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Abstract: Let =q pm, p be an odd prime, and � [ ]= … /⟨ = = ⟩R u u u u u u u u u, , , ,k q k i i i j j i1 2
3 , where ≥k 1 and

≤ ≤i j k1 , . In this article, we define a Gray map from Rk
n to �q

n3k
. We study constacyclic codes over Rk and

construct non-binary quantum codes over �q.
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1 Introduction

Recently, constructing quantum error-correcting codes has important significance in theory and practice.
Calderbank et al. [1] gave a way to construct quantum error correcting codes from classical error correcting
codes. Constacyclic codes that have good error-correcting properties are an important class of linear codes.
Constacyclic codes also have rich algebraic structures that can be encoded with shift registers. Due to their
rich algebraic structure, constacyclic codes over finite fields have been studied by many authors [2–4], and
many good quantum codes have been constructed by using classical cyclic and constacyclic codes over
finite fields [5–8].

In recent years, there are a lot of works about constacyclic codes over finite rings of the form
� � �+ + ⋯+

−u up p
e

p
1m m m by many authors [9–12], where =u 0e . The class of finite commutative rings of

the form +R uR has been studied by many authors [13,14], where =u 12 . The class of finite commutative
rings of the form � [ ]… /⟨ = = ⟩u u u u u u u u u, , , ,p k i i i j j i1 2

2m has been studied by many authors [15–18], where
=u ui i

2 . Due to their rich algebraic structure, many good quantum codes have been constructed by using
classical cyclic and negacyclic codes, and there are a few quantum codes constructed by using constacyclic
codes over finite rings. Dertli and Cengellenmis [19] constructed quantum codes from constacyclic codes
over ring � � �+ +u vp p p with = =u u v v,2 2 , and = =uv vu 0. Wang et al. [20] constructed non-binary
quantum codes from ( )− v1 2 -constacyclic codes over � �+ vq q2 2 with =v v2 . Gowdhaman et al. [21] con-
structed quantum codes from λ-constacyclic codes over the ring � [ ]

⟨ − − − ⟩

u v
v v u u uv vu

,
, ,

p
3 3 . Li et al. [22] constructed

quantum error correcting codes by Hermitian construction and obtained some good quantum codes. In [23],
quantum codes from cyclic codes over � � � �+ + +u v uv2 2 2 2 for arbitrary length n were constructed. In [24],
the structure of cyclic codes over the ring � � �+ + ⋯+v vq q r q1 was studied, and quantum codes from cyclic
codes were constructed. Furthermore, some new non-binary quantum codes were obtained. In [25],
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quantum codes over �p were constructed by using the cyclic codes of length n over � [ ]/⟨ −u v w u, , 1,p
2

− − − − − ⟩v w uv vu vw wv wu uw1, 1, , ,2 2 . In [26], some non-binary quantum codes were obtained from
( )− v1 2 -constacyclic codes over the finite non-chain ring � � � �+ + +u v uvq q q q. Grassl et al. [27] presented
families of non-binary quantum codes which were optimal in the sense that the minimum distance was
maximal.

The purpose of this article is to continue this line of research. First, we determine the algebraic
structures of all λ-constacyclic codes of � [ ]= … /⟨ = = ⟩R u u u u u u u u u, , , ,k q k i i i j j i1 2

3 . Second, we construct
quantum codes from constacyclic codes over Rk.

The rest of this article is arranged as follows: In Section 2, we give some results of Rk and the definition

of the Gray map from Rk
n to �q

n3k
. In Section 3, we discuss the algebraic structure of constacyclic codes over

Rk. In Section 4, we give the parameters of quantum error correcting codes from constacyclic codes over Rk.

2 Preliminaries

Let �q be a finite field with q elements, where p is an odd prime and =q pm, and let

� [ ]= … /⟨ = = ⟩R u u u u u u u u u, , , , .k q k i i i j j i1 2
3

Clearly, Rk is a Frobenius ring but not local, and Rk has cardinality ( )q 3k
.

