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Abstract: This article is devoted to study the existence of global solutions and finite time blow-up of local
solution for nonlinear Klein-Gordon equation with variable coefficient nonlinear source term. By applying
the potential well and energy estimation method, in low initial energy and critical initial energy, we derive
some sufficient conditions which are global existence and explosion of the solutions for this type of Klein-
Gordon equation.
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1 Introduction

It is well known that the Klein-Gordon equation is an important wave equation that arises in relativistic
quantum mechanics and quantum fields [1,2]. It is used to model many physics phenomena, for example,
the motion of electric charges in an electric or magnetic field. Particularly, if an electric field was generated
by multiple charges with different signs, each charge will be subjected to force from these field sources. So
the following question naturally comes to our mind, which is what happens to the properties of the solution
for this Klein-Gordon equation with multiple nonlinear source terms. Based on this concern, for simplicity,
this article is devoted to investing the existence of global solutions and finite time blow-up of local solutions
for the initial-boundary value problem of the nonlinear Klein-Gordon equation with two variable coefficient
nonlinear source terms, which has the following form:
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In recent decades, a number of researchers are interested in the theory of existence and nonexistence of
global solutions of the Klein-Gordon equation with nonlinear source term, andmany important results have
been obtained [3–8]. For a special case, in [9], Li and Zhang studied the global existence for the solutions of
the following Cauchy problem:
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By applying the variational method, they obtain the necessary and sufficient conditions of the existence

of global solutions for E u u s s s x d0 d dL H
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Besides, in [10], Gan et al. considered the following system:
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where f u u u2( ) ∣ ∣= . They established a sharp threshold about the solution global existence and explosion
by introducing a cross-constrained variational method.

Ginibre and Velo [11] studied the Cauchy problem for the nonlinear Klein-Gordon equation with the
following type:
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− , p p λ1 , 0j1 2≤ ≤ < ∞ ≥ . They proved the uniqueness of weak solutions
and the existence and uniqueness of global strongly continuous solutions with nonlinear Klein-Gordon
equation in the energy space under p 1 n2
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, for details see [11].
In [12], Lu and Miao consider the following Cauchy problem for the nonlinear combined Klein-Gordon

equation:
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In [13], Wang considered nonexistence of global solutions for the following system:
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The nonlinear term f u( ), which satisfies the condition that there is a real number ε 0> subject to any s �∈ ,

f s s ε F s2 ,( ) ( ) ( )≥ +

where F s f ξ ξd
s

0
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∫
= . He applied the concavity method to obtain sufficient condition of this system local

solutions blow-up when the initial energy is arbitrarily high.
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Furthermore, in [14], Xu considered the Cauchy problem of the nonlinear Klein-Gordon equation with
dissipative term and nonlinear source, which has the following form:
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where p satisfies the following condition:
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There exists a damping term γut, so that classical convexity method of [15] cannot be directly applied to
derive the finite time blow-up of solutions. He successfully introduced a family of potential wells and
proved the global existence, finite time blow up as well as the asymptotic behavior of the solutions for
system (4).

Gazzola and Squassina [16] studied the behavior of solutions of the superlinear hyperbolic equation
with (possibly strong) linear damping, which has the following form:
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They have shown the global existence of solutions with initial data and uniformly bounded in the natural

phase space H Ω0
1( ) for system (5). In addition, they also obtained blow-up results in correspondence with

initial data u u,0 1( ) having arbitrarily large initial energy, for details please see [16].
By analyzing the aforementioned articles and reviewing some current literature, for example [15,17–19],

we find that the form of the nonlinear source term f u( ) is relatively simple and that few scholars carried out
their study on complex forms. On consideration of the above content, once we encounter the initial
boundary value problem of a wave equation with summation form and variable coefficient nonlinear source
terms, what happens to the behavior of the solution of this system?

Therefore, the main purpose of this article is to give some sufficient conditions of global existence and
finite time blow-up of the solutions for system (1). However, we have to face the following difficulties:
(i) How to handle the aforementioned nonlinear source terms, whether the existence of local solutions

of system (1) can be obtained?
(ii) Under this type of nonlinear source terms a y u u b y u up q2 2( )∣ ∣ ( )∣ ∣−

− − , how to obtain the invariant set
of the solution of system (1)?

