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Abstract: Let g = p™, p be an odd prime, and Ry = F[w, Uy, cow/ud =, uy; = uju;), where k > 1 and

1< 1i,j < k. In this article, we define a Gray map from R{ to [F;k”. We study constacyclic codes over Ry and
construct non-binary quantum codes over [F,.
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1 Introduction

Recently, constructing quantum error-correcting codes has important significance in theory and practice.
Calderbank et al. [1] gave a way to construct quantum error correcting codes from classical error correcting
codes. Constacyclic codes that have good error-correcting properties are an important class of linear codes.
Constacyclic codes also have rich algebraic structures that can be encoded with shift registers. Due to their
rich algebraic structure, constacyclic codes over finite fields have been studied by many authors [2-4], and
many good quantum codes have been constructed by using classical cyclic and constacyclic codes over
finite fields [5-8].

In recent years, there are a lot of works about constacyclic codes over finite rings of the form
Fpm + uF pm + -+ + u®~F ,m by many authors [9-12], where u¢ = 0. The class of finite commutative rings of
the form R + uR has been studied by many authors [13,14], where u? = 1. The class of finite commutative
rings of the form F ,m[uy, up, ...,uk]/(ui2 = u;, uj = wu;) has been studied by many authors [15-18], where
u? = u;. Due to their rich algebraic structure, many good quantum codes have been constructed by using
classical cyclic and negacyclic codes, and there are a few quantum codes constructed by using constacyclic
codes over finite rings. Dertli and Cengellenmis [19] constructed quantum codes from constacyclic codes
over ring F, + uF, + vIF, with u? = u,v?> =v, and uv = vu = 0. Wang et al. [20] constructed non-binary
quantum codes from (1 — 2v)-constacyclic codes over F,2 + VIF ;2 with v2 = v. Gowdhaman et al. [21] con-

%. Li et al. [22] constructed
(V2 —v,u’ —u,uv - vuy

quantum error correcting codes by Hermitian construction and obtained some good quantum codes. In [23],
quantum codes from cyclic codes over I, + ulF, + vIF, + uvlF, for arbitrary length n were constructed. In [24],
the structure of cyclic codes over the ring F; + vilF; +--- + v/[F; was studied, and quantum codes from cyclic
codes were constructed. Furthermore, some new non-binary quantum codes were obtained. In [25],

structed quantum codes from A-constacyclic codes over the ring
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quantum codes over F, were constructed by using the cyclic codes of length n over F,[u, v, w]/(u® - 1,
vZ—1,w? - 1, uv - vu, vw — wv, wu — uw). In [26], some non-binary quantum codes were obtained from
(1 - 2v)-constacyclic codes over the finite non-chain ring F; + ulF; + vlF; + uvlF,. Grassl et al. [27] presented
families of non-binary quantum codes which were optimal in the sense that the minimum distance was
maximal.

The purpose of this article is to continue this line of research. First, we determine the algebraic
structures of all A-constacyclic codes of Ry = [Fyluy, uy, .. Sul/ud = ug, uiu; = uju;). Second, we construct
quantum codes from constacyclic codes over R.

The rest of this article is arranged as follows: In Section 2, we give some results of Ry and the definition
of the Gray map from R} to [F?Ik". In Section 3, we discuss the algebraic structure of constacyclic codes over
Ry. In Section 4, we give the parameters of quantum error correcting codes from constacyclic codes over Ry.

2 Preliminaries

Let F; be a finite field with g elements, where p is an odd prime and g = p™, and let

Ry = Fyluy, o, ... iU = wi, uyy = ujus).

Clearly, Ry is a Frobenius ring but not local, and Ry has cardinality q(3k).

2
cardindlity of I is ¢®"-, and the number of such ideals is 3~.

2w wew
Lemma 2.1. Let I = (w;, Ws,...,wy), where w; € {1 —up, %}, then I is an ideal of Ry, and the

Proof. The elements of I are of the form
{Zailiz...ikwlilwzi? w,ik|ailiz..‘ik e, i5€{0,1,2}, s=1, 2,...,k}.