Lemma 2.1. Let = ⟨ … ⟩I w w w, , , k1 2 , where
{ }

∈ −

+ −w u1 , ,i i
u u u u2

2 2
i i i i
2 2

, then I is an ideal of Rk, and the

cardinality of I is ( )−q 3 1k
, and the number of such ideals is 3k.

Proof. The elements of I are of the form

�⎧
⎨⎩

∣ { } ⎫
⎬⎭

∑ ⋯ ∈ ∈ = …
⋯ ⋯

a w w w a i s k, 0, 1, 2 , 1, 2, , .i i i
i i

k
i

i i i q s1 2k
k

k1 2
1 2

1 2

It is easy to see that there are −3 1k choices of ⋯w w wi i
k
i

1 2
k1 2 . So, I has cardinality ( )−q 3 1k

. It is easy to see

that the other ideals are isomorphic to I , for each wi has three choices, so the number of such ideals is 3k.
□

Let = ⟨ … ⟩ϖ w w w, , ,i i i ik1 2 be an ideal in Lemma 2.1, where
{ }

∈ −

+ −w u1 , ,ij j
u u u u2

2 2
j j j j
2 2

, ≤ ≤i1 3k,

≤ ≤j k1 .

Let = ⋯ς w w wi i i ik1 2 , where
{ }

∈ −

+ −w u1 , ,ij j
u u u u2

2 2
j j j j
2 2

, = …i 1, 2, , 3k, = …j k1, 2, , . We can have that

( )
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )
⎛

⎝
⎜

⎞

⎠
⎟ ( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

− = −

+

=

+ −

=

−

−

+

= −

−

=

− +

=

u u
u u u u u u u u

u
u u

u
u u u u u u

1 1 ,
2 2

,
2 2

,

1
2

0, 1
2

0,
2 2

0,

j j
j j j j j j j j

j
j j

j
j j j j j j

2 2 2
2 2 2 2 2 2

2
2

2
2 2 2

=ς ς 0i j , when ≠i j, and =ς ςi i
2 , when = …i 1, 2, , 3k.

By the induction method over Rk, we can obtain that = + + ⋯+ς ς ς1 1 2 3k and = ⊕ ⊕⋯⊕R ς R ς Rk k k1 2
ς Rk3k . ∀ ∈r Rk, then r can be expressed uniquely as the form = + + ⋯+r r ς r ς r ς1 1 2 2 3 3k k, where �∈ri q,

= …i 1, 2, , 3k.
By the same method of Theorem 2.3 in [18], we have the following theorem.

Theorem 2.1. …ϖ ϖ ϖ, , ,1 2 3k are maximal ideals of Rk, and �≅Rk q
3k
.
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By the aforementioned theorem, it can be easily seen that Rk is a principal ideal ring, not a chain ring.

For = + + ⋯+ ∈a a ς a ς a ς Rk1 1 2 2 3 3k k , we can define �→ϕ R:k k q
3k

by ( )↦ …a a a a, , , ,1 2 3k and we

expand ϕk as

�→ϕ R: ,k k
n

q
n3k

( ) ( )… ↦ … … … …
− − −

−

a a a a a a a a a, , , , , , , , , , , , ,n n n n0 1 1 1,0 1, 1 2,0 2, 1 3 ,0 3 , 1k k

where = + + ⋯+ ∈a a ς a ς a ς Ri i i i k1, 1 2, 2 3 , 3k k , = …i 1, 2, , 3k.
Let Rk

n be the Rk-submodule, if C is an Rk-submodule of Rk
n, then C is a linear code of length n over Rk.