(iii) How to apply potential well theory, concave function and energy estimation method, respectively, to
obtain a sufficient condition which is the existence of global solution and explosion of local solution
under low initial energy E d0( ) < and critical initial energy E d0( ) = .

In order to overcome the aforementioned difficulties, inspired by [14,18], a potential well method was
employed in our article. By this method, some new results on the global well-posedness of solutions of
system (1) were derived. In addition, we also constructed some sufficient conditions about finite time blow-
up of the solutions for system (1).

Global existence and blow up of the solution for Klein-Gordon equation  933



This article is organized as follows. In Section 2, some preliminary results are given. In Section 3, we
apply the Galerkin method to prove the existence of the local solution. In Sections 4 and 5, we prove global
existence and finite time blow-up of the solution at low initial energy E d0( ) < and critical initial energy
E d0( ) = . In Section 6, we give an application that shows a lower estimate of the solution’s blow-up time for
system (1).

2 Notations and set up

In order to simplify the notation, we introduce the following abbreviations:
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Finally, C is a generic constant that can change from one line to another.
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3 Local existence of solutions

In this section, we focus on the existence of local solution and uniqueness for system (1). Through solution
of system (1) over T0,[ ], we mean a function
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Construct approximation solution of system (1)
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ϑ ϑ ϑ ϑ ϑ ϑ
p

ϑ τ
q

ϑ τ2 d 2 d .t

t

L
p

t

L
q2 2 2

1
2

0
2

0
2

0 0
a y
p

b y
q

( ) ( )
∫ ∫

‖ ‖ + ‖∇ ‖ + ‖ ‖ = ‖ ‖ + ‖∇ ‖ + ‖ ‖ + ‖ ‖ − ‖ ‖ (21)

For the last two terms, we apply the same method to estimate (although slightly differently) as for (20) and
we obtain

p
ϑ τ

q
ϑ τ CT2 d 2 d

t

L
p

t

L
q

0 0
a y
p

b y
q

( ) ( )
∫ ∫

‖ ‖ − ‖ ‖ ≤ (22)

for all t T0,( ]∈ . Through (21), (22) and taking the maximum over T0,[ ], we can obtain

ϑ R cT TR1
2

.p2 2 2 1
�

( )
‖ ‖ ≤ + +

−

Choosing T sufficiently small, we obtain ϑ R�‖ ‖ ≤ , which shows that N NΓ T T( ) ⊆ . Next, we take η η N, T1 2 ∈ .
Let ϑ ηΓ1 1( )= , ϑ ηΓ2 2( )= , and substitute them into (10), respectively, setting ϑ ϑ ϑ1 2= − , we obtain for all

η H Ω0
1( )∈ and a.e. t T0,[ ]∈

ϑ η ϑ η ϑη a y ϑ ϑ b y ϑ ϑ η a y ϑ ϑ b y ϑ ϑ η

ξ t ϑ ϑ η

,

.

tt
p q p q

Ω Ω Ω

1
2

1 1
2

1 2
2

2 2
2

2

Ω

1 2

( ( )∣ ∣ ( )∣ ∣ ) ( ( )∣ ∣ ( )∣ ∣ )

( )( )

∫ ∫ ∫

∫

⟨ ⟩ + ∇ ∇ + = − − −

= −

− − − −

(23)
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Here, ξ ξ t 0( )= ≥ is given by the Lagrange theorem so that ξ t p a y b y ϑ ϑ1 p q
1 2

2( ) ( )( ( ) ( ))( )≤ − − +

+ − .

