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1 Introduction

In general, in order for a stochastic differential equation to have a unique global solution for any given
initial data, the coefficients of the equation are generally required to satisfy the linear growth condition (see,
e.g., [1]) or a non-Lipschitz condition and linear growth condition (see, e.g., [2-4]), so the linear growth
condition plays an important role in avoiding explosion in the finite time. However, many important equa-
tions in practice do not satisfy the linear growth condition, such as stochastic Lotka-Volterra systems (see,
e.g., [5]). So it is necessary to establish more general existence-and-uniqueness theorems. There are many
results of the solution of a stochastic functional differential equation (SFDE) without jumps. Xuerong and
Rassias (see, e.g., [6]) examined the global solutions of SFDE under a more general condition, which has been
introduced by Khasminskii. By this idea, Yi et al. (see, e.g., [7]) considered existence-and-uniqueness theo-
rems of global solutions to SFDE. Qi et al. (see, e.g., [8]) established the existence-and-uniqueness theorems
of global solutions to SFDE under local Lipschitz condition and Khasminskii-type conditions. Minghui et al.
(see, e.g., [9]) established existence-and-uniqueness theorems for SFDE where the linear growth condition is
replaced by more general Khasminskii-type conditions in terms of a pair of Lyapunov-type functions. Then,
Fuke (see, e.g., [10]) considered the existence-and-uniqueness theorems of global solutions to neutral SFDE
with the local Lipschitz condition but without the linear growth condition. Later, Fuke established the
Khasminskii-type theorems for SFDE with finite delay. Quanxin (see, e.g., [11]) found the pth moment
exponential stability of impulsive SFDEs with Markovian switching. Recently, Quanxin and his cooperators
(see, e.g., [12]) studied the Razumikhin stability theorem for a class of impulsive stochastic delay differential
systems.
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For SFDE with jumps, Wei et al. (see, e.g., [13]) found the existence and uniqueness of solutions
to a general neutral SFDE with infinite delay and Lévy jumps in the phase space C; under the local
Carathéodory-type conditions and gave the exponential estimation and almost surely asymptotic estima-
tion of solutions. By using the Razumikhin method and Lyapunov functions, Quanxin (see, e.g., [14])
obtained several Razumikhin-type theorems to prove the pth moment exponential stability of the suggested
system and further discussed the pth moment exponential stability of stochastic delay differential equations
with Lévy noise and Markov switching.

For a class of nonlinear stochastic differential delay equations with Poisson jump and time-dependent
delay, Haidan and Quanxin (see, e.g., [15]) proved that the considered stochastic system has a unique
global solution and investigated the pth moment exponential stability and the almost surely exponential
stability of solutions under the local Lipschitz condition and a new nonlinear growth condition, which are
weaker than those in the previous literature, by virtue of the Lyapunov function and the semi-martingale
convergence theorem.

In this paper, we consider the existence-and-uniqueness theorems of global solutions to neutral SFDE with
Markovian switching and Lévy jumps and establish the Khasmiskii-type theorem in the spirit of Minghui et al.
(see, e.g., [9]). The main difficulty comes from the neutral term and the Lévy jumps term. After placing some
assumptions on the neutral term and jump term, we obtained the existence and uniqueness of the solution by
elementary inequality, the Gronwall inequality, the Burkhdlder-Davis-Gundy inequality, and the It6 formula.

This paper is organized as follows. We will establish the Khasminiskii-type existence-and-uniqueness
theorems for neutral SFDEs with Markovian switching and Lévy jumps in Section 2. We will proceed to
consider a special class of neutral SFDEs with Markovian switching and Lévy jumps, namely, neutral
stochastic differential delay equations with variable delays in Section 3. An example is given in Section
4 to illustrate our results throughout the paper.

2 The Khasminskii-type theorem for SFDEs with Markovian
switching and jumps

Throughout this paper, unless otherwise specified, we use the following notations. Let |x| be the Euclidean
norm of a vector x € R". Let R, be the family of nonnegative real numbers. If A is a matrix, its trace norm is
denoted by |A| = 4/ trace(ATA). Let T > 0. Let C([-1, 0]; R") be the family of continuous functions from
[-7, O] to R™ with supremum norm ||| = sup_;<g<o|®(0)|, which is a Banach space. Let (Q, 7, {F}-0, P) be a
complete probability space with a filtration {#};.¢ satisfying the usual conditions (i.e., it is increasing and
right continuous while ¥, contains all P-null sets). Let p > 1 and L7’_3[([—T, 0]; R") be the family of #;-mea-
surable C([-T, O], R")-valued random variables ¢ such that E||p|P < co.Let W(t) = (Wi(t), ..., Wy(t))T be an
m-dimensional Brownian motion defined on the probability space. Let p = {p(t), t > 0} be a stationary and
R"-valued Poisson point process. Then, for A € B(R" — {0}), here B(R" — {0}) denotes the Borel o-field on
R" - {0}, and we define the Poisson counting measure N associated with p by

N((0, t] x A) = ) Ix(p(s)).

O<s<t

For simplicity, we denote N(t, A) = N((0, t] x A). It is well known that there exists a o-finite measure 7,
such that

exp(—m(A)t)(m(A)t)" .
n!

E[N(t, A)] = n(A)t, PWN(t,A)=n)=

This measure 7 is called the Lévy measure. Moreover, by Doob-Meyer’s decomposition theorem, there exists

a unique {F};0-adapted martingale N(t, A) and a unique {#3}:»0-adapted natural increasing process N(t, A)
such that
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N(t,A) = N(t, A) + N(t, A), t>O.