Every codeword ( )= … ∈
−

c c c c C, , , n0 1 1 can be represented as

( ) ( ) [ ]∑= … ↔ = ∈
−

=

−

c c c c c x c x R x, , , .n
i

n

i
i

k0 1 1
0

1

If C is invariant under constacyclic shift operator →σ R R:λ k
n

k
n by

( ) ( )… = …
− − −

σ c c c λc c c, , , , , , ,λ n n n0 1 1 1 0 2

then C is called a λ-constacyclic code of length n over Rk.
Let ( )= …

−
x x x x, , , n0 1 1 and ( )= … ∈

−

y y y y R, , , n k
n

0 1 1 . The Euclidean inner product of x and y is defined

by ⋅ = ∑

=

−x y x yi
n

i i0
1 . If ⋅ =x y 0, then x and y are orthogonal.

If C is a linear code, the Euclidean dual code { ∣ }= ∀ ∈ ⋅ =

⊥C x y C x y, 0 is a linear code too. A code C
is Euclidean self-orthogonal if ⊆

⊥C C , and Euclidean self-dual if =

⊥C C .
Let ( ( ))w ϕ rH k denote the Hamming weight of the image of r under ϕk, ∀ ∈r Rk, the Lee weight of r

is defined as ( ) ( ( ))=w r w ϕ rL H k .

( )∀ = … ∈r x x x R, , , n k
n

1 2 , the Lee weight of r is defined as ( ) ( )= ∑

=

w r w xL i
n

L i1 , the Lee distance of code-
words x y, over Rk

n is defined as ( ) ( )= −d x y w x y,L L , and the Lee distance of C is defined as

( ) { ( ) }= − ∈ ≠d C d x y x y C x ymin , , , .L L

By the definition above, it is easy to see that ϕk is both a distance preserving map and a linear map from

Rk
n to �q

n3k
.

3 Constacyclic codes over Rk

∀ = ∑

=

x x ςj j j1
3k

, = ∑ ∈

=

y yς Rj j j k
n

1
3k

,where � �( ) ( )= … ∈ = … ∈
−

−

x x x x y y y y, , , , , , ,j j j n j q
n

j j j n j q
n

0 1 1, 0 1 1, ,wecanhave that

( )∑⋅ = ⋅

=

x y x y ς .
j

j j j
1

3k

Let C be a linear code of length n over Rk. Let

� �
⎧

⎨
⎩

∣
⎫

⎬
⎭

∑= ∈ ∈ ∈ = …

=

C x x ς C x j, , , 1, 2, , 3 .j j q
n

i
i i i q

n k

1

3k

Clearly, …C C C, , ,1 2 3k are linear codes of length n over �q, and = ⊕
=

C ς Cj j j1
3k

, ∣ ∣ ∣ ∣= ∏

=

C Cj j1
3k

.

Lemma 3.1. Let ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k be an element over Rk. Then ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k is a unit over Rk
if and only if …λ λ λ, , ,1 2 3k are units over �q.
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Proof. Let ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k be a unit of Rk, then there exist �… ∈β β β, , , q1 2 3k such that

( )( )+ + ⋯+ + + ⋯+ =λ ς λ ς λ ς β ς β ς β ς 1.1 1 2 2 3 3 1 1 2 2 3 3k k k k

Then( )+ + ⋯+ =λ β ς λ β ς λ β ς 1,1 1 1 2 2 2 3 3 3k k k which implies( )+ + ⋯+ = =λ β ς λ β ς λ β ς ς λ β ς ςi i i i i1 1 1 2 2 2 3 3 3k k k , so =λ β 1i i ,
where = …i 1, 2, , 3k. So …λ λ λ, , ,1 2 3k are units over �q.

Conversely, if …λ λ λ, , ,1 2 3k are units over �q, then there exist �… ∈β β β, , , q1 2 3k such that =λ β 1i i , where

= …i 1, 2, , 3k. We can obtain that ( )( )+ + ⋯+ + + ⋯+λ ς λ ς λ ς β ς β ς β ς1 1 2 2 3 3 1 1 2 2 3 3k k k k = + + ⋯+λ β ς λ β ς1 1 1 2 2 2
= + + ⋯+ =λ β ς ς ς ς 13 3 3 1 2 3k k k k . So ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k is a unit over Rk. □

Theorem 3.1. Let = ⊕
=

C ς Cj j j1
3k

be a linear code of length n over Rk, then C is a ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k -
constacyclic code over Rk if and only if Ci is λi-constacyclic codes over �q, where = …i 1, 2, , 3k, and

+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k is a unit of Rk.