By taking η ϑt= in (23) and (10), we obtain

ϑ ϑ ϑ ϑ ϑ ϑ ξ t ϑ ϑ τ2 d .t

t

2 2 2
1

2
0

2
0

2

0

1 2( )( )
∫

‖ ‖ + ‖∇ ‖ + ‖ ‖ ≤ ‖ ‖ + ‖∇ ‖ + ‖ ‖ + − (24)

Be similar to the discussion above, we obtain

ϑ ϑ cR T ϑ ϑ δ ϑ ϑΓ Γ p q
1 2

2 2 4
1 2

2
1 2

2
� � �( ) ( )‖ − ‖ ≤ ‖ − ‖ ≤ ‖ − ‖

+ −

for some δ0 1< < and assume T is sufficiently small. Therefore, by the contraction mapping principle,
there exists a unique (weak) solution u for system (1) defined on T0,[ ]. The main statement of Theorem 3.1 is
proved. Next, we concern the remain assertion. By the construction and analysis above, we know that the
local existence time of u merely depends (through R) on the norms of the initial data, so that, once u �‖ ‖

continues to be bounded, the solution may be continued, also see [19], for a similar argument. Therefore,
if Tmax < ∞, we obtain

u u ulim lim .
t T

t
t T

2 2 2

max max
�( )‖∇ ‖ + ‖ ‖ = ‖ ‖ = ∞

→ →

(25)

Note that

E t u u u
p

u
q

u1
2

1
2

1
2

1 1 .t L
p

L
q2 2 2

a y
p

b y
q( )

( ) ( )
= ‖ ‖ + ‖ ‖ + ‖∇ ‖ − ‖ ‖ + ‖ ‖

By multiplying the first equality of (1) with ut and integrating with respect to t, we have

E t u τ E rd
t

r

2( ) ( )
∫

+ ‖ ‖ = (26)

for all r T0, max[ ]∈ . In this case, E t( ) is nonincreasing, so that

u u u
p

u
q

u E

p
u E

a y u E

M u E

1
2

1
2

1
2

1 1 0

1 0

0

0 ,

t L
p

L
q

L
p

p
p

p
p

2 2 2

2
2
2

1 2
2

a y
p

b y
q

a y
p

( )

( )

( ) ( )

( )

( ) ( )

( )

‖ ‖ + ‖ ‖ + ‖∇ ‖ ≤ ‖ ‖ − ‖ ‖ +

≤ ‖ ‖ +

≤ ‖ ‖ + ‖ ‖ +

≤ + ‖ ‖ +

(27)

for all t T0, max[ )∈ . Together with (25), we must obtain

ulim .
t T

p2
max

‖ ‖ = ∞

→

The proof of Theorem 3.1 is now completed. □

4 Global existence and finite time blow up when E d0( ) <

Now, let us turn to the global existence of solutions starting with suitable initial data and low initial energy,
that depends on Theorem 3.1.

Theorem 4.1. If u H u L E dΩ , Ω , 00 0
1

1
2( ) ( ) ( )∈ ∈ < hold, u will be the unique local solution. Moreover, suppose

that u t W1( ) ∈ , for t T0, max[ ]∈ . Then Tmax = ∞. Namely, system (1) admits a global weak solution u x t,( ).
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Proof. Through (26) we infer that the energy map E t( ) is decreasing. From the above condition, we have

u t W E t d t T, for every 0, .1 max( ) ( ) ( )∈ < ∈ (28)

In fact, if the above situation is not true, there exists t 0>

∗

such that u t W2( ) ∈

∗

. According to the variational
characterization (7) of d, we have

d J t E t d.( ) ( )≤ ≤ <

∗ ∗ (29)

Obviously, it is contradictory to (28). Therefore, u t W1( ) ∈ for every t T0, max[ ]∈ . As a further consequence of
(28), a simple computation entails

J u t pq q p
pq

u t T2 2
2

for every 0, .2
max( ( )) ( )≥

− +

‖∇ ‖ ∈

Through (26), we obtain

u J u u τ E d1
2

d 0 .t

r

2

0

2( ) ( )
∫

‖ ‖ + + ‖ ‖ = < (30)

This implies u CH1∥ ∥ ≤ and u Ct∥ ∥ ≤ . Hence T = ∞.
Note that not all local solutions of system (1) are global in time. Particularly, in low initial energy E 0( )

and u W0 2∈ , the local solutions usually blow up. In the next theorem, we applied concavity method which
was introduced by Levine in [21,22] to show the finite time blow up of some solutions of system (1) under
E d0( ) < . □