Here, N(t, A) is called the compensated Lévy jumps and N(t, A) = n(A)t is called the compensator.
Letr(t), t > 0, be a right-continuous Markovian chain on the probability space taking values in a finite

state space S = {1, 2,...,N} with generator I' = (1;;)n«xy given by

yil.A + o(Q), ifi+j;

Pir(t+8) = jir®) = 13 = {1 FyA + o), ifi=j
1 4 -

Here, A > 0 and ¥ 20, i # j, is the transition rate of the Markovian chain from i to j, while y; = -3, Vi

We assume that the Markovian chain, Brownian motion, and Lévy jumps are independent. For Z € B8(R" - {0}),
m(Z) < oo, consider a nonlinear neutral SFDE with Markovian switching and Lévy jump,

dix(t) — G(x;, r(t)] = f(xe, x(@), t, r())dt + g(x, x(b), t, r(£))dW(t)
+ Ih(x,_,x(t—), t, r(t-), VN(dt, dv), @
A

with the initial data xo = & € C([-1, 0]; R"). Here, G: C([-1,0]; R") x S — R", f: C([-7,0]; R") x

R"xR, xS >R g:C(-1,0]; R") x R" x R, xS — R™™ h:C([-7,0]; R") x R" xR, x S x Z — R",

and for 0 € [-T, 0], x,(6) = x(t + 0). Now we denote by C12([-T, co) x R"; R,) the family of all continuous

nonnegative function V(t, x) defined on[-T, co) x R", such that they are continuously twice differentiable

in x and once in t. Given V € CL([-1, 0o) x R"; R,), define the function LV : R, x C([-T, 0]; R*) — R by
LV (¢, ) = Vi(t, 9(0) - G(o, r(1))) + Vi(t, 9(0) - G(o, r(O))f (@, ¢(0), t, r(t))

+ %trace [7(@, 9(0), t, r(t))Vi(t, 9(0) — G(p, r(t)))g(p, p(0), t, r(t))]

+ I[V(t, 9(0) - G(o, r(0)) + h(p, p(0), t, r(t), v)) - V(t, 9(0) - G(g, r(O)]a(dv),
z

where

2
Vit x) = %, Vi(t, x) = (avgé 9 ava()t(, X)), Vielt, %) = (76 ;;(;XX))
n Lhady}

Assumption 2.1. (Local Lipschitz condition) For any integer m > 1, there exists a positive constant k,,;, such
that

If((P’ X, t’ l) - f(d)’ Y, t’ l)lz \ |g(§0’ X, t’ l) - g(()b’ Y, t’ l)lz \ j|h(¢’ X, t’ i’ V) - h(¢’ Y, t’ i’ v)|271(dv)
A

< kn(le = @IP + [x =y P,
for any ¢, ¢ € C([-1, 0]; R"), x,y € R* with |lo|| v ¢l V |x] V |yl <m,i € S and any ¢ € R,.
Assumption 2.2. (Contraction condition) For any p > 1, there exists a constant x € (0, 12) such that for
all € C([-1,0]; R"),i €S,
E(|G(p, DIP) < kP sup E(|p(0)[7).

-1<60<0

Assumption 2.3. (Khasminskii-type condition) Let p > 1. There are two functionsV € C?([-7, co) x R"; R,)
and U eC([-1, c0) x R"; R,), a probability measure u(-) on [-7, 0] as well as a positive constant K,
two positive constants ¢, ¢, such that for any (¢, x) € R, x R",

alxP < V(t, x) < olx|?, )
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and for any (¢, ¢) € R, x C([-7, 0]; R™),

-1<6<0

0
LV(t, @) < K[l + sup V(t+6,00) | - Ut 00) + IU(t + 6, p(0)du(d). 3)

Assumption 2.4. For the function V stated in Assumption 2.3 and constant K, we have

[Vi(t, 9(0) — G(o, r(t)))g (e, 9(0), t, ()] < K(l + sup V(t+9, fp(e))),

-1<0<0

I[V(f, 9(0) - G(o, r(D)) + h(p, 9(0), t, (), v)) - V(t, p(0) - G(o, r(O)Fr(dv)

z

-1<6<0

2
< Kz(l + sup V(t+0, (p(9)))
for all (¢, ) € R, x C([-T, O]; R™).

Theorem 2.1. Under Assumptions 2.1-2.4, for any given initial data x, = ¢ € C([-7, O]; R™), there is a unique
global solution x(t) to equation (1) ont € [-1, 0o). Moreover, for any T > 0, the solution has the property that

E sup |V(t, x(t))| < C,e%7,

—r<t<T

where

0
C,=E|V(0, x(0) - G(&,1(0)) + _[U(s, x(s))ds |,

2C, 1-22¢P  [2PK  22+5cK? Wk 22K G
— 4 + | — G=—+—F——""— 4= —.