Proof. This can be proved by the same method of Theorem 4.1 in [18]. □

Theorem 3.2. Let = ⊕
=

C ς Cj j j1
3k

be a ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k -constacyclic code of length n over Rk, then
( ) ( ) ( )= ⟨ + + ⋯+ ⟩C ς g x ς g x ς g x1 1 2 2 3 3k k , where gi is the generator polynomial of Ci, = …i 1, 2, , 3k.

Proof. This can be proved by the same method of Theorem 4.2 in [18]. □

Theorem 3.3. Let ( ) ( ) ( )= ⟨ + + ⋯+ ⟩C ς g x ς g x ς g x1 1 2 2 3 3k k be a ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k -constacyclic code of
length n over Rk. Then ( ) ( ) ( )= ⟨ + + ⋯+ ⟩

⊥ ∗ ∗
∗C ς f x ς f x ς f x1 1 2 2 3 3

k k is a ( )+ + ⋯+

− −
−λ ς λ ς λ ς1

1
1 2

1
2 3

1
3k k -constacyclic

code of length n over Rk, ∣ ∣
⎛
⎝

( )⎞
⎠=

⊥

∑

=C q gdegi
k

i1
3

, where ( )∗f xi is the reciprocal polynomial of ( )f xi , i.e., ( ) =f xi

( ) ( )− /x λ g xn
i i , ( ) ( )( )

=

∗ −f x x f xi
f

i
deg 1i , for = …i 1, 2, , 3k.

Proof. Let ( ) ( ) ( )= ⟨ + + ⋯+ ⟩C ς g x ς g x ς g x1 1 2 2 3 3k k be a λ-constacyclic code of length n over Rk, where
= + + ⋯+λ λ ς λ ς λ ς1 1 2 2 3 3k k.

( )∀ = … ∈
−

⊥x x x x C, , , n0 1 1 , ( )∀ = … ∈
−

y y y y C, , , n0 1 1 , then ( ) ( )= … ∈

−

−

σ y λy λy λy y C, , , ,λ
n

n
1

1 2 1 0 , we can
obtain that

( )

( )

( )

= ⋅

= + + ⋯+ +

= + + ⋯+ +

= ⋅

−

−
−

−

−
−

−

−

−

x σ y
λx y λx y λx y x y
λ x y x y x y λ x y
λσ x y

0

.

λ
n

n n n

n n n

λ

1

0 1 1 2 2 1 1 0

0 1 1 2 2 1
1

1 0
1

We have ( ) ∈

⊥

−σ x Cλ 1 , so ⊥C is a −λ 1-constacyclic code.

By Lemma 3.1, = + + ⋯+

− − −
−λ λ ς λ ς λ ς1

1
1

1 2
1

2 3
1

3k k, so ⊥C is a ( )+ + ⋯+

− −
−λ ς λ ς λ ς1

1
1 2

1
2 3

1
3k k -constacyclic code of

length n over Rk.
Let ( )= ⟨ ⟩

∗D f xi i , where ( )∗f xi is the reciprocal polynomial of ( )f xi , i.e., ( ) ( ) ( )= − /f x x λ g xi
n

i i , ( ) =

∗f xi

( )( ) −x f xf
i

deg 1i , gi is the generator polynomial of Ci, = …i 1, 2, , 3k.

