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Abstract: In this article, we design a family of scale-free networks and study its random target access time
and weighted spanning trees through the eigenvalues of transition weight matrix. First, we build a type of
fractal network with a weight factor r and a parameter m. Then, we obtain all the eigenvalues of its
transition weight matrix by revealing the recursive relationship between eigenvalues in every two consec-
utive time steps and obtain the multiplicities corresponding to these eigenvalues. Furthermore, we provide
a closed-form expression of the random target access time for the network studied. The obtained results
show that the random target access is not affected by the weight; it is only affected by parameters m and t.
Finally, we also enumerate the weighted spanning trees of the studied networks through the obtained
eigenvalues.
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1 Introduction

In the research related to complex networks, in addition to the topological properties, it is also necessary to
describe their dynamic processes. Random walk is one of the powerful research tools that can describe
various dynamical behaviors in complex systems, such as remote sensing image segmentation [1], epidemic
spreading [2], community detecting [3], cell sampling [4], just to name but a few. Random walks have been
studied for many decades on both regular lattices and networks with a variety of structures [5]. For
undirected weighted networks, the weight matrices of several classes of local random walk dynamics
have been extensively studied, including normal random walks, biased random walks and preferential
navigation, random walks in the context of digital image processing and maximum entropy random walks,
and non-local random walks, including applications in the context of human mobility [6].

In the research methods of random walks, the random target access time [7], mean first passage time
[8], mixing time, and other indicators [9] can be used to measure the efficiency of propagation [10,11].
The random target access time is a manifestation of the global characteristics of the network; it refers to the
average of mean first passage time from one node to another node over all target nodes according to the
stationary state; it is formulated as the sum of reciprocals of every nonzero eigenvalue of the normalized
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Laplacian matrix for the researched network. For example, some related studies on biased random walks of
non-fractal and fractal structure [12].

The eigenvalues and eigenvectors of the transition matrix play a very vital role [13], as they are closely
related to determining the aforementioned measures. There has been some research related to the eigen-
values of transition matrices on common networks in this work, such as Sierpinski gaskets and extended
T-fractals, polymer networks, and it is worth emphasizing that these studies are based on networks without
weight [14–16]. However, the weight of the network has important research significance in biological neural
network, railway and air transportation [17,18]; therefore, finding the relationship between random walks
and weight factor on different weighted networks is meaningful. Zhang et al. [19] studied the spectra of a
weighted scale-free network and proved that random target access time Ht is closely related to a weight

factor r. Dai et al. [20] obtained ( )
=

+ /H Nt t
rln 4 4 ln 4 for a class of weighted scale-free triangulation networks.

Zou et al. [21] proved the ( )+H N~t t
rlog 1 45 for >r 1 of weighted network with two hub nodes. These studies

show that weight has a great influence on random target access time of the networks.
The main research content of this article is arranged as follows. In the next section, we propose

a graphic operation called the weighted edge multi-division operation and give the generation algorithm
about a family of weighted networks. In Section 3, we find all eigenvalues of the transition weight matrix
and determine their multiplicities. Then, we deduce all the eigenvalues of the normalized Laplacian matrix
of our networks, and then derive the closed-form expressions for random target access time and enumerate
the weighted spanning trees in Section 4. In Section 5, we summarize the work of this article.

2 Design-weighted network models

Many phenomena can be reduced to graphs for research [22–24], so we are about to show the corresponding
model of a family of weighted scale-free networks. But, before that, we define a graphic operation called the
weighted edge multi-division operation and obtain our weighted networks through the recursion of this
graphic operation.

Weighted edge multi-division operation: For a given edge ′ii with two end-nodes i and ′i with weight
w, replace the original edge ′ii with m roads ′i j iq q q ( = …q m1, 2, ); the end-nodes iq and ′iq of these roads

coincide with i and ′i , respectively. The weight of the new edges ijq and ′j iq is r times the original edge ′ii , and
the diagram of a weighted edge multi-division operation is shown in Figure 1.