G = 2E||§1IP +

+ —5———|T, + = ,
a G q ¢ (1 - 2PkP) q ¢ (1 - 2PkP) G

Proof. Similar to [16] Theorem 3.15, there is a unique maximal local solution x(t) on t € [-T, 0), where 7 is
the explosion time. To show that x(t) is actually global, we need to show ¢ = co, a.s. Let ko > 0
be sufficiently large for ||£]| < ko. For each integer k > ko, define the stopping time

o =inf{-t < t<o:|xt)| > ki},
where, as usual, inf@ = co. Clearly, oy is nondecreasing and limy_,,,0x = 0, < 0. This proof can be com-
pleted if ., = co a.s.. By the Itd formula ([17], Lemma 4.4.6),

t

t
V(t, x(t) — G, 1(6))) = V(0, x(0) — G(xo, () + jLV(s, x)ds + I[vx(s, X(s)
0

0

p (4)
- 60t H)E 0 X(), 5, HENIAWES) + [ [ [V(s.x(9) - Gx, 1)
0z
+ h(xs, x(5), s, 1(5), V) = V(s, x(s) — G(xs, r(s))]N(ds, dv).
By (3), we have
t
V(t, x(t) - G(x¢, r(t))) <V (0, x(0) — G(xq, r(0))) + K I(l + sup V(s +0,x(s+ 0)))ds
-1<6<0
0
(5)

t t 0
- IU(S, x(s))d + IIU(S + 0, x(s + 0)du(9)ds
0 0

-T
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t
N j[vx(s, X(5) = G(xs, 1(8))g (e, X(5), 5, 7(5))|AW(S)

tO
4 JI[V(S, X(5) — G(xe, 1(s)) + h(xe, X(5), 5, 1(S), V)
0 Z

— V(s, x(s) - G(xs, (s)))]N(ds, dv).

By the Fubini theorem, we have

t 0 0 t
j I Us + 6, x(s + 6))du(6)ds = f [IU(S 10, x(s + 9))ds)dy(9)

0 -1 -T\ 0

(6)
0 t t
< J[ Ucs, x(s))ds)d;u(@) < IU(S, x(s))ds.

“T\-T

Substituting (6) into (5) yields

-1<0<0

t

V(t, x(t) - Gx, 1) <C + K I(l + sup V(s +0,x(s+ 9)))ds
0

4

Vi(s, x(s) — G(xs, 1(5)))g (xs, X(5), s, 7(s))dW(s)

+

O S~ O C— ~

j[V(s, X(5) = G(, 7(5)) + h(xs, X(5), 5, 7(5), V)
A

— V(s, x(s) — G(xs, r(s))]N(ds, dv),

~ 0

where C = V(0, x(0) — G(xq, r(0))) + _[ U(s, x(s))ds. This implies that for any k > ko, t < T, where T is an
-T

arbitrary positive constant,

V(t A O, X(t A 0y) — G(x[,\gk, r(t A Uk)))

tAOk tAOK
<C+K I (1 + sup V(s +0,x(s+ 9)))ds + I Vi(s, x(s) = G(xs, r(5)))g(xs, X(S), S, r(s))dW(s)
-1<6<0
0 0
tAOK
+ f j[V(s, X(s) = GOxe, 7(5)) + h(xs, X(5), 5, 7(s), V) — Vs, X(5) — G(xey ()N (s, dv) |.
0 z

Taking upper bound and expectation on the above inequality, we obtain

E sup V(t A 0 x(t A 61) = G(Xeng (E A 01)))
o<t<T
tAOK

< C+K sup 1+ sup V(s +0,x(s + 0)))ds
o<t<T o -1<60<0

0<t<T

t
+ E sup Il[o,ok](S)W(s, x(s) — G(xs, r(5)))g(Xs, X(5), S, r(s))AW(s) 7
0

0<t<T

t
+ E sup II[O,Uk](s)I[V(s, x(s) — G(xs, r(s)) + h(xs, x(s), s, r(s), v))
0 z

- V(s, x(s) — G(xs, r(s))]N(ds, dv)]|.
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By the Burkhdélder-Davis-Gundy inequality ([5], Theorem 1.7.3) and Assumption 2.4,

o<t<T

E sup jl[o,ok](S)Vx(S,X(S) = G(Xs, 1(5)))g (X5, X(5), 5, 1(5))dW(s)
0

1
2

T
< \/32E _[I[o,ak](S)M(s,X(S) - G(xs, 1(5)))g(Xs, X(8), s, 1(s))|*ds
0

1

< /32KE

2 2
[1 + sup V(sAor+0,x(snhox+0)]| ds
-1<6<0

1

2
[1 + sup V(t A oy, x(t A ok))] ds

~T<t<s

8
< 32KE ®)

O e N O —

IN

J32KE [l + sup V(tA o, x(t A ok))] I [1 + sup V(tA o, x(t A oy))|ds

—r<t<T —T<t<s

. all - 2P E(

g 1+ sup V(tA oy, x(t A ok)))

-T<t<T

D+4 -~ 12
_HeR? I 1+ sup V(tA o, x(t A op))|ds
a(l - 2PxP) —T<t<s

By Assumption 2.4, similar to (8) and [5], Theorem 1.7.3,

E sup
0<t<T

t
II[O,akJ(S)J-(V(Sy x(s) = G(xs, 7(5)) + h(xs, x(s), 5, 1(s), v)) — V(s, x(s) — G(xs, r(s))))N(ds, dv)
0 VA

1
2

IN

T
@E[Jl[o,ok](s)le(S, x(8) = G(xs, 1(8)) + h(xs, x(s), s, 1(8), v)) = V(s, x(5) - G(xs, Y(S)))Izﬂ(dv)ds]
0 A
1 9
T 2
J32K| E J‘(l + sup V(sA g+ 0,x(s Aoy + 0))2)ds]
0

IN

-1<6<0

Gl - 2P E(

2p+1C2

T

2pt 4C2I<2

1+ sup V(A g, x(tAO)) |+ EJ 1+ sup V(tA oy, x(t A oy)) |ds
—1<t<T q(1 - 2°kP) o —T<t<s

