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Abstract: In this paper, we use the shooting method to study the solvability of the boundary value problem
of differential equations with sign-changing weight function:

u'(t) + Aa*(t) — pa (t)gw) =0, O0<t<T,
u'(0)=0, u(T)=0,

where a € L[0, T] is sign-changing and the nonlinearity g : [0, co) — R is continuous such that g(0) =
g(1)=g(2) =0, g(s) >0 fors e (0,1), g(s) <0 fors e (1, 2).
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1 Introduction and main result

In this paper, we are interested in the multiplicity of positive solutions for the boundary value problem:

{u"(t) + a(t)g(u) =0, O<t<T, (1.1)

u'(0)=0, u(T)=0,

where a € L[0, T] changes sign. Boundary value problem (1.1) describes many phenomena in applied
mathematics. For example, the theory of nonlinear diffusion generated by nonlinear sources, biological
models, and nuclear physics, where only positive solutions are meaningful, see [1-3].

Existence and multiplicity of positive solutions of (1.1) with a sign-changing weight function have been
extensively studied, see [4,5]. In [6], the authors established multiplicity results of positive solutions with
Dirichlet boundary conditions in relation to the nodal behavior of the weight a(t). In [7], the authors further
studied the influence of weight function to the problem (1.1) by defining the weight function as follows:

a(t) = ap,(t) = Aa*(t) — pa(t),

where a*(t) and a(t) denote the positive and the negative part of the function a(t),A > 0,u > 0.
They obtained the following multiplicity result:
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Theorem A. (Theorem 1.1, [7]) Let g : [0, 1] — R* be a locally Lipschitz continuous function satisfying

S

8(0) =g =0, lim 0, (Ho)
and the weight term a(t) has two positive humps separated by a negative hump. Then, there exists A; > 0 such
that for each A > Ay, and there exists u,(A) > O such that for every yu > u,(A), problem

{u"(t) + (Aa*(t) - pa()gw) =0, 0<t<T, w2

u')=0, u(T)=0
has least three positive solutions u(t) and 0 < u(t) < 1 for all t € [0, T].

A natural question that arises from the aforementioned quoted papers is whether the number of
positive solutions to the problem (1.1) is related to the number of zeros of g(s). For that reason, we would
like to pursue further the investigation of the dynamical effects produced by the nonlinear term g(s).
Of course, this idea also has practical significance. For example, see [8,9], the classical application
in population genetics

(1.3)

us = dAu + gx)f(w), in Q x (0, co0),
d,u =0, onoQ x (0, 00),

where A = Z?:la% is the Laplace operator, Q is a bounded domain with smooth boundary 0Q in R", v
denotes the unitl outward normal to 0Q, and 9, is the normal derivative on 0Q, g changes sign in Q.
We call this the “heterozygote superiority” case, when f € C[0, 1] such that f(0) = f(1) = 0, f(0) > O,
f'(1) > 0, and f(u) > 0 in (0, a), f(u) < O in (a, 1) for some a € (0, 1). Under the condition that the spatial

dimension n = 1, a steady-state solution of (1.3) satisfies

{du” +g0Of(w) =0, 0<x<1, (1.4)

u'0) =0, u'(1)=0.

The aim of the present paper is to show how the three solutions theorem in [7] generalizes in case we
increase the number of zeros of g(s). We follow closely the arguments of [7], actually, we are able to deal
with more general nonlinearities g(s). To keep the situation simple enough, we consider g(s) has three
zeros. Namely, we study the indefinite weight boundary value problem (1.2) under the assumptions:

(Hy) g : [0, 00) — R islocally Lipschitz continuous with g(0) = g(1) = g(2) = 0, lims_Q% =0;8(s)>0
fors € (0,1), g(s) < Ofors € (1, 2);

(Hy) a € L[0O, T], there exist o, T with 0 < 0 < T < T such that

at(t)>0,a(t)=0, te]l0,al,
at(t)=0,a(t) >0, telo,T1],
at(t) >0,a(t)=0, telr,T].

Let (Ho), (Hy), and (H,) hold, we can get six solutions u(t) of problem (1.2), of which three solutions
0 < u(t) < 1forallt € [0, T] have been found in paper [7], and the purpose of this paper is to find the other
three solutions u(t) of problem (1.2), which satisfy 1 < u(t) < 2 for allt € [0, T]. The main result of the paper
is the following.