It is easy to see that there are 3% — 1 choices of Wl"lwz"2 w,i". So, I has cardinality q(3k*1). It is easy to see

that the other ideals are isomorphic to I, for each w; has three choices, so the number of such ideals is 3*.
O

. . Wy ul -y .
Let @; = (Wi, Wiz, ...,Wy) be an ideal in Lemma 2.1, where w; € {1 - u]-z, ’2 Ly ’T’}, 1<ix< 3k
1<j<k.
2wty w-y
2 2 2

2 2
u; + Uj u+u u—u
1-u)?=1-u?, R ’, L
1 -u) ; 5 5

u? + uj W - u; ul - \(uf +u
ot ft (]

G = 0, when i # j, and ¢’ =¢,wheni=12,..,3k

By the induction method over Ry, we can obtain that 1 = ¢ + ¢, + -+ ¢5x and Ry = ¢Rx & GR®--- @
G5kRi. V1 € Ry, then r can be expressed uniquely as the form r = r¢, + ng, + -+ r3r, where r; € [y,
i=1,2,..,3k

By the same method of Theorem 2.3 in [18], we have the following theorem.

Let ¢; = wiyw;z -+ Wy, where wj € {1 - uj, }, i=1,2,...,3%j=1,2,..., k. We can have that

u

1_“1

. . k
Theorem 2.1. ,, @,, ..., W5« are maximal ideals of Ry, and Ry = [Fz .
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By the aforementioned theorem, it can be easily seen that Ry is a principal ideal ring, not a chain ring.
For a = a\g, + ayg, +-+-+ as¢y € Ry, we can define ¢, : R — [ng by a ~ (@, ay,...,as), and we
expand ¢, as

. pn 3*n
¢k . Rk — [Fq N
(aOs a,... ,an—l) = (al,O’ --~yal,n—ly aZ,O, yaZ,n—ly aa3k’()y --~ya3k,n71),

where a; = a1, + @G, + -+ Az G € Ry, 1=1,2,..., 3k,
Let R be the Ry-submodule, if C is an Rg-submodule of Ry, then C is a linear code of length n over Ry.
Every codeword ¢ = (¢, G,...,Cn_1) € C can be represented as

n-1

€= (Cor CyesCao1) & €(0) = Y cixl € Relx].
i=0

If C is invariant under constacyclic shift operator g; : R — Rf by
ai(Co» 1y ---5Cn-1) = (ACy_1, Coy -+ 5Cn-2),
then C is called a A-constacyclic code of length n over Ry.
Let x = (X0, X1, ...,Xn-1) and y = (Yo, ¥y» ---»Y,—1) € Ri. The Euclidean inner product of x and y is defined
byx-y= Z:’z‘olxiyi. If x -y = 0, then x and y are orthogonal.
If C is a linear code, the Euclidean dual code C* = {x|Vy € C, x - y = 0} is a linear code too. A code C
is Euclidean self-orthogonal if C ¢ C*, and Euclidean self-dual if C = C*.
Let wy(¢p,(r)) denote the Hamming weight of the image of r under ¢,, Vr € Ry, the Lee weight of r
is defined as wi(r) = wy(¢p, ().
Vr = (X, %,...,X,) € R, the Lee weight of r is defined as wi(r) = Z?ZIWL(XI-), the Lee distance of code-
words x, y over R is defined as d;(x, y) = wy(x — y), and the Lee distance of C is defined as
di(C) = min{di(x - y), x,y € C,x # y}.
By the definition above, it is easy to see that ¢, is both a distance preserving map and a linear map from

3k
Ry toF "

3 Constacyclic codes over Ry

k k
Vx = Z?zlx,-(;]-,y = 213':1)’}'%} € R, where x; = (Xoj, Xijs ..., Xn-1,j) € Fg, Y = Wojs Vajo -+ 5 Yn-1,j) € [F?, we can have that

3k

X-y =Y (%5

j=1

Let C be a linear code of length n over Ry. Let

3k
G = [x,- € [F2|ingi €eC,x; € [FZ,], j=1,2,...,3k
i=1
k
Clearly, Gy, G, ..., C5« are linear codes of length n over F;, and C = ea?-ilngj, |C| = H?=1|C]‘|.

Lemma 3.1. Let (Aig; + A6, + -+ +A5k¢3¢) be an element over Ry. Then (Ag; + A6, + -+- +A5kG3¢) is a unit over Ry
if and only if Ay, Ay, ..., A5k are units over F,.
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Proof. Let (Ag, + A, + -+ +A5k¢5) be a unit of Ry, then there exist 8, B,,..., By € [, such that
(/hcl + A6, + "'+A3"C3") (ﬁﬁl + By +ﬁ3k(:3") =1L