Substituting (8) and (9) into (7),

E sup V(t A 0k, x(t A 0k) = G(X¢ngy, T(E A 01)))
0<t<T

<C+|K+ —2 20k J 1+ sup V(tA oy, x(t A oy)) |ds
- a(l - 2PP) —T<t<s © , (10)

p QA =20 pfy sup V(t A o, x(t A 0) |,
2pC2

—r<t<T

0
where C; = E(V(O, x(©0) - G(&, roW + [ UGs, x(s))ds).
Recall elementary inequality |a + b|P < 2P~I(|a|P + |b|?) for any p>1,a € R", b€ R", so |alP = >
la + b|? — |b|P. Note the relationship between sup and inf, so by Fatou’s lemma, (2), and Assumptions 2.2-2.3,
we have
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E sup V(t A oy, x(t A 0y) — G(xt,\gk, r(t A ok)))

o<t<T
> qFE sup|x(t A o) — G(x,,\ak, r(t A Uk))llfJ
o<t<T
[ 1
> ¢ =F sup |x(t A 0i)IP + E sup — |G(xt,\ak, r(t A ok))lp

| 2 0<t<T 0<t<T

:C—Esu x(t A 0p)|P — E inf |G(x¢pg,, r(t A 03))|P
| 3 Suplx(t AP - E inf | (Xerae (E A 00)]

FE supx(t A GIP ~ inf EIG(xing r(t A ok>)|P
0<t<T

v
s

LB sup (A a0P - sup EIG(xinqn 1t A 0P
| 2 0<t<T 0<t<T

vV
o

[\
ks

[ 1
——E sup [x(t A o )P — kP sup sup E[x(t A oy + 9)|P]
| 2 0<t<T 0<t<T-1<6<0

[ 1
> a| ——E sup|x(t A )|P — xPE sup sup |x(t A 0 + 6)|P]
zp o<t<T 0<t<T-1<0<0
[ 1
= a| o —E sup [x(t A op)|P — KPE sup |x(t A ok)lp]
| 2°7% o<t<T _r<t<T

and

-T<t<s -T<t<s

T
Ej[l + sup V(t A oy, x(t A ok))]ds < Ej[l + ¢ sup |x(t A Uk)lp]ds.
0

Substituting (11) and (12) into (10) gives

o<t<T —-1<t<T

p+5 2 — JQPyp
<C+|K+ _2Tok" J- 1+ ¢ sup [x(t A gIP |ds + ad - 2x?)
a(l - 2PxP) ~T<t<s 2Pc,

cl[%E sup |x(t A op)|P — kPE sup |x(t A ok)lp]

+ 61(2i - K”)E sup [x(¢ A gi)fP.

—r<t<T
By (13), we have

1
CI(F - KP)E sup |x(t A gp)|P

—T<t<T

T
D+5 - 172 D+502 K2
< v g« e 209 g, |k 200K EI sup |x(t A 6)IPds
2r-1 a(l — 2PkP) a(l — 2PkP) —T<t<s
0

— JPyb
, G -2wn) ( )E sup |x(t A o).
zpcz 2p —-7<t<T

So,

ZLE sup x(t A )P <G + Z—Ells‘IIP +

—r<t<T

p+5 2 — JQPyp
K+ 2P0 K T4 a(l — 2PkP)
a(1 - 2PxP) 2Pc,

T

p+5, 2

+ [K + i]EJ‘ sup |x(t A oy)|Pds.
a(l - 2PkP) —T<t<s

— 695

(11)

(12)

(13)

(14)
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That is,
T
E sup |x(t A op)lP < G+ G| E sup |x(t A gy)|Pds,

-T<t<T —T<t<s
0

where

P — JPyP P P45 12 »
G = 2By + 2 122 2K, 2TAl ]T, LS

+
(¢] G (¢} C12(1 - Zpr) G
By the Gronwall inequality ([18] Lemma 2), we therefore obtain

E sup |x(t A G)IP < Ge%T.
—r<t<T

So

kPP(or < t) < E|x(t A 0P < E sup |x(t A gp)|P < GeST.
-1<t<T

DE GRUYTER

25K}

c2(1 - 2Py’

(15)

Let k — +c0, then limy_,,P(ox < t) = 0, and hence, P(o,, <t) =0 and P(0,, >t)=1. Since T>t > -1

and T is arbitrary, we must have that g, = co a.s. By (2) and (15), we have

E sup |V(t A o, x(t A 0y))| < 9eC3T.
—r<t<T (&}

Letting k — oo in (16) yields

E sup |V(t, x())| < geC3T.
—r<t<T (6]

The proof is therefore completed.

(16)

17)

O

Remark 2.1. From (15), we see that the pth moment will grow at most exponentially with exponent G;.

That is,

limsup%logE|x(t)|1‘J <G.

t—oo

Pk 2WSK2c3
Here, G =" + ——- 2,
s -3 q cf(1 - 2vrxP)

The next theorem shows that the pth exponential estimations implies the almost surely asymptotic

estimations, and we give an upper bound for the sample Lyapunov exponent.

Theorem 2.2. Under Assumptions 2.1-2.4, for any given initial data xo = ¢ € C([-T,

8122
limsupllog|x(t)| < 2z, ZZL
tooo T a Q- 4x?)

That is, the sample Lyapunov exponent of the solution should not be greater than Z?k +
1

Proof. For eachn =1, 2,---, it follows from (15) (taking p = 2) that
E sup |x() < B.e,

n-1<t<n
4C; | 1-2 4K 290K? 4k K%
wher =2E|EP + =2+ — + | = n,and y = — + .
ere ﬁ" ISl a e a -4 |7 and y a cf(1 - 4x?)