Theorem 1.1. Let (H;) and (H,) hold. Then, there exists A, > O such that for each A > A,, there exists j,(A) > 0
such that for every u > j,(A), problem (1.2) has three positive solutions u(t) and 1 < u(t) < 2 for allt € [0, T].

Remark 1.1. Note that when g(s) only has two zeros s = 0 and s = 1, then, condition (H;) will degenerate
into condition (Hy), and the corresponding Theorem 1.1 will degenerate into Theorem A in [7]. Therefore,
the results of this paper can be regarded as a direct generalization of [7].
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2 Proof of main theorem

To prove our main theorem, we need some preliminary results.
In this section, we will find three positive solutions u(t) of problem (1.2) and 1 < u(t) < 2 for all
t € [0, T]. Therefore, we can further rewrite problem (1.2) as follows:

u'(t) + (Aa*(t) — pa (t)g*w) =0, 0<t<T,
1<u(t) <2, (2.1)
u'(0)=0, u(T)=0,

where g*(u) is defined as follows:

0, u<l,
gw) ={8W), l<u<2,
o, u>2.

First, studying problem (2.1) in the interval [0, ] and the equation can be simplified to

u'(t) = -Aa*(t)g*(w). (2.2)

2= solution u(t) of (2.2) with

o-t

Lemma 2.1. Let A > 0, m; € (1, 2), and t, € (0, 0). Then, for every w >
u(t)) = my, u'(4) > w satisfies u(o) = 2, u'(0) > w.
Proof. Let u(t) be a solution of (2.2) with u(t) > my, u'(t;) > w. Since
u'(t) = -Aa*(g* (W) = Aa*(D)lg*w)| = 0,
by the monotonicity of u'(t) on [0, ¢], we obtain
v zu'lt) 2w, t<t<ao. (2.3)
By integrating (2.3) on [4, o] < [0, o], we immediately obtain

u(o) 2 u(t) + w(o - t) = 2. O

Lemma 2.2. Let A > 0, t, € (0, 0), mg, m; € (1, 2) such that1 < my < my < 2. Given
m — Mo

A*(mO’ my, tl) = - 47 s
minp<uemlg Q01 [! ([ a*(dh)ds

and w < @ Then, for every A > A*(mg, my, ), solution u(t) of (2.2) with initial conditions u(0) = m,
1

u'(0) = 0 satisfies u(t)) > m; and u'(t) > w.

Proof. By integrating (2.2) on [0, t] < [0, o], we have
t
w(©) = [Aar)gahds > o,
0

and therefore, u(t) monotonically increasing on (0, o).
We suppose u(t;) < m; holds. Then

l<mg<u(t)y<m<2, O0<t<Ht.
Furthermore, we have

t (s

u(t) > mo + A min [g°(w)| J a*(h)dh |ds,
oSuU<m o Lo
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when A > A*, we obtain
u(tl) > mla

which implies a contradiction.
Similarly, we suppose u'(t;) < w holds. By the monotonicity of u'(t) in [0, o], we have

uUt)<w, 0<t<t.
Integrate on [0, ;] € [0, o], we obtain
u(t) €< mg + wt; < my,

which implies a contradiction, and Lemma 2.2 is proved. O

Lemma 2.3. Let A > 0 and m; € (1, 2). Then, for any € > 0, there exists 6. > 0(8; < 2 — my) such that the
following holds: for any m € (2 — 6., 2), solution u(t) of (2.2) with initial conditions u(0) = m, u’(0) = 0 satis-
fiesu(t) < 2 and u'(t) > O for all t € [0, o).

Proof. Let A and m; be fixed as in the statement and denote the supremum norm by ||-|l«. From (H;), we have

lim £8) ) =0
s-22 -8

so, for all € > 0, there exists &, € (0, 2 — my) such that
lg*(s) < e ~5), se[2-6,2].