Then (A6, + AB,6 + -+ +A5B5x65) = 1, which implies (A4if,6; + AB,6, + -+ +A36B5k651)6; = AifiG; = 6, SOAB; = 1,
wherei=1,2,...,3% So A, Ay ..., A5k are units over Fy.
Conversely, if A;, A, ..., A5« are units over Fg, then there exist 8, B,,..., B3« € F; such that A;; = 1, where

i=1,2,...,3% We can obtain that (g, + A + - +A5¢3)(Bi6; + Boy + - +B5G36) = ABigy + APygy + o+
APy = ¢ + G + -+ G5k = 1. S0 (Aig, + Ag, + -+ + A5k ) is a unit over Ry. O

Theorem 3.1. Let C = ea?-ilng,- be a linear code of length n over Ry, then C is a (A¢ + A6, + ---+A3kg3k)-
constacyclic code over Ry if and only if C; is A;-constacyclic codes over F,, where i=1,2,..., 3% and
MG + Asgy + -+ + Ajkg is a unit of Ry.

Proof. This can be proved by the same method of Theorem 4.1 in [18]. O

Theorem 3.2. Let C = ea}"ilng,- be a (Mg, + A, + - +A51¢5)-constacyclic code of length n over Ry, then
C = (& (X) + ¢Z(X) + -+ +¢5854(X)), where g; is the generator polynomial of C;, i = 1,2, ..., 3k.

Proof. This can be proved by the same method of Theorem 4.2 in [18]. O

Theorem 3.3. Let C = (g,g,(x) + §&(X) + -+ +¢585:(x)) be a (Ag, + Ag, +---+A5¢x)-constacyclic code of
length n over Ry. Then C* = (¢, fi(x) + f3(x) + - +¢3f3(X)) is a Al + Al + -+ +A ¢ 5)-constacyclic

3k
code of length n over Ry, |Ct| = q(zi:ldeg(gi)), where f{(x) is the reciprocal polynomial of fi(x), i.e., fi(x) =

(x" = A)/g(X), fi(x) = xesWf(x ), fori=1,2,..., 3k

Proof. Let C = (¢g(x) + ¢&(X) +---+¢3g3(x)) be a A-constacyclic code of length n over Ry, where
A= A6 + A + -+ Agkgsk.
Vx = (X0, X, ..., Xn-1) € CH, VY = (Vs Vis---»Yp1) € C, then oj”l(y) = Wy, Ay - A1 V) € C, we can
obtain that
0=x-07"'(y)
=Xy, + Y, + -+ oY1 + Xn-1Yp
= A(Xolﬁ + XY, totXn-2), 4t A_lxn—IY())
= Aoi(x) y.
We have 0,1(x) € C4, so C* is a A"'-constacyclic code.
By Lemma 3.1, A = A;'g; + A6, + -+ Ajlgy, so CHis a (Ar'g + Ay, + -+ +A5l¢y)-constacyclic code of
length n over Ry.
Let D; = {f{(x)), where f{(x) is the reciprocal polynomial of f;i(x), i.e., fi(x) = (x" — A)/g;(x), f{(x) =
xdesUif(x1), g is the generator polynomial of C;, i = 1, 2,..., 3.
k
Let D = ea?-ilg‘jD,-, then |D| = ]_[?:llDil = q(X5des@), and it follows that D has the form

D = (¢ fi(0), 6 f300,...,65f5(0).

Let D = (g, fi () + ¢, f5(x) + =+ +63f2(0). We can have that D cD.
Note that
GlGfI00 + G500 + - +63 f300] = 6 fi(0),

wherei=1,2,..., 3%
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We can obtain that D € D. So, D = D, and D = (g, f{(x) + ¢, f3(x) + <463 f200).
Note that

(Gufi00 + GF300) +++63£200) (58700 + 83 00) + -+ +6385(X))
GFI008] 00 + 63008500 + -+ 63 f1008.5(0)
G(1 - x") + ¢(1 - x"Ay) +---+ c3k(1 - X"k

1- x"(/\l(;1 + A6 + +/13k(;3k)
—(x” - ()l{lgl + AN 4 +/\;k1g3k))(}l1§l + gy + e +/\3k(;3k).

S0, (G ff(0) + 300 +-+ 465 f20O) (X" = (A'g; + A3, + -+ +A51631)), We can obtain that D ¢ C*.
n k
For Ry is a Frobenius ring, |C||C*| = |Rk|", hence |CY| = % = g(Tides®) = |DY.
So, Ct = D = (g fi(X) + Gf300) + -+ +65f5.(0). O

4 Quantum codes from constacyclic codes over Ry

Theorem 4.1. Let C = ea?ilg‘jC,- be a linear code of length n over Ry, then C* = Z?ilgjcf, where C;- is a Euclidean
dual code of C;, where j = 1,2,..., 3k.