Chebyshev inequality, it follows that

P{w : osup |x(O)P > e(Y*’-‘)”} < B

n-1<t<n

0]; R™), we have

(18)

28K2c3
cf(1-4x?)"

Hence, for any € > 0, by the
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. —en 2, 40 1-4 4K 20K? _en ) .
Since } B, " < 2E||* + ot o |t 7ae Yne® < oo, by the Borel-Cantelli Lemma,

we deduce that there exists an integer ny such that

sup [x(t)P < e+ as. n > n.
n-1<t<n

Thus, for almost all w € Q, ifn - 1<t <nandn > ng, then

1 1 y +¢en
=loglx()] = = log|x(t)]* < 19
; glx ()l > glx ()l 2 1) 19)
Taking the limsup in (19) leads to an almost surely exponential estimate, that is,
limsup1 log|x(t)] < % a.s.
t—oo
The required assertion (18) follows because € > 0 is arbitrary. O

3 Neutral SDDEs with variable delays

We now turn to considering neutral stochastic differential delay equations (SDDEs) with Markovian
switching and Lévy jumps where the delays are time-dependent variables. That is, we consider the fol-
lowing equation.

dix(t) - Gx(t - 8(6)), r©)] = FOx(t - 8, x(O), £, r(O)de + FCx(t — 88, x(0), £, r(O)AW(E)
+ jﬁ(x(t = 8()-), x(t), £, 1(t-), VIN(E, dv), (20)
A

on t > 0 with the initial data xo = & € C([-T, O]; R"), where § : R, —» [0, 7], G: R"xS - R", f : R" x
R'"xR,xS—> R, g:R"xR'xR, xS — R™" and h : R" x R" x R, x S x Z — R" are all Borel measur-
able. [7,9] have established the Khasminskii-type theorems for SDDEs with constant delay. But these results
could not be applied to the SDDEs where the delay is time-variable. If we define f: C([-t, 0]; R") x R"
xR, xS—>R", g:C(-1,0; RYXR"xXR, xS —>R™,  h:C(-1,0]; R") xR" xR, xSxZ— R",
and G : C([-T,0]; R") x S — R" by

Go, 1)) = G(p(=6(t)), (1)),  f(p, p(0), t, 1)) = f (p(=8(£), P(0), t, r(t)),
g((p’ ‘P(O), t’ r(t)) = g((p(_a(t))’ ‘P(O)’ t’ r(t))’ h((p’ ‘P(O)a t’ r(t)’ V) = H(¢(_5(t))’ (P(O)’ t’ T(t), V),

then we can apply the theory established in the previous sections to this neutral SDDE with Markovian
switching. Let us proceed in this way to see what we can obtain. First, we can transfer Assumption 2.1 into
the following one.

Assumption 3.1. For each integer m > 1, there is a positive constant k;, such that

F,x, t, 1) - f(F, %, t, DR v Ig(y, x, t,1) — g7, %, t, D v I|ﬁ(y, x,t,1,v) = h(y, X, t, i, v)Pa(dv)
(21)
VA

< kn(ly =y + Ix - X,

for those y, x, ¥, X € R" with |y| vV |[x|] V |y| V |X| < mand any t € R,.

The following assumption is corresponding to Assumption 2.2.
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Assumption 3.2. (Contraction condition) For any p > 1, there exists a constant x € (0, 12) such that for
all p € C([-7,0]; R"),i €S,

E|G(p(-6(6)), DI < kP[Elp(0)|P + Elp(-8(t)I7].

Comparing with Assumption 2.3, we can obtain the following. For V € CL([-T, 00) x R"; R,),
the operator LV : R, x C([-T, 0]; R") — R takes the form as follows:

LV (t, @) = LV (p(-6(t)), 9(0), t, r(t)),
where LV : R" x R" x R, x § — R is defined by

LV()’, X, ta l) = ‘/[(t’ X = G()’, l)) + Vx(t7 X = G_()’, l))f(y’ X, t’ l)
+ S trace[g(y. x, & DVl X - GO, )80 x, £, D]
+ I[V(t, x - Gy, D) + h(y, x, t,i,v) = V(t, x = G(y, )]n(dv).
7z

And clearly, (3) should become
0
LV(t, @) < K[1 + V(¢t, p(0)) + V(t - 6(t), p(=6(t)))] - U(t, p(0)) + IU(t + 0, p(0))du),  (22)
with

0
IU(t + 6, 9(0)du(8) = U(t - 6(t), p(=6(1))).

-T

This implies that u(-) should be a point probability measure at —§(¢t), which means u(-) is a t-dependent
probability measure. However, the theory established in the previous section requires essentially that it is
t-independent. This forces the function U = 0 in order for the previous theory to be applicable. So the
condition corresponding to (3) is as follows.

Assumption 3.3. There is a function V € C»%([-1, co) x R"; R,) and a positive constant K such that V obeys
(2) and for all (x,y,t,i) €e R" x R" x R, x S,

LV(y,x,t, i) <K[1+ V(t,x) + V(t - 6(),y). (23)

The condition corresponding to Assumption 2.4 is as follows.

Assumption 3.4. For the function V stated in Assumption 3.2 and constant K, we have

|Vx(t,X - G()’, l))g(y! X, t7 l)l < K[l + V(t7 X) + V(t - S(t)s )/)], (24)
2

J.[V(t, x - G(y, 1) + h(y, x, t,1,v)) - V(t,x — G(y, D)]n(dv)| < K1+ V(t,x) + V(t-8(), )], (25)
z

for all (¢, ) € R, x C([-T, 0]; R™).
By Theorem 2.1, we can obtain the following result.