Let = ⊕
=

D ς Dj j j1
3k

, then ∣ ∣ ∣ ∣ ( )
= ∏ =

( )

=

∑

=D D qj j
g

1
3 degk

i
k

i1
3

, and it follows that D has the form

( ) ( ) ( )= ⟨ … ⟩

∗ ∗
∗D ς f x ς f x ς f x, , , .1 1 2 2 3 3

k k

Let ( ) ( ) ( )= ⟨ + + ⋯+ ⟩

∗ ∗
∗D ς f x ς f x ς f x˜

1 1 2 2 3 3
k k . We can have that ⊆D D˜ .

Note that

( ) ( ) ( ) ( )[ ]+ + ⋯+ =

∗ ∗
∗

∗ς ς f x ς f x ς f x ς f x ,i i i1 1 2 2 3 3
k k

where = …i 1, 2, , 3k.
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We can obtain that ⊆D D̃. So, =D D˜ , and ( ) ( ) ( )= ⟨ + + ⋯+ ⟩

∗ ∗
∗D ς f x ς f x ς f x1 1 2 2 3 3

k k .

Note that

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( )( )

( )

( )

( ( ))( )

+ + ⋯+ + + ⋯+

= + + ⋯+

= − + − + ⋯+ −

= − + + ⋯+

= − − + + ⋯+ + + ⋯+

∗ ∗
∗

∗ ∗
∗

∗ ∗ ∗ ∗
∗ ∗

− −
−

ς f x ς f x ς f x ς g x ς g x ς g x

ς f x g x ς f x g x ς f x g x

ς x λ ς x λ ς x λ

x λ ς λ ς λ ς

x λ ς λ ς λ ς λ ς λ ς λ ς

1 1 1

1

.

n n n

n

n

1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 2 2 2 3 3 3

1 1 2 2 3 3

1 1 2 2 3 3

1
1

1 2
1

2 3
1

3 1 1 2 2 3 3

k k k k

k k k

k k

k k

k k k k

So, ( ) ( ) ( ) ∣( ) ( ( ))+ + ⋯+ − + + ⋯+

∗ ∗
∗

− −
−ς f x ς f x ς f x x λ ς λ ς λ ς ,n

1 1 2 2 3 3 1
1

1 2
1

2 3
1

3k k k k we can obtain that ⊆

⊥D C .

For Rk is a Frobenius ring, ∣ ∣∣ ∣ ∣ ∣=

⊥C C Rk
n, hence ∣ ∣ ∣ ∣

∣ ∣

∣ ∣
( )

= = =
( )⊥ ∑

=C q D .R
C

gdegk n
i

k
i1

3

So, ( ) ( ) ( )= = ⟨ + + ⋯+ ⟩

⊥ ∗ ∗
∗C D ς f x ς f x ς f x1 1 2 2 3 3

k k . □

4 Quantum codes from constacyclic codes over Rk

Theorem 4.1. Let = ⊕
=

C ς Cj j j1
3k

be a linear code of length n over Rk, then = ∑

⊥

=

⊥C ς Cj j j1
3k

, where ⊥Cj is a Euclidean
dual code of Cj, where = …j 1, 2, , 3k.

Proof. Let = ⊕
=

⊥C ς C˜
j j j1
3k

. ∀ = ∑ ∈

=

x ς x Cj j j1
3k

, = ∑ ∈

=

x ς x C˜ ˜ ˜
j j j1
3k

, ( )⋅ = ∑

=

x x x x ς˜ ˜j j j j1
3k

, where ∈x Cj j, and ∈

⊥x Cj̃ j .

We can have ⋅ =x x̃ 0, so ⊆

⊥C C˜ .
For Rk is a Frobenius ring, ∣ ∣∣ ∣ ∣ ∣=

⊥C C Rk
n. Hence,

∣ ∣ ∣ ∣
∣ ∣

∣ ∣

∣ ∣
∣ ∣∏ ∏= = = =

=

⊥

=

⊥C C p
C

R
C

C˜ .
j

j
j

n

j

k
n

1

3

1

3k k

It follows that

=

⊥C C̃. □

Theorem 4.2. Let = ⊕
=

C ς Cj j j1
3k

be a linear code of length n over Rk, then C is a Euclidean self-orthogonal code
over Rk if and only if Cj is a Euclidean self-orthogonal code over �q, where = …j 1, 2, , 3k.