Theorem 4.2. Assume that u H u LΩ , Ω0 0
1

1
2( ) ( )∈ ∈ and (2) hold, u x t,( ) is the unique local solution to system

(1), then the solution is blow up in finite time if and only if there exists t T0, max[ ]∈

∗ such that

u t W and E t d.2( ) ( )∈ <

∗ ∗

In addition, we obtain a lower estimation of the blow-up time t∗ of the following solution:

t pμH
p p C

0
2 8 Ω

.
2 2 1

p
p

p N

2

1 1
2

( )
( ) ∣ ∣

≥

−

∗

+ +

−

Proof. We assume that there exists t 0≥

∗ such that u t W E t d,2( ) ( )∈ <

∗ ∗ . Without loss of generality, we
assume that t 0=

∗ , and by (26), we can know that E t d( ) < for all t 0> , so that u N∉ . This shows that
u t W2( ) ∈ for all t T0, max[ ]∈ .

Assume by contradiction that the solution u is global. Then, for anyT 0> , we consider G T R: 0,[ ] →

+

defined by

G t u t .2( ) ( )= ‖ ‖
(31)

Since G t( ) is continuous and G t 0( ) ≥ for all T0,[ ], there exists θ 0> such that

G t θ t Tfor all 0, .( ) [ ]≥ ∈ (32)

Furthermore,

G t uu x2 dt( )
∫

′ =

and

G t u u u2 2 , .t tt t
2( ) ( )″

= ‖ ‖ +

(33)

Note that u u x t,( )= satisfies the first equality of system (1)

u u u a y u u b y u uΔ .tt
p q2 2( )∣ ∣ ( )∣ ∣− + = −

− −
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Next, multiplying the above equation by u and integrating with respect to x over Ω, we obtain

u u u u u u a y u u b y u u u, Δ , , , .tt
p q2 2( ) ( ) ( ) ( ( )∣ ∣ ( )∣ ∣ )− + = −

− −

Therefore,

u u u u u u I u, .tt L a y
p

L b y
q2 2

p q( ) ( )( ( )) ( ( ))= −‖∇ ‖ − ‖ ‖ + ‖ ‖ − ‖ ‖ = −

G t( )″ can be expressed as

G t u I u u u u u u2 2 .t t L a y
p

L b y
q2 2 2 2

p q( ) ( ( )) ( ( )) ( ( ))( )

″

= ‖ ‖ − = ‖ ‖ − ‖ ‖ − ‖∇ ‖ + ‖ ‖ − ‖ ‖ (34)

Next, we estimate G t( )″ . From (27), we obtain

u u u u u
p

u
q

u E1
2

1
2

1
2

1
2

1
2

1 1
2

1 1
2

0 .t L a y
p

L b y
q

L a y
p

L b y
q2 2 2

p q p q⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )( ( )) ( ( )) ( ( )) ( ( ))‖ ‖ + ‖ ‖ + ‖∇ ‖ − ‖ ‖ + ‖ ‖ ≤ − ‖ ‖ − − ‖ ‖ +

Then

u I u
p

u
q

u E

I u E C u u u

1
2

1
2

1 1
2

1 1
2

0

2 0 .

t L a y
p

L b y
q

L a y
p

L b y
q

t

2

2

p q

p q

⎜ ⎟ ⎜ ⎟( ) ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( ) ( )

( ( )) ( ( ))

( ( )) ( ( ))( )

‖ ‖ + ≤ − ‖ ‖ − − ‖ ‖ +

≤ + ‖ ‖ − ‖ ‖ − ‖ ‖

Since E t E d0( ) ( )< < , we have

u
p

u
q

u d

C
p

u u E C
p

d E C
p

u

u u E p u

I u p u

1
2

1 1 ,

2 0 2 2 0 ,

2 4 0 ,

2 2 .

t L
p

L
q

L
p

L
q

t

L
p

L
q

t

t

2

2

2

2

a y
p

b y
q

a y
p

b y
p

a y
p

b y
p

( ) ( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( )