Theorem 3.1. Under Assumptions 3.1-3.4, we obtain that for any initial data xo = ¢ € C([-1, 0]; R"), there
is a unique global solution x(t) to equation (20) ont € [-T, c0).
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Assumption 3.5. For any ¢ > 0, assume that §(t) is differentiable and obeys

4® <6<, (26)
de

where § is a constant. Assume also that there is a function V € C%2([-1, 00) x R"; R,) and a positive
constant K such that V obeys (2) and for all (x, y, t,i) € R" x R" x R, x S,

LV(y,x, t,1) <K[1+ V(t,x) + V(t - 61),y)] - Ult,x) + A - U - 6(@), y). (27)

Now we could give an alternative Khasminskii-type theorem for the neutral SDDE (20) by removing
Assumption 3.4 as follows.

Theorem 3.2. Under Assumptions 3.1, 3.2, and 3.5. For any initial data xo, = ¢ € C([-7, O]; R"), there is
a unique global solution x(t) to equation (3.1) on t € [-T, 00).

Proof. For any initial data xo = ¢ € C([-7, 0]; R"), under Assumption 3.1 (the local Lipschitz condition), by
the standard truncation technique, there is a unique maximal local solution x(t) to equation (20) on
t € [-1, 0), where 0 is the explosion time. The following proof is similar to Theorem 2.1, so here we just
give the key steps. In the following, we will follow the notations of the proof of Theorem 2.1. Define

hi(t) = E(Ix(t A 0) = GX(t A ax = 8(6) A 01, 1t A G))IP),
H(t) = sup Iu(s), h(t) = E(Ix(t A 0)IP),  Hi(t) = sup h(s).

O<s<t -T<Ss<t
Recall the elementary inequality: for p > 1, x, y € R", k € (0, 1), then
P+ ylP <@ - KPxP + Kyl
For t > 0, by Assumption 3.2,
Ex(OF < (1 - ©)'PEIx(8) = G(x(t = 8(1)), r(O)F + k' PE|G(x(t - 8(1)), r(D)IP

< (1 - 10)PE|x(t) = G(x(t = 6(t)), r(t))|P + kE|x(t)|P + kE|x(t — 6(t))|P
<1 - K PE|x(t) — G(x(t - 8(t)), r(t)|P + 2x sup E|x(s)|.

-T<S<t
Replacing t by t A gy gives h(t) < (1 - KOVPh(t) + 2kH(t) on t > 0. So
Hi(t) < sup E|E(s)IP + sup h(s) < E[€]P + (1 - k)" PH(t) + 2kH ().

-1<5<0 O<s<t

Hence,

2 10

B < e T a0 2

ont>0. (28)

By the It6 formula and Assumption 3.5, we can show for any sufficiently large k and any ¢ > 0,

al(t) < EV(t A 0, x(t A 0) = Gx(t A g — 8(t) A ai), Tt A 0))))

—T<U<S

t
< EV(0, x(0) - G(x(-6(0)), r(0))) + K J [l + 2 sup EV(u A oy, x(u A oy)) |ds
0

tAok
+E I [-U(s, x(5)) + (1 = &)U(s — 8(s), x(s — 6(s)))]ds
0

t
< EV(0, x(0) — G(x(-6(0)), r(0))) + K I[l + 26H;(s)]ds
0

tAOK

+E I [-U(s, x(5)) + (1 — &)U(s — 6(s), x(s — 6(s)))]ds.
0
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But
tAOK tAO—6(tAOK) tAOk
j (1 = $)U(s - 6(s), x(s — 6(s)))ds < j U, x(u))du < j U, x(u))du.
0 -6(0) -T

0
Recall C; = E(V(O, x(0) - G(x(-6(0)), r(0))) + jU(s, x(s))ds], SO

-T

t
() < G + K f [1 + 26H(s)]ds.
0

Hence,
t
(6 < Gy + Kt + 2CZKIHk(s)ds. (29)
0
Plugging (29) into (28),
t
P 2C21( Hk(S)dS
H(t) < E(lIS11P) G+ Kt + -[0 . fort>0.
1-2k g -x)P'1-2) al-x)P1-2x)
By Assumption 3.5 and the Gronwall inequality, we have
2GKt
sup EV(s A o, x(s A 0;)) < oM(t) ex ,
sup EV(s A 0, X(5 A 01) < (O p{cl(l i ZK)}

_ EQIS1P) Ci+ Kt . .
where M(t) = -2t aaToriasao” Noting |x(0y)| = k, so we obtain that

cakPP(oy < t) < GE|x(t A 0)|P < EV(t A O, x(t A 0r)) < OGM(t) exp{ 26Kt }

a1 - ¥)P71(1 - 2%)

Letting k — oo,

lim P(o < t) < lim 21O o 26Kt -0
k—co k—oo GkP a(l - ¥)P71(1 - 2%)
So 0y, = 0o a.s., the proof is finished. |

Next, we present some useful asymptotic moment estimations for the solution of the neutral SDDE (20)
by the following theorem.