With the preparation of the weighted edge multi-division operation, the weighted scale-free networks
are constructed in an iterative way as depicted. Let ( )G m r t, , ( ≥m 2, >r 0, ≥t 0) denote the weighted
scale-free networks after t time steps. Initially, =t 0, ( )G m r, , 0 is an edge with unit weight connecting two
nodes. For ≥t 1, ( )G m r t, , can be obtained from ( )−G m r t, , 1 by performing weighted edge multi-division
operation on each existing edge in ( )−G m r t, , 1 . If the weight of edge in ( )−G m r t, , 1 is ( )−w t 1 , then the
weight of edge in ( )G m r t, , becomes ( )−rw t 1 according to the above graphic operation. Figure 2 illustrates
the two particular examples ( )G m r t, , when = = =m r t3, 1, 3 and = = =m r t2, 1, 4, the weight of each
edge in these two network examples is 1, which is omitted in Figure 2.
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Figure 1: A weighted edge multi-division operation.
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The iterative growth of the network allows us to precisely analyze its topological characteristics, such as
the order and the size, the sum of weights of all edges, and so on. At each time step ( )≥t t 1i i , the number of
newly added nodes is recorded as ( )=

−V m m2t
t 1

i
i . Suppose the network order Nt represents the total number

of nodes in ( )G m r t, , , we have

( )
∑= + =

+ −

−

=

N V V m m m
m

2 3 2
2 1

.t
t

t

t
t

0
1i

i (1)

The network size Et is the number of total edges in ( )G m r t, , , then

( )= =
−

E mE m2 2 .t t
t

1 (2)

Let symbol ( )d ti be the degree of node i in ( )G m r t, , that was generated at time step ti, then we can
obtain a recursive formula for the degree of node as ( ) ( )+ = =

−d t md t m1 2i i
t ti.

The networks studied in this article display some representative topological characteristics observed in
different real-life systems.Theyobeya significantpower-lawdegreedistributionwithexponent = + /γ m2 ln2 ln ,
and have a fractal dimension ( )= /f mln 2 ln 2B , both of which show that the networks are fractal and scale-
free [25,26].

Let Qt represent the total weight of all edges in ( )G m r t, , , by construction, we have

=
−

Q mrQ2 ,t t 1 (3)

then by considering the initial condition =Q 10 , we can solve

( )=Q mr2 .t
t (4)

For an edge =e ij connecting two nodes i and j in ( )G m r t, , , ( )w tij denote the weight of edge ij, let ( )s ti

be the strength of node i in time step t, which represents the sum of the weights of all adjacent edges of node
i, it can be formulated as

( ) ( ) ( ) ( ) ( )
( )

∑= = − =

∈

−s t w t mrs t mr s t1 ,i
j N i

ij i
t t

i ii (5)

where ( )N i is the set of all neighbors of node i in the network ( )G m r t, , .

3 Eigenvalues and their multiplicities of transition weight matrix

In this section, we determine all eigenvalues and multiplicities of transition weight matrix in our networks,
according to the relationship between the eigenvalues of the transition weight matrix of two consecutive
generations.

Figure 2: Illustration for two networks ( )G 3, 1, 3 and ( )G 2, 1, 4 .
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3.1 Relationship between eigenvalues

Let Wt be the weighted adjacency matrix of network ( )G m r t, , and its entries ( )W i j,t are defined as
( ) ( )=W i j w t,t ij if nodes i and j are connected by an edge with weight ( )w tij in ( )G m r t, , , or ( ) =W i j, 0t if

there is no edge between node i and node j. Another important matrix Tt involved in describing weighted
random walks is called transition weight matrix, which is defined as =

−T S Wt t t
1 , where St is the diagonal

strength matrix of network ( )G m r t, , with its ith diagonal entry being the strength ( )s ti of i. Thus, the ( )i j, th
element ofTt is written as ( ) ( ) ( )= /T i j w t s t,t ij i , which represents the corresponding transition probability for
a particle going from starting node i to ending node j. Since Tt is asymmetric, we introduce a real and
symmetric matrix Pt to assist our research,