( )

‖ ‖ − ‖ ‖ + ‖ ‖ <

‖ ‖ − ‖ ‖ − ≥ − − + ‖ ‖

‖ ‖ − ‖ ‖ − ≥ ‖ ‖

− ≥ + ‖ ‖

Therefore,

G t p u u4 4 .t t
2 2( ) ( )″

≥ + ‖ ‖ ≥ ‖ ‖

Through the Schwarz inequality, we have

G t u u G t u4 4 ,t t
2 2 2 2( ( )) ( )′ ≤ ‖ ‖ ‖ ‖ = ‖ ‖

(35)

so that

G t G t G t 0.2( ) ( ) ( ( ))″

− ′ ≥

(36)

Moreover, we introduce G tln ( ), by computing, we have

G t G t
G t

G t G t
G t

G t G t G t
G t

ln , ln .
2

2⎜ ⎟( ( )) ( )
( )

( ( )) ⎛
⎝

( )
( )

⎞
⎠

( ) ( ) ( )
( )

′

=

′

″

=

′

′

=

″

− ′ (37)

Integrating the second and the first expression of (37), we can obtain

G t G t G τ G τ G τ
G τ

τ

G t G t G τ τ G t
G t

t t

ln ln d ,

ln ln ln d .

t

t

t

t

0
2

2

0
0

0
0

0

0

( ( )) ( ( )) ( ) ( ) ( )
( )

( ) ( ) ( ( )) ( )
( )

( )

∫

∫

′

=

′

−

″

− ′

− =

′

≥

′

−
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We can deduce

G t G t e .t t
0

G t
G t

0
0 0( ) ( ) ( )( )

( )
≥

−

′

Then

G tlim ,
t

( ) = ∞

→∞

which contradicts T = ∞. We completed the main proof of this theorem. □

Next, we give a lower estimation of the blow-up time t∗. First, we introduce the definition

H t a y u x μ u x τd d d ,p

t

τ

Ω 0 Ω

2( ) ( )∣ ∣ ∣ ∣
∫ ∫∫

= − ∇

where μ is a positive constant. Moreover, H a y u x0 dp

Ω

( ) ( )∣ ∣
∫

= .
Calculating H t( )′ , we can obtain

H t p a y u uu x μ u xd d .p
t τ

Ω

2

Ω

2( ) ( )∣ ∣ ∣ ∣
∫ ∫

′ = − ∇

− (38)

Applying the Hölder inequality and the Sobolev embedding inequality, we have

p a y u uu x pM u u x

pM u x u x

pM u x u x

p C
μ

u x μ u x

d d

d d

d d

8 d d .

p
t

p
t

p N
N t

N
N

p N
N t

p N
N t

Ω

2
1

Ω

1

1

Ω

2 1
1

Ω

2
1

1

Ω

2 1
1

Ω

2

2 2

Ω

2 1
1

Ω

2

N
N

N
N

N
N

N
N

1
2

1
2

1
2

1
2

1
2

( )∣ ∣ ∣ ∣ ∣ ∣

⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

∣ ∣

( )

( )

( )

∫ ∫

∫ ∫

∫ ∫

∫ ∫

≤

≤

≤

≤ + ∇

− −

−

+ −

−

+

−

+

+ −

+

+

Moreover,

u x u xd d Ω .
p N
N p

Ω

2 1
1

Ω

1

N
N

p
p p N

1
2

2 2 2 1
2

⎛

⎝
⎜⎜

∣ ∣
⎞

⎠
⎟⎟

[ ∣ ∣ ] ∣ ∣
( )

∫ ∫

≤

−

+

+ −

+

− (39)

Combining (38) and (39), we have

H t p C
μ

H t8 Ω .
2 2 1p N p

p

2 1
2 2 2

( ) ∣ ∣ ( )′ ≤

+ −

− (40)

Integrating (40) with respect to t form 0 to t∗, we have

H t H t t t p C
μ

td 8 Ω .
t

0

2
2 2 1

p
p N2
2 1

2
( ) ( ) ( ) ∣ ∣

∫

′ ≤

−

+ −

∗

∗

Due to ulimt t p2‖ ‖ = ∞

→

∗ , H tlimt t ( ) = ∞

→

∗ , we have that

t pμH
p p C

0
2 8 Ω

.
2 2 1

p
p

p N

2

1 1
2

( )
( ) ∣ ∣

≥

−

∗

+ +

−
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5 Global existence and finite time blow up when E d0( ) =

In this section, we will use potential well method to prove global existence and finite time blow-up of the
solution to system (1) at critical initial energy level E d0( ) = .