Theorem 3.3. Let Assumptions 3.1, 3.2, and 3.5 hold, but (27) is replaced by
-LV(y5 X, t’ l) <a - an(t, X) + a3V(t - S(t)’ )’) - U(t, X) + aU(t - S(t)) y)s (30)

where &y > 0, a;(1 — 8) > a3 > 0 and 1 — § > a > 0. Then for any given initial data x, = ¢ € C([-t, 0]; RY),
the unique global solution x(t) to equation (3.1) has the properties that

limsupEV (t, x(t) — G(x(t - 6(t)), r(t))) < (C + %)e, (31)

t—oo

and

t —
limsup% EU(t, x(t))dt < 10(1(16%6), (32)

t—o0
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where
(0] 0
—_— — — aB—eST ES aegr ES
€ = EV(0, x(0) - Gx(-8(0)), 10)) + 2= Ie V(s x()ds + j e5SU(s, x(s))ds,

€=¢& N &, while & > 0 and & > 0 are the unique roots to the following equations:

e’
0 =—7 33
=5 (33)
and
ae®’”
1= =, 34
1-6 G4
respectively. Moreover, if a; = 0, then
limsup 108EV(, x(¢) ~ Gx(t - 8(e)). 7(6)) < 0, (35)
t— o0
and
_[EU(t, X(©)dt < oo. (36)
0

Proof. Clearly, (30) is stronger than (23). So, for any given initial data xo = £ € C([-T1, 0]; R"), there is a
unique global solution x(t) to equation (20) on [T, c0). By the It6 formula and (30), for any sufficiently
large k and any ¢ > 0, we can obtain

E(ef 9V (t A oy, x(t A 0) — G(x(t A 0 — 8(8) A 0y, Tt A 61)))) — V(0, x(0) — G(x(-8(0)), r(0)))

tAOK

= E | e®[eV(s, x(s) — G(x(s — 6(s)), 1(s))) + LV (x(s - 8(s)), x(5), 5, r(s))]ds
f
0

tAOK

<E I eS[eV (s, x(s) — G(x(s — 6(s)), r(s))) + a1 — LV (s, x(s)) + asV (s — 8(s), x(s — 8(s)))
0

- U(s, x(s)) + aU(s — 6(s), x(s — 6(s)))]ds

tAoK tAok 37)
= ¢E J eV (s, x(s) — G(x(s — 8(s)), r(s)))ds + ;E J e®ds
0 0

tAOKk tAOK

- FE I eV (s, x(s))ds + a3E I eV (s - 8(s), x(s — 6(s)))ds
0 0

tAO) tAOK

_E f e5U(s, x(s))ds + aE I eSU(s — 8(s), x(s — 8(s)))ds.
0 0

We have
tAOK tAOK
j eV (s — 8(s), x(s — 6(s)))ds < e f =8NV (s — 8(s), x(s — 8(s)))ds
0 0
o tAO—6(tA0K)
< 16 ; sl (u, x(u))du (38)
-6(0)
tAok
eeT

3 I eV (u, x(u))du.

-T
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Similarly,
tAOk

tAOK
J eSU(s — 8(s), x(s — 8(s)))ds < 1e ; j U (u, x(uw))du. (39)

0
Substituting (38) and (39) into (37), we can obtain
E(eEth oV (t A g, x(t A 0) — Gx(t A o — 8(t) A a), T(t A G1))))

-T

tAOK

tAOK
<C+ we® (zxz _ e )E J esV (s, x(s))ds — (1 _ e )E J esU(s, x(s))ds

€ - ’ 1-6 !

tAoy
+ ¢E J. eV (s, x(s) — G(x(s - 6(s)), r(s)))ds,
0
where
0

0
_ _ _ ase’’ £s ae®’ £s
C = EV(0, x(0) - G((-8(0)), 10)) + T2 :|.e Vs, x()ds + Je Us, x(s))ds.

However, for € = g A &, by (33) and (34), we can obtain

ET ET
-5 >0 and 1- X _so.
1-6 1-6

So we have
E(eE 00V (t A oy, x(t A 0r) — G(x(t A gy — 8(t) A Gp), T(t A 61))))

tAOk

al:q +€E _[ e®V(s, x(s) - G(x(s - 6(s)), r(s)))ds.
0

<C+

When k — oo, for any t > 0, we have

t
EV(t, x(t) — G(x(t - (1)), r(t))) < Ce & + % + €k Ie“s‘t)V(s, x(s) = G(x(s — 8(s)), r(s)))ds
0

t (40)
<C+ Y i eE J-ef(s‘t)V(s, x(s) - G(x(s — 8(s)), r(s)))ds.
£
0
So by the Gronwall’s inequality,
EV(t, x(t) - G(x(t - 8(1)), r(t))) < [c + ﬁ]elfe’“. (41)
£
Let t — co. Then the assertion (31) was proved.
To show assertion (32), by the It6 formula and (30), we have
t
0< EV(0, x(0) - G(x(-6(0)), r(0))) + it + E I[—an(S, x(s)) + sV (s - 8(s), x(s — 6(s)))]ds
0 (42)

t

+E j[—U(s, x(s)) + aU(s - 6(s), x(s — 6(s)))]ds

0
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t
< EV(0, x(0) — G(x(=5(0)), r(0))) + ayt — IV(s, x(s))ds

0
t

a
i JEU(S, x(s))ds

o

t t
v p j V(s, x(s))ds — E jU(s, x())ds +
-T 0

1

T

0
< EV(0, x(0) — G(x(~5(0)), r(0))) + et + 1?35 IEV(S, x(s))ds
0 t -’
a 44
- fEU(s,x(s))ds _ (1 - 5) 'O[ EUs, x(s))ds.

Dividing both sides by ¢ and then letting t — oo, we obtain assertion (32).
It is not difficult to show that if a; = 0, for any ¢ > 0, then (41) becomes

EV(t, x(t) - G(x(t — 8(1)), r(t))) < Cel=¢ ",

and so assertion (35) follows. Moreover, for all t > O from (42), we have

¢ B 0
jEU(s, x(s)ds < — =0 EV(0, x(0) - G(x(-8(0)), r(0))) + LIEV(S, X(s))ds
! 1-6-«a 1-6-«a !