= =

− − −

P S WS S T S ,t t t t t t t

1
2

1
2

1
2

1
2 (6)

which shows that matrix Pt is similar to matrix Tt, and they have the same eigenvalue set. In addition, the
entry in the ith row and jth column of Pt is essentially ( ) ( ) ( ) ( )= /P i j w t s t s t,t ij i j according to equation (6).
Furthermore, we set ϕ as an eigenvector of matrix Pt associated with eigenvalue λ, then the eigenvector
corresponding to eigenvalue λ in Tt can be written as −S ϕ1

2 . Therefore, we only need to find all the eigen-
values of matrix Pt, and the eigenvalues of the another matrix Tt can be obtained through transformation.
Furthermore, we introduce the normalized Laplacian matrix = −L I Pt t t, where It is the ×N Nt t identity
matrix. In the following, we use the decimation approach [27] to enumerate all eigenvalues of normalized
Laplacian matrix in our network.

For ( )G m r t, , , we suppose that ( )λ ti is an eigenvalue of Pt, ( )= …ϕ ϕ ϕ ϕ, , , N
T

1 2 t
, which denote the

eigenvector corresponding to the eigenvalue ( )λ ti , where ϕi is the element corresponding to node i. In order
to distinguish between the newly generated nodes at time step t and the existing old nodes (they were
generated before time step t), we let ∗ϕ represent a vector with

−
Nt 1 dimension that is obtained from ϕ by

restricting its components to the old nodes at time step t, with the set of all old nodes in ( )G m r t, , is denoted
as ( )−V t 1 , then

( ) =λ t ϕ P ϕ.i t (7)
∗ϕ as an eigenvector of matrix

−
Pt 1, it associated with the eigenvalue ( )−λ t 1i , similar to equation (7),

we can obtain

( )− =

∗

−

∗λ t ϕ P ϕ1 .i t 1 (8)

Let ( )∈ −i V t 1 be an old node in ( )G m r t, , , we also have the following equation according to equa-
tion (7),

( ) ( )
( )

∑=

∈

λ t ϕ P i j ϕ, .i i
j N i

t j (9)

Given two old nodes ( )′ ∈ −i i V t, 1 in network ( )G m r t, , , and the weight of the connecting edge
between these two nodes in ( )−G m r t, , 1 is equal to ( )−

′
w t 1ii . According to the way the network grows

in two consecutive time steps, let …j j j, , , m1 2 be the m neighbors of nodes i and ′i , then expand equation (9)
in detail to obtain the following equation, let ( )N ti be the set of neighbors of node i,

( )
⎡

⎣
⎢

( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

⎤

⎦
⎥

( )

∑= + + ⋯+

… ∈

λ t ϕ
w t

s t s t
ϕ

w t
s t s t

ϕ
w t

s t s t
ϕ .i i

j j N t

ij

i j
j

ij

i j
j

ij

i j
j

, , m i

m

m
m

1

1

1
1

2

2
2

(10)

For each element ( )= …ϕ q m1, 2, ,jq corresponding to a new node, for every new neighbor jq, we can

obtain
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⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

( )
( )

( ) ( )

( )

( ) ( )

( )
( )

( ) ( )

( )

( ) ( )

( )
( )

( ) ( )

( )

( ) ( )

= +

= +

⋯

= +

′

′

′

′

′

′

′

′

′

λ t ϕ
w t

s t s t
ϕ

w t
s t s t

ϕ

λ t ϕ
w t

s t s t
ϕ

w t
s t s t

ϕ

λ t ϕ
w t

s t s t
ϕ

w t
s t s t

ϕ .

i j
ij

i j
i

i j

i j
i

i j
ij

i j
i

i j

i j
i

i j
ij

i j
i

i j

i j
im

m

m

m

m

1
1

1

1

1

2
2

2

2

2
(11)

We know that ( ) ( ) ( )= = −
′ ′

w t w t rw t 1ij i j iiq q for = …q m1, 2, , , ( ) ( )= −s t mrs t 1i i , ( ) ( )= −
′ ′

s t mrs t 1i i ,

and ( ) ( )= −
′

s t mrw t 1j iiq , and substituting equation (11) into equation (10), equation (10) becomes

( )
⎡

⎣
⎢

( )

( ) ( )

( )

( ) ( ) ( )

⎤

⎦
⎥

( )

