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Abstract: The Picard iteration method is used to study the existence and uniqueness of solutions for the
stochastic Volterra-Levin equation with variable delays. Several sufficient conditions are specified to ensure
that the equation has a unique solution. First, the stochastic Volterra-Levin equation is transformed into an
integral equation. Then, to obtain the solution of the integral equation, the successive approximation
sequences are constructed, and the existence and uniqueness of solutions for the stochastic Volterra-
Levin equation are derived by the convergence of the sequences. Finally, two examples are given to
demonstrate the validity of the theoretical results.

Keywords: stochastic Volterra-Levin equations, variable delays, existence, uniqueness

MSC 2020: 34K50, 60H10

1 Introduction

As stochastic modeling is used in the fields such as physics, economics, chemistry, and scholars have paid
more and more attention to stochastic differential equations. Therefore, the existence and uniqueness of
solutions of the equation have become a hot topic in recent years. The Volterra equation is a significant
differential equation, which has been applied to the circulating fuel nuclear reactor, the neural networks,
the population projection and others. In 1928, Volterra [1] first proposed the Volterra equation, i.e.,

t
X(t) = - jp(s ~ B s)ds, M

t-L

and Levin [2] obtained the asymptotical stability of (1). Burton investigated the stability of equation (1) by
the contraction mapping principle in [3]. Zhao and Yuan [4] considered 3/2-stability of a generalized
Volterra-Levin equation. The discrete Volterra equation describing the evolutionary process of the popula-
tion was recently investigated in [5].

To analyze the Volterra equation, Levin [2] used the limited condition that is pretty hard to be checked

in practical application, lim|x|ﬂoo_|‘;f(x)dx = 00, and the author also required that the function p(t) has

good properties, such as d—’t’ <0,% > 0and djftgt) < 0 for any t € (0, +00). Although the conditions of f(x)

d >de T
were simplified by averages in [3], there were still more requirements for the function f(x). In this paper, the

constrains of f(x) and p(t) will be weaken in the stochastic Volterra-Levin equation with variable delays.
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Let {Q, ¥, P} be a complete probability space equipped with some filtration {F};»¢ satisfying the usual
conditions, that the filtration is right continuous and {#,} contains all P-null sets. Let {WW(t), t > 0} denote a
standard Brownian motion defined on {Q, ¥, P}. We investigate the existence and uniqueness of solutions
for the stochastic Volterra-Levin equations with variable delays, i.e.,

t

dx(t) = - IP(S - Of (x(s — a(s)))ds [dt + g(x(t - B)HAW(D), te[0,T],
t-L

x(s) = p(s) € C([-L - 1, 0]; R).

)

where f(x) and g(x) are known functions satisfying certain conditions, the constant L > 0, p(s) €
C([-L, T]; R), and R = (—o00, +00), a(t) and fB(t) are the variable delays, satisfying a(t), S(t) € [0, T].

Scholars have become increasingly interested in the stochastic Volterra-Levin equations. The equation
has been applied to many special research fields, such as the population model of spatial heterogeneity [6],
the predator-prey model [7], and the nonautonomous competitive model [8]. After reviewing and sorting
out the literature, it is found that most scholars currently use the principle of contraction mapping to
explore the equation. For example, Luo [9] analyzed the exponential stability of the classical stochastic
Volterra-Levin equations. Zhao et al. [10] investigated the mean square asymptotic stability of the general-
ized stochastic Volterra-Levin equations, which improved the results in [9]. Li and Xu [11] demonstrated the
existence and global attractiveness of periodic solutions for impulsive stochastic Volterra-Levin equations.
In this paper, the Picard iteration method is directly used to prove the existence and uniqueness of solutions
of the stochastic Volterra-Levin equations with variable delays, which can give a more intuitive approx-
imate solution. Recently, for the case without delay, Jaber [12] proved the weak existence and uniqueness of
affine stochastic Volterra equations. Dung [13] revealed It6 differential representation of the stochastic
Volterra integral equations. For the case of constant delay, Guo and Zhu [14] used this approximate method
to prove the existence of solutions of stochastic Volterra-Levin equations. Some delay Volterra integral
problems on a half-line were analyzed in [15]. The qualitative properties of solutions of nonlinear Volterra
equations without random disturbance were investigated in [16]. However, there are only a few results of
the stochastic Volterra equations with variable delay.