~ k k ~ k
Proof. Let C = ea?ilcicf. Vx = Z,3~=1C,~Xj €C, X= Z?Zlgj)?,- €eC,x-X= Z?Zl()q)?j)g‘j, where x; € Cj, and % € C;'.
We can have x - X = 0, so C ¢ C*.
For Ry is a Frobenius ring, |C||C*| = |R|". Hence,

B 3k o IRy |"
€1 = [TIcH = TT& = =<5 = ey
RS 117 R TW
It follows that
ct=_C. O

Theorem 4.2. Let C = ea?ilqiq be a linear code of length n over Ry, then C is a Euclidean self-orthogonal code
over Ry if and only if C; is a Euclidean self-orthogonal code over [F,, where j =1, 2,..., 3k,

Proof. By Theorem 4.1, C ¢ C* ifand only if C; < Cf, so if C is a Euclidean self-orthogonal code over Ry, then
G; is a Euclidean self-orthogonal code over F;, where j = 1, 2,..., 3k, O

Let C be a linear code of length n over Ry, for any ¢ = ¢, + ¢, + -+ + ¢33 € C,and ¢, (c) = (a, ¢, ...,C5) €
3k

F q n,

Theorem 4.3. Let C = ea?il(;jC,- be a linear code of length n over Ry with|C| = q' and the minimum Lee distance

di(C) = d. Then ¢,(C) is a linear code with parameter [3*n, 1, d]. If C is a Euclidean self-orthogonal code over
Ry, then ¢, (C) is a Euclidean self-orthogonal code over F,.

Proof. By the definition of Gray map ¢,, we can know that ¢, (C) is a linear code with parameter [3*n, [, d].

Let C be a Euclidean self-orthogonal code, x = 2,3-:19})9 eC,andy = Z?ilgjyj € C, where x;, y; € [Fy, then

k
X-y= Z?Zlgjxlyj = 0, which implies that xy; = 0, so
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k

3
00 P (y) = ij)’j =0.
j=1
So ¢,(C) is a Euclidean self-orthogonal code over [F,. O

Lemma 4.1. [26] Let C be a constacyclic code with generator polynomial g(x) over [F4. Then, C contains its dual
code if and only if x™ — A = 0(mod g(x)g*(x)), where g*(x) is the reciprocal polynomial of g(x), A = +1.

Theorem 4.4. [27] Let C; and G, be|n, ki, dilq and [n, k,, d>]q linear codes over [y, with C; < Ci". Furthermore,
letd = min(d,, d,). Then, there exists a quantum error-correcting code C with parametersC = [n, lq + k — n, 2d],.

In particular, if Ci- € C,, then there exists a quantum error-correcting code C with parameters C = [n, 2k, — n, >dy].

Theorem 4.5. Let C = ea?ilchj be a (A, + Ay, + - + A5 5)-constacyclic code over Ry, where gi(x) is the
generator of polynomial of C;. Then C+ C C if and only if Ci* < C; fori=1,2,..., 3.

Proof. If C;c C; for i=1,2,...,3% then ¢Ci" c¢Ci, ¢Cir@¢Cy @@ ¢3Cx € GC1@ G &+ ¢3Cah.
So C* ¢ C. Conversely, if C+ c C, then, ¢Ci" @ ¢C; @@ ¢3Cx € GC1 @ G &+ ¢31Cy, SO, Ci- ¢ G for

i=1,2,..,3% =
According to Lemma 4.1 and Theorem 4.5, we obtain the following corollary directly.

Corollary 4.1. Let C = ea?ilg'iCi be a (A, + A6, + -+ +A3x¢5k)-constacyclic code over Ry. Then C* < C if and only
if C; is Aj-constacyclic codes over F;, where A; = +1,i=1,2,..., 3k,

Using Theorems 4.3-4.5, we can construct quantum codes.

Theorem 4.6. Let C = ea?-ilch,- be a (Ag, + A6, + -+ +Azk¢5k)-constacyclic code over Ry. If C; is A;-constacyclic
code overFy, where A; = £1,i=1,2,..., 3k, then C*+ < C and there exists a quantum error-correcting code with
parameters [3*n, 21 - 3kn, >dy],, where d; is the minimum Lee weight of code C and l is the dimension of the
linear code ¢, (C).