0
+ ﬁ IEU(s, x(s))ds.

Let t — oo, we obtain assertion (36). The proof is therefore completed. O

4 Examples

Consider the following stochastic differential equation,
d[x(t) — 0.1x(t - 8(t))] = x(t)[a + bx(t — 6(t)) — x(t)?]dt + cx(t)x(t — 5(t))dW(t)
: Jﬂx(t—)x(t _ 8(H)-WN(dt, dv) 43)
zZ

onallt > O with initial data {x(t) : -7 < t < 0} € C([-7, O]; R), where W(t) is an one dimensional Brownian
motion and b and c are all positive constants. Compare (43) with (20), and let G(y, i) = 0.1y, f(y, x, t, i) =
x(a + by - x?), g§(y, x, t,i) = cxy, h(y, x, t,i,v) = Bxyv, V(t, x) = x2, and U(t, x) = x* for (t,x) € R, x R.
In the following, we will verify the conditions of Theorems 3.2 and 3.3. By the elementary inequality
lu + wp? < 2Juf? + 2|w|?, we can show that for any positive constant N, if |x| v || Vv |y| V |y| < N, then

(v, x, t,0) = (7, %, t, DP = |x(a + by — x*) — X(a + by - X)]?
=|bxy - bxy - ()3 - x3) + a(x - x)?
=|b(xy - Xy + Xy — xy) — (x = X)(x + X + x%) + a(x — X)?
< 3Ibl(x = D)y + X(y = PIP + 9(xP* + X + px)|x — X[ + 3a®|x - x|?
<6(bN)*(Jx — x> + |y = ¥I*) + (18N? + 9N* + 3a?)|x - x|?
< max(6b2N?, 18N? + ON* + 3a?)(|x — x> + |y - ¥I?),
18y, x, t,1) - (7, X, t, DP =|oxy — cxyl* = |exy — cxy + cxy — <Xyl < 2°N*(|x = X[ + |y - yI).
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We assume that IZvn(dv) < 0o and jzvzn(dv) < 00, then

Ilﬁ(y, X, t,i,v) = h(y, X, t, 1, v)|’n(dv) = Ilﬁm - Byxv|?n(dv)
z z

=Mw—w+w—wﬂﬁﬂm>

A
=ﬁ%u—ﬂy+w—ﬂmﬂ}%mw
A
< 2B°N? Ivzﬂ(dv)(|x - xP +ly - yP).

VA
Hence, Assumption 3.1 holds true. Obviously, Assumption 3.2 holds true too. Next,

LV(y, x,t,1)=2(x — 0.1y)x(a + by - x?) + (cxy)? + B2 '[[(x - 0.1y + xyv)? — (x - 0.1y)?](dv)
z

= 2ax? + 2bx% — 2x* — 0.2axy — 0.2bxy? + 0.2 + (cxy)? + B2 I(szy - 0.2xy%)vr(dv)
Z

A R
z
=2ax? + 2’| b + B? Jvn(dv) - 2x* - 0.2axy + 0.2% — 0.2xy2[b + B2 J-vn(dv)}
z z
+ (y)?| 2 + B? J‘vzﬂ(dv)}
z
<2ax? + 2%y b + B2 J‘vn(dv)} - 1.9x% - 0.2axy - O.2xy2[b + B2 Ivn(dv)]
Z Z
+ (y)?[ 0.1 + ¢ + B2 J‘vzn(dv)}
z
2 2
< 2ax? + 0.4x% + 2.5y2[b + B? Ivn(dv)] - 1.9x* + 0.1a’x? + 0.1y? + 0.02x*| b + B2 Ivn(dv)]
Z Z

2
+ 0.5y* + 0.5x* + O.Sy‘*[o.l +c2+ p? J‘vzn(dv)}
Z

2 2
=|2a + 0.1a* + 0.02[b + B2 Ivn(dv)] X%+ 2.5[b + B2 Ivn(dv)) + 0.1 |y? - x*

z z

2
+[0.5+ 0.5(0.1 + 2+ B2 Ivzn(dv)] yA.

A
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2 —
Assume 6(-) obeys (26) and let 0.5 + 0.5(0.1 +cr+ ﬁzfzvzﬂ(dv)) < 1- 68, then by Theorem 3.2, for any
initial data xo = £ € C([-T, O]; R"), there is a unique global solution x(t) to equation (43) on t € [-T, c0).
If we further assume that
2
2a + 0.1a% + 0.02| b + szvn(dv) <0
z
and
2 2

2a + 0.1a + 0.02| b + szvn(dv) b-1)>25b+ ﬁz_[vn(dv) +0.1,
Z zZ

then by Theorem 3.3, we obtain that for any given initial data xo = £ € C([-T1, O]; R), the unique global
solution x(t) to equation (43) has the properties that

limsup% log Ee(t) — 0.1x(t — 8(6)))2 < 0

t—oo

and

IEX“(t)dt < oo,
0

5 Conclusion

In this paper, first, we obtained the existence and uniqueness theorems for SFDEs with Markovian switch-
ing, jump term, and neutral term under local Lipschitz condition and Khasminskii-type condition. Second,
we considered the neutral stochastic differential delay equation with variable delays and proved similar
results under some new conditions. Finally, we provided one example and verified whether the coefficients
satisfied assumptions of Theorem 3.1, and so the equation had a unique global solution.
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