Generally, a time delay is inevitable and variable in practical application, and the future state of an
existing system depends not only on the current state of the systems but also on the past [17-19]. When the
function f(x) = x in equation (2), Benhadri and Zeghdoudi [20] applied the variable delays to the Volterra-
Levin equation with Poisson jump and obtained the mean square stability by the fixed-point theory. The
authors in [5] discussed the linear discrete Volterra equation with infinite delay when the function g(x) = 0,
which means there are not any random noises. In this paper, we will investigate the Volterra-Levin equation
with the variable delays and the standard Brownian motion in more general conditions. Moreover, the
Picard successive approximation method is used to prove the existence and uniqueness of the solution in
some sufficient conditions. Compared with [2] and [3], these conditions are easier to be verified.

The rest of this paper is organized as follows. In Section 2, some necessary conditions and lemmas are
established. In Section 3, the existence and uniqueness of solutions are proved. In Section 4, two examples
are given to demonstrate the validity of the main results.

2 Assumptions and lemmas

To obtain the existence and uniqueness of the solutions for equation (2), the following assumptions are
given in this paper.
(Hy) lim, o' = g > 0.

(H,) g(0) = f(0) = 0, and there exists a constant u > 0, such that @ > U.
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0 0
(H) [ p(s)ds =m >0, [ [p()slds = my > 0 and max_seolp(s)| = m,.
(H4) There is a positive constant K > 0, such that |[f(x) — f(y)| v I1g(x) - g(y)| < K|x — y| for all x,y € R.

2 _ 1 _ 1 9

(Hs) SKZ(TK“ - e T) 4 2mf + (1 - e 2muT)) v (Irm3 + 1 + 2 )emkT < 1.
Remark 2.1. Assumptions H;—H; are some common conditions for studying the Volterra-Levin equations.
For instance, Luo [9] discussed the exponential stability for classical stochastic Volterra-Levin equations on
Assumptions H;—Hs. Zhao et al. [10] studied the mean square asymptotic stability of a class of generalized
nonlinear stochastic Volterra-Levin equations on similar assumptions. Assumption H, is the Lipschitz
condition, which is the core condition for ensuring the existence and uniqueness of solutions for the initial
value problem.

Now, we transform (2) into the following form by using the properties of integrals.

Lemma 2.1. Assuming that H,—Hs are established, equation (2) can be transformed into

. 0 0
x(y= e Jy meee ooy [ o [ rptu - auauds
-L s

( t
I[X(V) - x(v - a(v))ma(v - a(y))e’L ma(u-a(o)du 3
0

.
0 t

v jp(s) jf(x(u ~ a(u)))duds 3)
-L t+s

t ¢ 0 v
'[e_fv ma(u_a(u))duma(v - a(v)) j p(s) j f(x(u - a(u)))duds |dv

0 -L V+s

t t
) _[e_ j mau-atiig (s — B(s))AW(s).

0

{f(X(t)) x(t) £ 0

X , it is obtained that a(t) € C([-t, T]; R*) from Assumptions H; and H,.
B x(t)=0

Proof. Let a(t) =
Using

t 0
jp(s B (x(s — a(s))ds = f PEF(s + ¢ — als + O)ds
L

t-L
0 t+s
_ % I (s) I FO(u — aQu)))duds
G 0

t+s

0
- % jp(s) jf(x(u ~ a(u)duds + mf(x(t - a(t)))
-L t

0 t
_ —% j () I Fx(u — au))duds + ma(t — a()x(¢ — a(t),
)

t+s

Equation (2) can be transformed into

0 t
dx(t) = —-ma(t — a(t))x(t — a(t))dt + d jp(s) Jf(x(u — a(w))duds | + g(x(t — BO)HAW (). 5)

-L t+s
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ma(u-a(u))du

t
The two sides of the aforementioned equation are multiplied by eL , and then integral from 0

to t, using the distribution integral method and the following formula:
t t t
d(x(t)efs ’"”(“‘“(“”d“) _ ol maa g, 0 mace - ayoel, ™y, )

It obtains
‘ d ’ d
J; ma(u-a(u))du _ x(O)eJ; ma(u-a(u))du

x(t)e
t

v ] 0
- I[x(v) - x(v - a(v))]ma(v - a(v))eL matu-a@)iutg [ mau-ats I n(s) t FOcu - a(u)))duds
t+s
0 -L
0

