))]

where ¢, is a constant. We have the exact solutions to equation (1.1) as follows:

u(x, t) = J_r( p+l ;)pei’?,
A p+ &)

V(X, t) = iE p—+l ;_
2V A p+ &)

Then, it is to obtain,

(5.36)
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(ii) When
Ay =2J(p+ DA, Ay=2JC, A, 1=-=4=B;=0, (5.37)

2
we have a;(X) = 2X( /ﬁXP + JE) and ao(X) = X2( /ﬁxv + \/E) , where ao(X) is a constant,
Co=0, (p+1B>=(p+2?2AC, and B>0. Taking it to equation (5.8), we obtain

X = —X(\/gxp + JE).

Then, it is to obtain

1
p

X = Ve (5.38)

ep\/f(&'fos) — i ’
p+1

where &, is a constant. We have the exact solutions to equation (1.1) as follows:

5
u(x, t) = JC e,
eP\E(Gr*%s) — i
< VP (5.39)
v(x,t) = B Ve .
2 ep\/f(erfos) _ A
p+1
(iii) When
A, =2J(p+ DA, Ay=-2JC, A, =--=4=B;=0, (5.40)

2
we haveq(X) = 2X( /ﬁXP - \/E) and ay(X) = XZ( /ﬁXP - \/E) , Where aog(X) is a constant, Cy = 0,
(p + DB? = (p + 2)?AC, and B < 0. Bringing it into equation (5.8), we obtain X' = —X( /ﬁX” - \/E)
Then, it is to obtain

1
p

X= Ve e\/E(f’ffos:), (5.41)
iep\/f(f‘*'fog) -1
\Vp+1

where ¢, is a constant. We have the exact solutions to equation (1.1) as follows:

1
u(x, t) = JC e\/E(f*'fog)eiﬂ’
i ep\/E(f+fo9) -1
\ 1
) P (5.42)
V(X, t) = E \/E eP\E(Cerfw).
A opJCE+Ey) _ q
p+1

(iv) When
Ay=-2J(p+ DA, Ay=2JC, A, 1=--=4=By=0, (5.43)

2
we have ¢;(X) = —ZX( /ﬁXP - \/f), and ap(X) = Xz( lﬁXp - \/E) , where ao(X) is a constant,
Co=0,(p+1B?=(p+2)?*AC,and B< 0.
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Taking it into equation (5.8), we obtain X' = X( /ﬁXP - \/f)

Then, it is to obtain

1
p

Ve (5.44)

—_epVCGErg) 4 [ A ’
p+1

where &, is a constant. We have the exact solutions to equation (1.1) as follows:

1
P
u(x, t) = Jc e,
_ep\/f(f‘*'fm) + i
< VP (5.45)
vix,t) = B Ve .
2| _epVCrey 4 \/I
p+1
(v) When
Ay =-2J(p+ DA, Ay=-2JC, Apy=-=4A=By=0, (5.46)

2
we have a;(X) = —ZX( /ﬁX” + \/E) and ap(X) = X2( ﬁX” - \/E) , where ao(X) is a constant,
Co=0, (p+1B>=(p+2)2?AC, and B >0. Bringing it into equation (5.8), we obtain

X = X(\/gxp + JE).

Then, it is to obtain

1
p

X = \/E e\/f(f+£11), (547)

1- [_A epJCE+e
p+1

where &, is a constant. We have the exact solutions to equation (1.1) as follows:

1
u(x, t) = \/E eﬁ(&fn)eiﬂ,
1- A ep\/f({"'{u)
1
i (5.48)
vix, 6 = 2 [ er VT,
2 1- \/Iepﬁ(&rﬁl)
p+1

6 Conclusion

This article obtains many new exact solutions to generalized Davey-Stewartson equations with arbitrary
power nonlinearity by the dynamical system and the first integral methods. These exact solutions include
periodic wave solutions, exact solitary wave solutions, kink wave solutions, anti-kink wave solutions, etc.
We conclude that our results are novel and abundant by comparing the results with [41-45] using the
software Maple. Hence, the two methods can also be extended to solve other nonlinear PDEs and obtain
more exact solutions. Nevertheless, one can note that the integer-order derivative equations considered in
our dissertation are, in fact, only time-integers. Would the traveling wave solutions be consistent with our
results or more for time and spatial-fractional order derivatives regarding the generalized Davey-Stewartson
equations? We leave this topic for future analysis.
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