Theorem 5.1. Let u H u LΩ , Ω0 0
1

1
2( ) ( )∈ ∈ . If E d0( ) = , u W0 1∈ , then system (1) admits a global weak solu-

tion u x t,( ).

Proof. First, let μ 1m m
1

= − , u x μ u x u x μ u x m, , 2, 3,m m m m0 0 1 1( ) ( ) ( ) ( )= = = … . Let us consider the initial
conditions

u x u x u x u x, 0 , , 0m t0 1( ) ( ) ( ) ( )= = (41)

and the corresponding system (1). Due to u W1∈ , we have I u 00( ) > or u 00 = . Next, we prove this theorem
considering two cases (i) and (ii).

Case i: If I u 00( ) > , it implies I u 0m0( ) > . Furthermore,

J u u u
p

u u

p
p

u
p

I u

1
2

1
2

1

2
2

1

0

m m m m L
p

m L
q

m H m

0 0
2

0
2

0 0

0 2 0

a y
p

b y
q

1

( )

( )

( ) ( )
( )

≥ ‖ ‖ + ‖∇ ‖ − ‖ ‖ − ‖ ‖

=

−

‖ ‖ +

>

and

E u J u u J u d0 0 1
2

1
2

.m m m0
2

0 1
2

0( ) ( ) ( )< ≡ ‖ ‖ + < ‖ ‖ + <

By Theorem 4.1, it follows systems (1) and (41) admit a global weak solution u x t L H, 0, ; Ωm 0
1( ) (( ) ( ))∈ ∞

∞ ,

u x t L L, 0, ; Ωmt
2( ) (( ) ( ))∈ ∞

∞ and u x t W,m 1( ) ∈ for every m. Similarly as the proof of Theorem 4.1, we can
derive the conclusion.

Case ii: If u 00 = , it implies J u 00( ) = and u E d01
2 1

2 ( )‖ ‖ = = . Moreover,

E u x J u x μ u x d0 0 1
2

1
2

.m m m m1
2

0 1
2( ) ( ) ( ( )) ( )< = ‖ ‖ + = ‖ ‖ <

Through Theorem 4.1, for every m, systems (1) and (41) admit a global weak solution u x t,m( ) ∈

L H u x t L L0, ; Ω , , 0, ; Ωmt0
1 2(( ) ( )) ( ) (( ) ( ))∞ ∈ ∞

∞ ∞ and u x t W,m 1( ) ∈ . The remainder proof is similar to
part (i) of this theorem. □

Next, to prove finite time blow up of the solution of system (1) under E d0( ) = , we first present the
following lemma.

Lemma 5.1. Let u H u LΩ , Ω0 0
1

1
2( ) ( )∈ ∈ , E d0( ) = and u N0 ∈

−

, then all the weak solutions of system (1) belong
to N

−

.

Proof. Let u x t,( ) be any weak solution under critical initial energy E d0( ) = of system (1), which satisfies
u N0 ∈

−

. T is the maximum existence time of the solution u x t,( ).
Next, we apply reduction to absurdity to prove u x t N t T, , 0( ) ∈ < <