(0]
jp(s) f Fp(u — a(u)))duds
L

0
I ma(u—a(u))du
— €s

@)

t 0

_ I ol maQu=aGdu, ot — a(t) j n(s) t FOu - au)))duds |dt
t+s

0 -L

t t
o o, AW  BeaAW (D).
0

ma(u-a(u))du

Two sides of the aforementioned equality are multiplied by e L , and using

¢ t t s
g st o[ mtcaieg iy g = [el " gtuis - pemawes. @
0 0

We can obtain equation (3). O

Remark 2.2. The method of transforming the stochastic differential equation into the integral equation, has
been widely used. When the function g(x) is independent of the variable x, Luo studied the exponential
stability for a class of stochastic Volterra-Levin equations by using the method in [9]. Zhao et al. investi-
gated the mean square asymptotic of the generalized nonlinear stochastic Volterra-Levin equations [10].
Based on the semigroup of operators, Yang et al. transformed the heat conduction equation into the
fractional Volterra integral equation in [21]. In this lemma, due to the appearance of variable delays,
we need to deal with it more precisely.

3 Existence and uniqueness

Picard iteration is the most commonly used method in the proof of the existence of solutions to the
stochastic equations [20-23]. In this paper, the existence and uniqueness of solutions for equation (2)
are proved by the Picard iteration method. An important characteristic of this method is that it is con-
structive, and the bounds on the difference between iterates and the solutions are easily available. Such
bounds are not only useful for the approximation of solutions but also necessary in the study of qualitative
properties of solutions.

Now, let’s briefly summarize this idea of the Picard iteration method. To obtain the solution for a class

t
of integral equation y(t) =y, + .[Of (1, y(1))drt, Picard successive approximation sequences are constructed

as follows.
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t
ym+1(t) =Yt If(T’ ym(T))dT.
0

If the sequences {y,,(t)} converge uniformly to a continuous function y(t) in some interval J, then we may
past to the limit in both sides of the aforementioned equation to obtain

t t
y(O) = lim y, ,(6) =y + lim If(T, Ym(T))AT =y + _[f(T, y(r))dr.
0 0

So that y(t) is the desired solution.
Theorem 3.1. Suppose that assumptions H;—H; hold, then equation (2) has a unique solution in [0, T].

Proof. The Picard iteration method is used in the proof of this theorem, and using Lemma 2.1, we construct
the Picard iteration sequences.

xQ = @(s), x°(t) = p(0), (0 < t < T),
Xg = (p(S), nz= 1’ (9)
xX"(t) = IFXE) + LYY E) + B + B + V),

where

t 0 0
1) = & Iy e oy jp(s) j fp(u — a(u))duds |,
. -L S t
L) = j[x”*l(v) iy — a@)maw - a@ye | MOy,
0

0 t
) = j () jf(x"*(u ~ a(u)))duds,

-L t+s

t ¢ 0 v

) = —Ie’JV malu-a@iy 0~ a(v)) I () J FO (U — a(u)))duds |dv,
0 -L V+S
t

1@ = - e L g0 - plsy)aws).
0

(1) We first verify the mean square boundness of x"(t)(n = 0), so we only need to prove E supg<<7|x"(t)[?
is bounded.

It is obvious that E|x°(t)|> = E|@(0)]> < +co forn = 0. Suppose E[x"~1(t)|? is bounded, we begin to prove
E|x"(t)]? is bounded. Using the formula (9), it obtains E|x"(¢)]? < SZ?ZOElli"‘l(t)lz.

Using Assumptions H, and Hy, it obtains

2

t
- ~a(u)d
E[ sup |15’1(t)|2] =E| sup |e jo e
0<t<T 0<t<T

° 0
¢(0) - I p(S)I flo(u - a(u)))duds
-L

° (o ’ (10)
< 2E1p(O)F + 28 | [ p(5) [ F(ptu - au))auds
7

< 2E|p(0)] + Zszle[ sup |<p(t)|2] < 400

-L-1<t<0
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and

2
E[ sup II{“(t)IZ] = E[ sup I[x”fl(v) - x" (v — a(v))|ma(v - a(v))e*fv ma@u-a@)du 3

0<t<T 0<t<T

2
t
- —a(u)d

<2E| sup [xi(O)P Ima(v — a())e [ matu-ataug

-L-t<t<T (11)