Example 4.1. Let n = 30 and R; = Fs[wy, ]/ (U = wi, usyy = wj), 6= (1 - ud)(1 - ud), ¢, = w,

_ A-udd -w) _ -uded +w) _ i + ) + ) _ @ rw)ui - w) _ -uded -w) _ - w)uf +w)
C3— 2 ’C4— P s 55 — 4 st— 4 ,C7— P s 58 — 4 ’

G = (uf—ul):uzz—uz)_

X041 =(x+2)°%x +3)°(x% + 2x + 4)°(x% + 3x + 4)°,
X0 —1=(x+ 1)°(x + 4)°(x? + x + 1)°02 + 4x + 1)° in F5(x).

Let C be a (1 - 2ufuj)-constacyclic code of length 30 over R = Fs[u, o]/ (U = w;, wityy = ujuy).
Let g(X) = 6,81 + &% + G853 + G484 + 685 + G + 6587 + e85 + oo be the generator polynomial of C, where
§=8=8=x+1,8,=8=x+14,8=8 =x+2,and g = g, = x + 3. By Theorem 4.5, we have C* ¢ C,
¢,(C) is a linear code over Fs with parameters [270, 261, 2]. By Theorem 4.6, we obtain a quantum error-
correcting code with parameters [270, 252, >2]s.

(- uP)@3 + )
2 ’
G = (1—1412);Uzz—u2)’ G, = <1—u§>;u3+u1>’ G = <u3+u1>:u§+uz), G = (U12+u1):uzz—uz)’ G = <1—u§>§u5—ul>’ G = (u?—uﬂ:ufwz),

Example 4.2. Let n =15 and R, = F[uy, wp]/ (U = wi, uity = wiy), ¢, = (1 — ud)(1 - u3), ¢, =

G = (uf—ul):uzz—ua

1=+ +5)X+6)*+ X+ X2+ x+ DX+ 23 + X2+ x + (X + 43 + 22 + x + 4),
X+ 1=+ DX+ 2+ 4)X* + 333 + 22 + 6x + 4)(x* + 53 + 4x2 + 6x + 2)(x* + 6X3 + x2 + 6x + 1).
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Let C be a (1 - 2uluj)-constacyclic code of length 15 over R = Frlu, o]/ (U = w, ity = ujuy).
Let g =x"+xX0+x2+x+1, g =8=x*+20+42+x+2, g,=8=x"+4C+22+x+4, gg=x"+
363 + 22+ 6X + 4, gg = x* + 5% + 4x? + 6x + 2, and g = g, = x* + 6x> + x? + 6x + 1. By Theorem 4.5, we
haveC* ¢ C, ¢,(C) is alinear code over [F; with parameters[135, 99, 4]. By Theorem 4.6, we obtain a quantum
error-correcting code with parameters [135, 63, >4];.
Example 4.3. Let n = 21 and R = F[w]/(ud = wy), ;= A - ud), ¢, = (”12;"1), 6= ("122*"1)

X —1=x+3V(x+5(x+6)Y, x+1=(x+17(x+2(x+4).

Let C be a (1 — 2uf)-constacyclic code of length 15 0verR. g = x + 3,8, = x + 2, g = X + 4. By Theorem
4.5, we have C* ¢ C, ¢,(C) is a linear code over [F; with parameters [63, 60, 2]. By Theorem 4.6, we obtain
a quantum error-correcting code with parameters [63, 57, >2],.

(1 - u))(U3 +w)

Example 4.4. Let n =20 and R, = Fs[w, w]/ W = w, wiyy = uw), ¢, = (1 - ud)(1 - u3), ¢, = : ,

_ (-u)d -w) _ (-ud)ui +w) _ 0 +u)(d +wy) _ @ ru)@ -wy) _ A-ud)ui - w) _ @ -u)d +wy)
Cg— > ;§4— 5 s §5 = 4 ’cé_ 4 ’C7_ 2 > 58 T 4 ’

2 2
and g, = M- 0 "1):"2 )

X0 —1=(x - D*x - 2)5(x = 3)°(x — 1)°, x© + 1= (x2 - 3)5(x? - 2)°.

Let C be a (1 - 2uf - 2uf - 2ufu)-constacyclic code of length 20 over R,. g = (x = 3)%, g, =g =+
= g, = x? — 3. By Theorem 4.5, we have C* ¢ C, ¢,(C) is a linear code over Fs with parameters [180, 162, 3].
By Theorem 4.6, we obtain a quantum error-correcting code with parameters [180, 144, >3]s.

5 Conclusion

In this article, by studying the structure of constacyclic codes over Ry = Fy[uy, uy, ... ,uk]/(ul-3 = u;, Wilj = Ujly),
we construct some non-binary quantum codes from constacyclic codes over the finite non-chain ring Ry.
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