⎡

⎣
⎢

( )

( ) ( )

⎤

⎦
⎥

( ) ( )
( )

( )

( )

( )

∑

∑

∑

=

−

−

+

−

− −

= +

−

− −

= + ′

′∈ −

′ ′

′

′

′∈ −

′

′

′

′∈ −

−
′

λ t ϕ w t
λ t s t

ϕ w t
λ t s t s t

ϕ

λ t
ϕ w t

s t s t
ϕ

λ t
ϕ

λ t
P i i ϕ

1
2 1

1
2 1 1

1
2

1
1 1

1
2

1
2

, .

i i
i N t

ii

i i
i

ii

i i i
i

i
i

i N t

ii

i i
i

i
i

i i N t
t i

1

1

1
1

i

i

i

(12)

For an old node ( )∈ −i V t 1 , we can further simplify equation (12) to obtain

⎧

⎨
⎩

( )⎡

⎣⎢
( )

( )
⎤

⎦⎥

⎫

⎬
⎭

( )
( )

∑− = ′

′∈ −

−
′

λ t λ t
λ t

ϕ P i i ϕ2 1
2

, .i i
i

i
i N t

t i
1

1
i

(13)

Comparing equations (13) and (8) corresponding to any old node i, we obtain the following equation:

( )⎡

⎣⎢
( )

( )
⎤

⎦⎥
( )− = −λ t λ t

λ t
λ t2 1

2
1 ;i i

i
i (14)

furthermore, the solution of ( )λ ti is expressed by ( )−λ t 1i as

( )
( )

= ±

− +λ t λ t 1 1
2

.i
i (15)

The above result shows that for an eigenvalue ( )−λ t 1i of matrix
−

Pt 1, we can obtain two eigenvalues
( )λ ti,1 and ( )λ ti,2 of the matrix Pt through the recursive relationship as shown in equation (15). Therefore,

if all the eigenvalues of
−

Pt 1 are known, then we can calculate all the eigenvalues of Pt. If there are also
eigenvalues ( )λ ti that cannot be derived from equation (15), then they are zero eigenvalues.

3.2 Multiplicities of eigenvalues

On the basis of the eigenvalues obtained above, we can determine their corresponding multiplicity for

matrix Pt. For convenience, let ( ( ))D λ tt i
mul be the degeneracy of eigenvalue ( )λ ti for matrix Pt, because −

Pt 1 is

a real and symmetrical matrix; hence, every eigenvalue ( )−λ t 1i of
−

Pt 1 has ( ( ))−
−

D λ t 1t i1
mul linearly inde-

pendent eigenvectors.
For small networks, we can calculate their eigenvalues and corresponding multiplicities directly, for

instance, the set of eigenvalues of P0 is { }−1, 1 . For P1, its eigenvalues are−1, 0, 1, where two eigenvalues −1
and 1 are generated by eigenvalue 1 of P0, and eigenvalue 0 is generated by eigenvalue −1 of P0. Similarly,

we can obtain five different eigenvalues − −1, , 0, , 12
2

2
2 of P2 according to the eigenvalues of P1.

We can observe the fact that in addition to the eigenvalues ( ) =λ t 0i , all eigenvalues of a given time step
ti must exist in the subsequent time step +t 1i , and each eigenvalue keeps the degeneracy of the previous
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time step. So, for ≥t 2, each eigenvalue in network ( )−G m r t, , 1 will bring about two eigenvalues in
( )−G m r t, , 1 in the light of equation (15), except for eigenvalue −1 and 1, because −1 can only produce

eigenvalue 0, and 1 of
−

Pt 1 produce −1 and 1 in the next generation. Therefore, we need to individually
consider the multiplicity of eigenvalue 0, as well as the multiplicities of its descendants.

In general, we usually use ( )r M to represent the rank of a matrix M , and the multiplicity of the zero
eigenvalues for matrix Pt is expressed as

( ) ( )= −D N r P0 .t t t
mul (16)

For the set of all nodes in ( )G m r t, , , let α be the set of all nodes in ( )−G m r t, , 1 , and β denote the set of
nodes newly added at time step t. Now, we identify that the rank of Pt, Pt can be written in a block form due
to the topology of the network,

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= =P
P P
P P

P
P

0
0 ,t

α α α β

β α β β

α β

β α

, ,

, ,

,

,
(17)

where the fact that Pα α, is the ×
− −

N Nt t1 1 zero matrix and Pβ β, is the ( ) ( )− × −
− −

N N N Nt t t t1 1 zero matrix are
substituted into equation (17).