Proof. By Theorem 4.1, ⊆

⊥C C if and only if ⊆

⊥C Cj j , so ifC is a Euclidean self-orthogonal code over Rk, then
Cj is a Euclidean self-orthogonal code over �q, where = …j 1, 2, , 3k. □

LetC be a linear code of length n over Rk, for any = + + ⋯+ ∈c c ς c ς c ς C1 1 2 2 3 3k k , and ( ) ( )= … ∈ϕ c c c c, , ,k 1 2 3k

�q
n3k
.

Theorem 4.3. Let = ⊕
=

C ς Cj j j1
3k

be a linear code of length n over Rk with ∣ ∣ =C ql and the minimum Lee distance
( ) =d C dL . Then ( )ϕ Ck is a linear code with parameter [ ]n l d3 , ,k . If C is a Euclidean self-orthogonal code over

Rk, then ( )ϕ Ck is a Euclidean self-orthogonal code over �q.

Proof. By the definition of Gray map ϕk, we can know that ( )ϕ Ck is a linear code with parameter [ ]n l d3 , ,k .

Let C be a Euclidean self-orthogonal code, = ∑ ∈

=

x ς x Cj j j1
3k

, and = ∑ ∈

=

y ς y Cj j j1
3k

, where �∈x y,j j q
n, then

⋅ = ∑ =

=

x y ς x y 0j j j j1
3k

, which implies that =x y 0j j , so
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( ) ( ) ∑⋅ = =

=

ϕ x ϕ y x y 0.k k
j

j j
1

3k

So ( )ϕ Ck is a Euclidean self-orthogonal code over �q. □

Lemma 4.1. [26] Let C be a constacyclic code with generator polynomial ( )g x over�q. Then, C contains its dual
code if and only if ( ( ) ( ))− ≡

∗x λ g x g x0 modn , where ( )∗g x is the reciprocal polynomial of ( )g x , = ±λ 1.

Theorem 4.4. [27] LetC1 andC2 be [ ]n k d q, ,1 1 and [ ]n k d q, ,2 2 linear codes over �q, with ⊆

⊥ ⊥C C2 1 . Furthermore,
let ( )=d d dmin ,1 2 .Then, there exists a quantumerror-correcting codeCwith parameters [ ]= + − ≥C n k k n d, , q1 2 .

In particular, if ⊆

⊥C C1 1, then there exists a quantum error-correcting code C with parameters [ ]= − ≥C n k n d, 2 ,1 1 .

Theorem 4.5. Let = ⊕
=

C ς Cj j j1
3k

be a ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k -constacyclic code over Rk, where ( )g xi is the
generator of polynomial of Ci. Then ⊆

⊥C C if and only if ⊆

⊥C Ci i for = …i 1, 2, , 3k.

Proof. If ⊆

⊥C Ci i for = …i 1, 2, , 3k, then ⊆

⊥ς C ς Ci i i i, ⊕ ⊕⋯⊕ ⊆ ⊕ ⊕⋯⊕

⊥ ⊥
⊥ς C ς C ς C ς C ς C ς C1 1 2 2 3 3 1 1 2 2 3 3k k k k.

So ⊆

⊥C C. Conversely, if ⊆

⊥C C, then, ⊕ ⊕⋯⊕ ⊆ ⊕ ⊕⋯⊕

⊥ ⊥
⊥ς C ς C ς C ς C ς C ς C1 1 2 2 3 3 1 1 2 2 3 3k k k k, so, ⊆

⊥C Ci i for

= …i 1, 2, , 3k. □

According to Lemma 4.1 and Theorem 4.5, we obtain the following corollary directly.