−

. Assume this was not the case,
then there exists a time t T0,0 ( )∈ , that is, I t 00( ) = . Moreover, for any t t0, 0[ )∈ , I t 0( ) < . Based on the
value of potential well depth, we can obtain J t d0( ) ≥ . Combine that with the energy (26) and (30), we have

u J u u τ E t u τ E d1
2

d d 0 .t

t t

2

0

2

0

2( ) ( ) ( )
∫ ∫

‖ ‖ + + ‖ ‖ = + ‖ ‖ = =
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Therefore, we can derive

u t u τd 0.t

t

0
2

0

2( )
∫

‖ ‖ + ‖ ‖ =

From the aforementioned equation, for x t tΩ, 0 0∈ ≤ ≤ , we can obtain 0u
t

d
d = . Obviously, u x t u x, 0( ) ( )= ,

so that, I t I u 00 0( ) ( )= > . It is in contradiction to the previous assumption. Then the set N
−

is invariant
under the flow of system (1). □

Theorem 5.2. Let u H u LΩ , Ω0 0
1

1
2( ) ( )∈ ∈ . If E d0( ) = and u N0 ∈

−

, u u, 00 1( ) ≥ , then the local solution of
system (1) blows up in finite time.

Proof. Assume u x t,( ) is the solution for system (1) and satisfies E d0( ) = , I u 00( ) < . By the auxiliary
function G t( ) as (31), then

G t u u u u I u2 2 , 2 .t tt t t
2 2( ) ( ) ( ( ))″

= ‖ ‖ + = ‖ ‖ −

From definition of I u J u,( ) ( ) and E t( ), we arrive at

u p
p

u
p

I u u J u E t E d1
2

1
2

1 1
2

0 ,t H t
2 2 2

1 ( ) ( ) ( ) ( )‖ ‖ +

−

‖ ‖ + ≤ ‖ ‖ + = ≤ =

so that we have

G t p u p u pd

p u p u pd
p u p G t pd

2 1 2

2 1 2
2 1 2 .

t H

t

t

2 2

2 2

2

1( ) ( ) ( )

( ) ( )
( ) ( ) ( )

″

> + ‖ ‖ + − ‖ ‖ −

> + ‖ ‖ + − ‖ ‖ −

= + ‖ ‖ + − −

According to Lemma 5.1, we know that I u 0( ) < , then

G t u I u t2 0, 0 .t
2( ) ( ( ))″

= ‖ ‖ − > < < ∞

Moreover, thinking back to G u u0 2 , 00 1( ) ( )′ = ≥ . It shows that M t( )′ is increasing for t 0,( )∈ ∞ . We can
obtain that G t G t 00( ) ( )′ ≥ ′ ≥ for t t0> and

G t G t t t G t t t G t t t .0 0 0 0 0( ) ( )( ) ( )( ) ( )( )≥ ′ − + − ≥ ′ −

Hence, we can derive p G t pd1 2( ) ( )− ≥ , then G t p u2 t
2( ) ( )″

≥ + ‖ ‖ . Combining with (35) and applying the
same as method of proof of Theorem 4.2, we can obtain the conclusion. □

6 Application

Now, we give the following example to show that lower estimate of the solution’s blow-up time of system (1)
relies on the conclusions of Theorem 4.2.

Example. Let u C TΩ 0,2( ( ))∈ × be a solution of the following system:

u u u y u u y u u
u x x
u x x
u x t

Δ 2 sin cos ,
, 0 ,
, 0 2 ,

, 0,

tt

t

2

Ω

⎧

⎨
⎪

⎩
⎪

∣ ∣ ∣ ∣
( ) ∣ ∣
( ) ∣ ∣

( )∣

− + = −

=

= +

=

∂

where y π0,( )∈ , x x x x x, , , Ω1 2 3 4( )= ∈ , x x x x x1
2

2
2

3
2

4
2∣ ∣ = + + + , and x xΩ 1∣ ∣ { ∣∣ ∣ }= = , p q N4, 3, 4,= = =

μ C2, 102
= = . Furthermore, we noted that
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H y x x0 sin d 1,
Ω

4( ) ∣ ∣
∫

= ≤

so that, according to Theorem 4.2, we obtain a lower estimate of blows up time t∗ as follows:

t pμH
p p C

0
2 8 Ω

0.0125.
2 2 1

p
p

p N

2

1 1
2

( )
( ) ∣ ∣

≥

−

≥

∗

+ +

−
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