Because the matrix Pβ α, is the transpose of the matrix Pα β, , then we only analyze the rank of the matrix
Pα β, , Pα β, , which is an ( )× −

− −
N N Nt t t1 1 -order matrix, taking the form

⎛

⎝

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟
⎟

=

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

⋮ ⋮

⋯ ⋯

P

p p
p p

p p p p

p p p p

0 0
0 0

,α β,

1 1

1 1
2 2 2 2

2 2 2 2

(18)

where the first ( )− /
−

N N 2t t 1 entries in the first row of the matrix Pα β, are p1; the last ( )− /
−

N N 2t t 1 entries of
the second row are p1; there are m2 elements p2 in each row from the third row to the

−
Nt 1th row; the

“ ⋯p p2 2” in equation (18) means that it contains m entries p2. The unmarked entries in matrix equation
(18) are zeros. Performing some elementary row operations on matrix Pα β, consists of adding the entries of
the second row to the first row and multiplying the entries of the third row to the

−
Nt 1th rows by−1, and then

adding it to the first row. The result of the elementary row operations shows that the entries in the first row
are all zeros, and the matrix Pα β, has following form:

⎛

⎝

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

=

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯

⋮ ⋮

⋯ ⋯

P
p p

p p p p

p p p p

0 0 0 0
0 0

,α β,

1 1
2 2 2 2

2 2 2 2

(19)

from which we obtain ( ) = −
−

r P N 1α β t, 1 , and consider =P Pβ α α β
T

, , , then,

( ) ( )
( )

= = − =

+ −

−

−
−

−

r P r P N m m m
m

1 2 3 2
2 1

1.α β β α t
t

, , 1
1

(20)

In addition, we have

( )
⎛

⎝
⎜

⎡

⎣

⎢
⎤

⎦

⎥
⎞

⎠
⎟

( )
= = − =

+ −

−

−
−

−

r P r
P

P N m m m
m

0
0 2 2 2 2 6 4

2 1
2.t

α β

β α t
t,

, 1
1

(21)

Therefore, we obtain ( ) = − +
−

D N N0 2 2t t t
mul

1 , which indicates that the multiplicity of eigenvalues zero
of Pt is

( )
⎧

⎨
⎩

( ) ( )=

=

− +

−

≥

D
t

m m m
m

t
0

0, 0,
2 1

2 1
, 1.t tmul (22)
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The total number of eigenvalue 0 and its descendants in ( )≥P t 1t is denoted as ( )N 0t
seed , then

( ) ( ) ( )
( )

∑ ∑ ∑= ⋅ =

−

−

+

−

=

−

−

=

−

=

−

=

−N D m
m

m m
m

m m m
m

0 0 2 1
2 1

2 2
2 1

2 2
2 1

.t
i

t

i
t i

i

t
i t i

i

t
t i

t
seed

1

mul

1 1
(23)

For eigenvalues −1 and 1, we found that the eigenvalue −1 in
−

Pt 1 produces eigenvalue 0 according to
equation (15); hence, for eigenvalue −1, we have included the number of its descendants in the number of
eigenvalue 0, which has been calculated in equation (23). Next, considering the multiplicity of eigenvalues
1 and −1 in ( )≥P t 0t , we have

( ) ( )− = =N N1 1 1.t t
mul mul (24)

Apparently, eigenvalues−1 and 1 in Pt are generated by the eigenvalue 1 in
−

Pt 1. Adding the number of all the
eigenvalues obtained above, we obtain the following result:

( ) ⎛
⎝

⎞
⎠

( )
( )

+ − + =

+ −

−

=N N N m m m
m

N0 1
2

1 2 3 2
2 1

,t t t
t

t
seed mul mul (25)

which proves that we have found all the eigenvalues, and the corresponding multiplicities of the matrix Pt

are determined. In addition, then we also obtain all the eigenvalues and their multiplicities of transition
weight matrix Tt by simple transformation.