Corollary 4.1. Let = ⊕
=

C ς Cj j j1
3k

be a ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k -constacyclic code over Rk. Then ⊆

⊥C C if and only
if Ci is λi-constacyclic codes over �q, where = ±λ 1i , = …i 1, 2, , 3k.

Using Theorems 4.3–4.5, we can construct quantum codes.

Theorem 4.6. Let = ⊕
=

C ς Cj j j1
3k

be a ( )+ + ⋯+λ ς λ ς λ ς1 1 2 2 3 3k k -constacyclic code over Rk. If Ci is λi-constacyclic
code over �q, where = ±λ 1i , = …i 1, 2, , 3k, then ⊆

⊥C C and there exists a quantum error-correcting code with
parameters [ ]− ≥n l n d3 , 2 3 ,k k

L q, where dL is the minimum Lee weight of code C and l is the dimension of the
linear code ( )ϕ Ck .

Example 4.1. Let =n 30 and � [ ]= /⟨ = = ⟩R u u u u u u u u, ,i i i j j i2 5 1 2
3 , ( )( )= − −ς u u1 11 1

2
2
2 , ( )( )

=

− +ς u u u
2

1
2

1
2

2
2

2 ,
( )( )

=

− −ς u u u
3

1
2

1
2

2
2

2 , ( )( )
=

− +ς u u u
4

1
2

2
2

1
2

1 , ( )( )
=

+ +ς u u u u
5 4

1
2

1 2
2

2 , ( )( )
=

+ −ς u u u u
6 4

1
2

1 2
2

2 , ( )( )
=

− −ς u u u
7

1
2

2
2

1
2

1 , ( )( )
=

− +ς u u u u
8 4

1
2

1 2
2

2 ,

( )( )
=

− −ς u u u u
9 4

1
2

1 2
2

2 .

( ) ( ) ( ) ( )+ = + + + + + +x x x x x x x1 2 3 2 4 3 430 5 5 2 5 2 5,
( ) ( ) ( ) ( )− = + + + + + +x x x x x x x1 1 4 1 4 130 5 5 2 5 2 5 in � ( )x5 .

Let C be a ( )− u u1 2 1
2

2
2 -constacyclic code of length 30 over � [ ]= /⟨ = = ⟩R u u u u u u u u, ,i i i j j i2 5 1 2

3 .
Let ( ) = + + + + + + + +g x ς g ς g ς g ς g ς g ς g ς g ς g ς g1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 be the generator polynomial of C, where

= = = +g g g x 11 2 3 , = = +g g x 44 7 , = = +g g x 25 6 , and = = +g g x 38 9 . By Theorem 4.5, we have ⊆

⊥C C,
( )ϕ C2 is a linear code over �5 with parameters [ ]270, 261, 2 . By Theorem 4.6, we obtain a quantum error-

correcting code with parameters [ ]≥270, 252, 2 5.

Example 4.2. Let =n 15 and � [ ]= /⟨ = = ⟩R u u u u u u u u, ,i i i j j i2 7 1 2
3 , ( )( )= − −ς u u1 11 1

2
2
2 , ( )( )

=

− +ς u u u
2

1
2

1
2

2
2

2 ,
( )( )

=

− −ς u u u
3

1
2

1
2

2
2

2 , ( )( )
=

− +ς u u u
4

1
2

2
2

1
2

1 , ( )( )
=

+ +ς u u u u
5 4

1
2

1 2
2

2 , ( )( )
=

+ −ς u u u u
6 4

1
2

1 2
2

2 , ( )( )
=

− −ς u u u
7

1
2

2
2

1
2

1 , ( )( )
=

− +ς u u u u
8 4

1
2

1 2
2

2 ,

( )( )
=

− −ς u u u u
9 4

1
2

1 2
2

2 .