For any m € (2 - 6, 2), we consider the solution u(t) of (2.2) with u(0) = m and u’(0) = 0.
We suppose that there exists 0y € (0, 0) such that u(t) < 2 for all t € [0, 0;) and u(o;) = 2. Without less
2-m

M a® o [ [;@-us)dsde

of generality, we choose € <

By integrating of (2.2) on [0, t] < [0, 01), we have
t t
w(©) = 1 a(s)lg"wlds < Aela’ (Ol [ @ - u(s)ds.
0 0
Furthermore, we obtain
ot
2= u(oy) < m + Aela* Ol J I(z _ u(s)dsdt < 2,
00

which implies a contradiction. O

Second, we consider problem (2.1) in the interval [, 7], where the equation can be simplified to

u'(t) = pa-(H)g*w). (2.4)

Lemma 2.4. Let A > 0, u > O for any v > 0. If u(t) is the solution of the initial problem

{u ) + Aa*(t) - pa()g*w) =0, o<t<T, o8

u(o) =2, u'(o)=v,
then u(t) > 2, u'(t) > O forallt € (o, T).
Proof. Suppose that [0, t*] < [0, T] is the maximal interval such that u’(t) > O for all t € [0, t*] and t* < T.
We immediately obtain u(t) > 2 for all t € [o, t*], by integrating of (2.1) on [o, t*], we have
u'(o) = u'(t),

which implies a contradiction. O
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Lemma 2.5. Let y > 0,my € (1, 2) and t, € (0, 7). Then, for every y < l;—mt;, any solution u(t) of (2.4) with
u(t,) < my, u'(t) <y satisfies u(tr) < 1andu'(t) <y.
Proof. Let u(t) be a solution of (2.4) with u(t,) < my, u'(;) < y. Since
u'(t) = pa~(t)g*(w) < 0,
we have
u)<u'b) <y, telb, Tl (2.6)
By integrating of (2.6) on [t,, T], we have

u(t) <ul) +y(T -t) <1 O

Lemma 2.6. Let my, m3, and m* such that1 < m, < m3 < m* < 2 and y, > 0. Given
m, — ms - y,(t - 0) m, - m

t; S ’ V>
maxmziugm"g*(u)j: (-[a a'(h)dh)ds b-o

}l*(mz, m3, m*) tZy yo) =

3

and b, < 0 + % Then, for every u > u*, any solution u(t) of (2.4) with initial conditions u(o) = ms,

(o

u'(o) =y, satisfies u(t) < my and u'(t) < y.

Proof. Let u(t) be a solution of (2.4) satisfies the initial conditions u(o) = m; and u'(0) = y,.
We suppose u(t;) > my holds. Then, we immediately obtain u(t) > m, for all ¢t € [0, t]. On the
other hand,

u'(t) = uya~(t)g*w) < 0, telo, 1], 2.7)
we have
u'(t) <u'(o), telo,r]. (2.8)
By integrating (2.8) on [0, t] < [0, T], we obtain
ut) <yt -vo+ms, telo, 1],

in particular, u(t) < m* t € [0, t].
By integrating (2.7) twice on [o, t] € [0, ], we have

S

t
u(t) = u(o) + W)t - 0) + I f a-(Wg*wdh |ds

o [
t (s
<ms + y(t - 0) + p max g*(u) J‘a*(h)dh ds.
my<u<m*
g o
When y > y*, we have
u(t) < my,

which implies a contradiction.
And then, we suppose u'(,) > y holds. We immediately obtain u’'(t) > y, t € [0, t;], then

ult) 2 ms +y(t, - 0) 2 my,
contradiction and Lemma 2.6 is proved. O
Finally, we studying problem (2.1) in the interval [, T]. Similarly, the equation can also be simplified as

(2.2), the situation is exactly symmetric to the described in Lemmas 2.1 and 2.2. We give the corresponding
conclusions.
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Lemma 2.7. Let A > 0, ms; € (1,2), and t € (1, T). Then, for every w; < 'ZS:TZ, solution u(t) of (2.2) with
u(ts) = ms, u'(3) < w; satisfies u(t) > 2 and u'(t) < w;.

Lemma 2.8. Let A > 0, ; € (1, T), my, ms € (1, 2) such that1 < m, < ms < 2. Given

ms — My

A (my, ms, &) = T
ity uemlg @ [ [} a*an)as

and w; > mT“:Z’S Then, for every A > A**, solution u(t) of (2.2) with initial conditions u(T) = m4, u'(T) =0

satisfies u(t;) > ms and u'(;) < w;.
The proof process is completely similar to Lemmas 2.1 and 2.2, and it is omitted here.