4 Applications of eigenvalues

The eigenvalues of the normalized Laplacian matrix of ( )G m r t, , can be determined from the eigenvalues
obtained in Section 3.2, and it can be used to calculate some quantities for the weighted scale-free net-
works, such as the random target access time for random walks, and also to enumerate weighted spanning
trees [27].

4.1 Random target access time

We set ( )H tij as the expected time for a particle starting from staring node i to visit ending node j for the first
time in ( )G m r t, , . Let ( )= …π π π π, , , N

T
1 2 t be the steady-state distribution for random walks on ( )G m r t, , ,

where ( ) ( )= /π s t Q2i i t satisfying ∑ =

=

π 1i
N

i1 and =π T πT
t

T . The random target access time Ht for random
walks on ( )G m r t, , is defined as the expected time needed by a particle from a node i to another target node
j, chosen randomly from all nodes according to the steady-state distribution [9], then it can be formulated
as

( )∑=

=

H π H t .t
j

N

j ij
1

t

(26)

The quantity Ht does not change due to different starting nodes, so it can be reexpressed as

( ) ( )∑ ∑ ∑ ∑= =

= = = =

H π π H t π π H t .t
i

N

i
j

N

j ij
j

N

j
i

N

i ij
1 1 1 1

t t t t

(27)

Equation (27) implies that the random target access time Ht can be looked upon as the average trapping time
of a particular trapping problem; it contains much valuable information about trapping in network

( )G m r t, , . The random target access time in network ( )G m r t, , can be obtained by the sum of the reciprocal
of 1 minus each eigenvalue of Tt, and the eigenvalue 1 is not included here [7].

The normalized Laplacian matrix of ( )G m r t, , is defined as = −L I Pt t t, and It denotes the identity
matrix with order ×N Nt t. Let { ( ) }≤ ≤λ t i N: 1i t be the Nt eigenvalues of matrix Pt. By definition,
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let ( ) ( )= −σ t λ t1i i be the eigenvalue of Lt for ≤ ≤i N1 t, then there is a one-to-one relationship between ( )σ ti
and ( )λ ti . It can be proved that Ht can be represented in terms of the nonzero eigenvalues of Lt [28]
as follows:

( ) ( )
∑ ∑= =

−

= =

H
σ t λ t

1 1
1

.t
i

N

i i

N

i2 2

t t

(28)

Theorem 1. For >t 0, the random target access time of weighted network ( )G m r t, , is

( ) ( )

( )
=

− + − −

−

H m m m m
m

2 2 1 16 4 1
2 2 1t

t 2

when → ∞t , and the relationship between Ht and the network order Nt is

−H m
m

N~ 1 .t t

Proof. According to equation (15) and ( ) ( )= −σ t λ t1i i , we can easily obtain the following recursive relation
commanding the eigenvalues of two normalized Laplacian matrices

−
Lt 1 and Lt,

( )
( )

= ±

− −σ t σ t1 2 1
2

.i
i (29)

We suppose that Ωt contains all eigenvalues of matrix Lt at time step t, then equation (29) means that
each eigenvalue ( )−σ t 1i in

−
Ωt 1 gives rise to two eigenvalues ( )σ ti,1 and ( ) ∈σ t Ωi t,2 .

It is easy to obtain the following result due to equation (29): { }=Ω 0, 20 , ∈0 Ω0 generates eigenvalue
∈0, 2 Ω1; ∈2 Ω0 generates two eigenvalues ∈1 Ω1, so { }=Ω 0, 1, 1, 21 ; ∈0 Ω1 generates eigenvalue ∈0, 2 Ω2;

∈2 Ω1 generates eigenvalue ∈1 Ω2; and ∈1 Ω1 generates two eigenvalues +1 2
2 and −1 2

2 , thuswe can obtain

{ }= − − + +Ω 0, 1 , 1 , 1, 1, 1, 1, 1, 1, 1 , 1 , 22
2

2
2

2
2

2
2

2 . Similarly, { }( ) ( )
=Ω 0, 2, Ω , Ω3 3

1
3
2 , where { }( )

= …Ω 1, 1, ,13
1

contains all eigenvalues 1 and ( )Ω3
2 is generated by equation (29) from { }⧹Ω 0, 22 .