( )( )( )( )( )( )− = + + + + + + + + + + + + + + +x x x x x x x x x x x x x x x x1 3 5 6 1 2 4 2 4 2 415 4 3 2 4 3 2 4 3 2 ,
( )( )( )( )( )( )+ = + + + + + + + + + + + + + + +x x x x x x x x x x x x x x x x1 1 2 4 3 2 6 4 5 4 6 2 6 6 115 4 3 2 4 3 2 4 3 2 .
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Let C be a ( )− u u1 2 1
2

2
2 -constacyclic code of length 15 over � [ ]= /⟨ = = ⟩R u u u u u u u u, ,i i i j j i2 7 1 2

3 .

Let = + + + +g x x x x 11
4 3 2 , = = + + + +g g x x x x2 4 22 3

4 3 2 , = = + + + +g g x x x x4 2 44 7
4 3 2 , = +g x5

4

+ + +x x x3 2 6 43 2 , = + + + +g x x x x5 4 6 26
4 3 2 , and = = + + + +g g x x x x6 6 18 9

4 3 2 . By Theorem 4.5, we
have ⊆

⊥C C, ( )ϕ C2 is a linear code over�7 with parameters[ ]135, 99, 4 . By Theorem 4.6, we obtain a quantum
error-correcting code with parameters [ ]≥135, 63, 4 7.

Example 4.3. Let =n 21 and � [ ]= /⟨ = ⟩R u u u1 7 1 1
3

1 , ( )= −ς u11 1
2 , ( )

=

−ς u u
2 2

1
2

1 , ( )
=

+ς u u
3 2

1
2

1 .
( ) ( ) ( )− = + + +x x x x1 3 5 621 7 7 7, ( ) ( ) ( )+ = + + +x x x x1 1 2 421 7 7 7.

LetC be a ( )− u1 2 1
2 -constacyclic code of length 15 over R1. = +g x 31 , = +g x 22 , = +g x 43 . By Theorem

4.5, we have ⊆

⊥C C, ( )ϕ C1 is a linear code over �7 with parameters [ ]63, 60, 2 . By Theorem 4.6, we obtain
a quantum error-correcting code with parameters [ ]≥63, 57, 2 7.

Example 4.4. Let =n 20 and � [ ]= /⟨ = = ⟩R u u u u u u u u, ,i i i j j i2 5 1 2
3 , ( )( )= − −ς u u1 11 1

2
2
2 , ( )( )

=

− +ς u u u
2

1
2

1
2

2
2

2 ,
( )( )

=

− −ς u u u
3

1
2

1
2

2
2

2 , ( )( )
=

− +ς u u u
4

1
2

2
2

1
2

1 , ( )( )
=

+ +ς u u u u
5 4

1
2

1 2
2

2 , ( )( )
=

+ −ς u u u u
6 4

1
2

1 2
2

2 , ( )( )
=

− −ς u u u
7

1
2

2
2

1
2

1 , ( )( )
=

− +ς u u u u
8 4

1
2

1 2
2

2 ,

and ( )( )
=

− −ς u u u u
9 4

1
2

1 2
2

2 .

( ) ( ) ( ) ( )− = − − − −x x x x x1 1 2 3 120 4 5 5 5, ( ) ( )+ = − −x x x1 3 220 2 5 2 5.
Let C be a ( )− − −u u u u1 2 2 21

2
2
2

1
2

2
2 -constacyclic code of length 20 over R2. ( )= −g x 31

2, = = ⋯g g2 3
= = −g x 39

2 . By Theorem 4.5, we have ⊆

⊥C C, ( )ϕ C2 is a linear code over �5 with parameters [ ]180, 162, 3 .
By Theorem 4.6, we obtain a quantum error-correcting code with parameters [ ]≥180, 144, 3 5.

5 Conclusion

In this article, by studying the structure of constacyclic codes over � [ ]= … /⟨ = = ⟩R u u u u u u u u u, , , ,k q k i i i j j i1 2
3 ,

we construct some non-binary quantum codes from constacyclic codes over the finite non-chain ring Rk.
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