Proof of Theorem 1.1. We show that problem (2.1) has at least three solutions through the following five
steps.

Step 1. What needs to be explained is that g(s) satisfies locally Lipschitz condition which ensure the
uniqueness and the global existence of the solution u(t, ¢y, a, 8) for equation

u"(t) + Aat(t) — pa (t)g*w) =0, O0<t<T, (2.9)

with the initial conditions u(ty) = a, u'(t,) = . In addition, the solution is continuously dependent on the

initial value.
a(my —mo)

Step 2. In interval [0, 0], let us fix 1<mg<m; <2 and 0 < f < o

. We immediately obtain

20%'21 <w< ml;—lm", so we can apply Lemmas 2.1 and 2.2 when A > A*(mq, my, ), and for any u, we have

u(o, 0, mg, 0) > 2, u'(o,0,mgp, 0) > w.
We also have
u(s,0,1,0)=1, u'(0,0,1,0)=0.

According to the intermediate value theorem, there exists an interval[1, ;] < [1, mo] such thatu(o, 0, I, 0) =
2,u'(0,0,1,0) >0,and forall ¢ € (1, L), t € [0, 0], we havel < u(t, 0, &,0) < 2, u'(t,0,£&,0) > 0.
Furthermore, apply Lemma 2.3, there exists mg € (my, 2) such that

u(o, 0, mg, 0) <2, u'(0,0,1,0) > 0.

Similarly, there exists an interval [b, 2] and mq < L, < mg, such that u(o, 0, b, 0) = 2, u'(g, 0, 1;, 0) > O,
and for all £ € (b, 2), t € [0, d], we have 1 < u(t, 0, &, 0) < 2,u'(t,0,&,0) > 0.

Step 3. In interval [z, T]. Analogously to Step 2, let us fix1 < my < ms < 2 and "=+ Tms =2

ma—2 <t3<T.
ms—2

. my —ms
—_ <
We obtain T SWiS

, apply Lemmas 2.7 and 2.8 when A > A**(my, ms, &), and for any y, we have
u(t, T,m4,0)>2, u'(t,T,my,0) < w.

Thus, there exists an interval [1, ] < [1, m,] such that u(t, T, L, 0) = 2, u'(t, T, 5, 0) < 0, and for
allée (1, B),te|r, T, 1<u(t,T,&0)<?2.
Step 4. In interval [o, 7], let

A = maxiA*(mg, my, t,), A**(ma, ms, &)}
and fix A > A,. Take p; € (1, L) and p, € (b, 2), define
ms3; = U(O', 0, bi, O)’ ytr,i = u’(o, 0, bi, O)’ i= 1, 2,

. T(m3;—my;) +a(my;—1 m—ms;
fix m, my;, and 6; such that 1 <my; < mz; <m <2, and b; < mm{ (s Mo, ) + 00Ny =) |y I },

my;i-1 Yo,i
my,i —mz, 1-

then oo <Y< T_":;'_". Apply Lemmas 2.5 and 2.6 when u > p*(my;, ms;, mf', t,, , ;), we have

u(T9 0’ bi, O) < 1’ u/(T’ O’ bi, O) < O’ i= 1’ 2.
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Meanwhile, apply Lemma 2.4, we have
u(r,0,14,0)>2, u(r,0,0)>0, i=1,2.

According to the continuous dependence of the solutions upon the initial data and the Intermediate
Value Theorem, for y > u*(A), there exist three intervals

[QD rl] < [ply ll]a [qu rZ] < [12’ pZ]: [q3’ r3] < [pZ’ 2]:
such that
u(t,0,1,0)=2,u(,0,¢,0) =1, =123,

and for all &€ (g, 1),te[0,71],1<u(t,o0,é&,0) < 2. Obviously, the three intervals do not intersect,
and then we can find three connected region in [0, T] x (1, 2).

Step 5. In these connected regions, using the forward shooting method and the backward shooting
method respectively, we can obtain at least three solutions to problem (2.1). At the same time, it is also the
solution of problem (1.2). This completes the proof. O

Finally, we point out that, even if, for the sake of simplicity, we only consider the case that g(s) has
three zeros, it is reasonable to expect that some further multiplicity results can be proved also for non-
linearity g(s) with k zeros, yielding the existence of 3(k — 1)-positive solutions.
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