In order to facilitate calculations, we divide the setΩt into three disjoint subsets represented by ( )Ωt
1 , ( )Ωt

2

and the set { }( )
=Ω 0, 2t

3 , which can be decomposed into { }( ) ( )
= ∪ ∪Ω Ω Ω 0, 2t t t

1 2 , where ( )Ωt
1 consists of

eigenvalue 1 with multiplicity ( ) ( )− +

−

m m m
m

2 1
2 1

t
, and these eigenvalues generated by equation (29) from

( ) { }− ∈ ⧹
−

σ t 1 Ω 0, 2i t 1 are involved in ( )Ωt
2 . First, we consider the subset ( )Ωt

1 , then

( )

( ) ( )

( ) ( )

∑ =

− +

−

∈

σ t
m m m

m
1 2 1

2 1
.

σ t i

t

Ωi t
1

(30)

Hence, we still need to evaluate
( ) ( )

( )∑

∈σ t σ tΩ
1

i t i
2 in order to determine Ht. According to Vieta’s formulas,

we have ( ) ( )+ =σ t σ t 2i i,1 ,2 and ( ) ( ) ( )⋅ = − /σ t σ t σ t 1 2i i i,1 ,2 . In addition, we have

( ) ( ) ( )
+ =

−σ t σ t σ t
1 1 4

1
,

i i i,1 ,2
(31)

which indicates that

( ) ( )
( ) ( ) { }( )

∑ ∑=

−

∈ − ∈ ⧹
−

σ t σ t
1 4 1

1
.

σ t i σ t iΩ 1 Ω 0,2i t i t
2

1

(32)

Combining the above results in equations (30) and (32), the relationship between Ht and
−

Ht 1 can
be obtained as follows:

( ) ( )

( ) ( )

( ) ( )

∑ ∑= + + = +

− +

−

+

∈ ∈

−
H

σ t σ t
H m m m

m
1 1 1

2
4 2 1

2 1
1
2

.t
σ i σ i

t
t

Ω Ω
1

i t i t
1 2

(33)
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Furthermore, using the initial condition =H0
1
2 , we can obtain

( ) ( ) ( ) ( )

( )
= +

− +

−

+ =

− + − −

−

H m m m m
m

m m m m
m

4 2 1
2 1

1
2

2 2 1 16 4 1
2 2 1

.t
t t 2

(34)

Finally, for large weighted fractal networks, that is → ∞t , we explore how the random target access

time of ( )G m r t, , changes with the increase of the network order, we know ( )
=

+ −

−

Nt
m m m

m
2 3 2

2 1

t
, then we can

obtain

( )
≈

−

+

+ − +

−

H m
m

N m m m
m m

1 16 2 11 4
2 2 1

.t t
3 2

(35)

Equation (35) implies that in the large t limit, the random target access time increases as a linear
function of the network order; Ht is only affected by the topological parameter m; and it has no relationship
with the weight factor r. In Figure 3, we give the schematic diagram to reveal the relationships between Ht
and two parameters t and m. In more detail, when the value of m is determined, Ht increases monotonically
with t for ≥t 0 as shown in Figure 4. Similarly, for a given t, Ht increases monotonically with m for ≥m 2 as
shown in Figure 5. □

4.2 Weighted counting of spanning trees

The spanning tree of a connect network ( )G m r t, , is a subgraph of it, that is, a tree T , and includes all the
nodes of ( )G m r t, , [29]. For a weighted network ( )G m r t, , , let ( ( ))G m r tΛ , , be its spanning trees set, and

( ) = ∏

∈

w T we T e, which is defined to be the product of weight of all edges inT , where we is the weight of edge

e. Let ( ( ))N G m r t, ,st
w denote the weight counting of spanning trees of weighted fractal network ( )G m r t, , ,

that is, ( ( )) ( )
( ( ))

= ∑

∈

N G m r t w T, ,st
w

T G m r tΛ , , .

Different from using the electrical networks theory to obtain the closed-form formula for the spanning
tree enumeration [30,31] and calculating the weighted spanning trees through the special structure of the
networks [32], in this subsection, we count ( ( ))N G m r t, ,st

w by using the eigenvalues of normalized Laplacian
matrix Lt of ( )G m r t, , , that is,

( ( ))
( ) ( )

( )
=

∏ ∏

∑

= =

=

N G m r t
s t σ t

s t
, , .st

w i
N

i i
N

i

i
N

i

1 2

1

t t

t
(36)

Figure 3: Random target access time Ht of ( )G m r t, , .
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Theorem 2. For >t 0, the weighted spanning tree of weighted network ( )G m r t, , is

( ( )) ⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

=

∑

∑

=

=

−

N G m r t
mr

mr, , 2 1
2

.st
w

t
N

N
i
t

i
i
t

i

1
0
1

Proof. We first need to determine the three terms in equation (36). For the sum term in the denominator,
we have

( ) ( )∑ = =

=

s t Q mr2 2 2 .
i

N

i t
t

1

t

(37)

Consider the two product terms in the numerator of equation (36), let Φt represent the product ( )
=

s tΠi
N

i1
t ,

and Θt represent the product term ( )
=

σ tΠi
N

i2
g , respectively. According to the calculation formula of the

strength of the node, the quantity Φt obeys the following recursive relations:

( )= ×
−

mrΦ Φt
N

t 1t (38)

Figure 4: When m is determined, Ht increases monotonically with t for ≥t 0.

Figure 5: When t is fixed, Ht increases monotonically with m for ≥m 2.
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Based on the results of the eigenvalues obtained above, the following equation holds:

⎛
⎝

⎞
⎠

= × ×

−

−

−

Θ 2 1
2

Θ .t
N

t
1

1
t 1

(39)

Then, multiplying equations (38) by (39) results in

( ) ⎛
⎝

⎞
⎠

=
− −

−

mrΦ Θ 4 1
2

Φ Θ .t t
N

N
t t1 1t

t 1
(40)

For the simple case of =t 0, we can easily obtain =Φ 10 and =Θ 20 , that is, =Φ Θ 20 0 , then equation (40)
is solved to give a solution,

( ) ⎛
⎝

⎞
⎠

=

∑

∑

+

=

=

−

mrΦ Θ 2 1
2

.t t
t N

N
2 1 i

t
i

i
t

i

1
0
1

(41)

Inserting the results of two equations (37) and (41) into equation (36), we can obtain the following expres-
sion of ( ( ))N G m r t, ,st

w in the studied weighted network ( )G m r t, , :

( ( )) ⎛
⎝

⎞
⎠

( ) ⎛
⎝

⎞
⎠

=

∑
∑

=

=

−

N G m r t
mr

mr, , 2 1
2

.st
w

t N N
i

t

i
i

t

i

1 0

1

(42)

The result of equation (42) is consistent with the result of direct enumeration, which verifies that our
calculation for the eigenvalues of the transition weight matrix of the weighted network ( )G m r t, , is cor-
rect. □

5 Conclusion

There are many documents that have verified that the weights of some networks have a serious impact on
the random target access time. Unlike the existing weighted networks, we have found a family of weighted
networks whose random target access time is not controlled by its weight factor, and these networks have
been proven to exhibit the remarkable scale-free properties observed in various real-life complex systems.
We have listed all eigenvalues for the transition weight matrix of ( )G m r t, , by giving the explicit recursive
expression governing the eigenvalues of networks of two consecutive generations, it means that two
eigenvalues of Pt can be derived from the ( )−λ t 1i of

−
Pt 1. On this basis, we have harvested all the eigen-

values and their corresponding multiplicities for transition weight matrix Tt of the network ( )G m r t, , and
prove that Ht is only controlled by the parameter m. Finally, we also use the obtained eigenvalues of the
normalized Laplacian matrix to further enumerate the weighted spanning tree of the network. In the future,
we will explore the influence of the weight on the efficiency of random walks in the network with other
properties besides scale-free.
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