- t ,
=2E| sup X"NOP|1-e -[0 matuaGox

-L-t<t<T

<21 - e’"KT)ZE[ sup |x"1(t)|2] < +00.
—-L-1<t<T

Further, by using Holder inequality, we obtain

2

E[ sup |Iz'“1(t)|2] < K?E| sup J|p(s)| I [x"Y(u — a(u))|duds
o<t<T o<t<T frs

12
< K2 max |p(s)PE| sup j I X" Y(u - a(u))|duds
se[-L,0]

o<t<T
| —-L t+s

T (12)
< K2 max Ip(PE| sup f I 1w — a(u))|duds

se[-L,0 0<t<T

-L t-L

< K’L* max |p(s)|2E[ sup |x"1(t)|2]
se[-L,0] -L-t<t<T

< KZL“mzz[ sup Elp(s)P? + sup E|x"‘1(t)|2] < +00
-L-1<5<0 0<t<T

and
2

t t
E sup |[7Y(t)? < K%E| sup J-ef-[v ma(u*a(u»duma(v a(v)) J-lp(s)l I [x"Y(u - a(u))|duds |[dv
0<t<T 0o<t<T
0 V+Ss

v 2

t t
< K22 max |p(s)2E| sup Ie_Jv ma("_“(u))d“ma(v —a(v)) I [x"Y(u — a(u))|du |dv
se[-L,0] 0<t<T I
v

t
< K’[? max |p(s)|2E sup je_jv ma-aCOd 1ty — a(v))dv
s€[-L,0 0<t<T )

(13)

Y 2
I a0 o) [ - atuia o

v-L

t
< K? max |p(s)|2E sup |1 - e_Io mal-aoyde
se[-L 0<t<T

2

t ¢ v
X Ie_L ma(u_a(u))d“ma(v - a)) j X" Y(u - a(u))|du | dv

0
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ma(v - a(v)) j X\ — a(u))Pdu |dv

v-L

t t
- —a(u)d
< K2L? max |p(s)PE| sup |e J| matu-atonau
se[-L,0] 0<t<T )

t t
< K’L* max |p(s)PE| sup [x"I(t)]? J.ef-[v ma(u*a(u))duma(v — a(v))dv
se[-L,0] -L-T<t<T o

i t
< KL* max [p(s)PE[ sup |x"-1(t)|2(1 e JO ma(ua(u))du)l
se[-L,0]

—L-t<t<T

< KzL"mzz[ sup E|p(s)]? + sup Elx’”(t)lz] < +00.
-L-1<s<0 o<t<T

From Assumptions H; and H,, we know
2

t t
E sup |[" (0P < E sup je’i e el (en-1(s - B(s))AW (s)
0<t<T 0<t<T
0

t

-2
<K’ supE '[e Ix*X(s - B(s))PPds
o<t<T 0 (14)

[ ¢
<K?sup E (1 - e_ZJo ma(u_a(“))du] sup |x"1(t)|2]

t
ma(u—-a(u))du

0<t<T —L-1<t<T

-L-1<s<0 o<t<T

usE[ sup |@(s)P? + sup |x”‘1(t)|2] < +00.
So,

E[ sup |x”(t)|2] < E[ sup |<p(s)|2] + E[ sup |x"(t)|2]

—-L-1<t<T -L-1<t<0 o<t<T

< 10E|p(0)? + (1 + 101<2m12)E[ sup |(p(s)|2] (15)

-L-1<5<0

+ [10K2Lm? + 5K2 + 10(1 - e‘mKT)](E sup |p(s)? + E sup |x”‘1(t)|2) < +00.

-L-1<s5<0 0<s<T

(2) Verifying the mean square continuity of x™(t)
Suppose ¢ > 0 and r is sufficiently small, we obtain the properties as follows.

4
Elx"(ty + 1) = x*&)P < 5) EI 't + 1) - [ (®)P.
i=0

By It6 integration, we have

t+r 2 0 0 2
B+ 1) @R < | e dn 1} E [0 - [ p(5) [ £(ptu - atauds )
-L S
- 0(r—0),
e 2 [y 2
EI ' + 1) - ()P < Z[e J, mat-awan _ 1] E J‘[x"*(v) — X"y — av))ma(v — a(v))dv
° . (17)

H+r
+ 2E I X" Yv) = x" v - a(v))ma(v - a(v))dv| — 0 (r — 0),

t



776 =—— Shoubo Jin DE GRUYTER

0 t+r+s
B+ 1) - B@P < 28| [1ps)] [ 1F6cu - at))lduds
-L t t+s , (18)
+ 2mE I FOYu — a)ldu| — 0 ¢ - 0),
o
t1+r 4t 0 v 2
B0+ 1)~ B R <2 (e o ™ e | [wen [ o - acopidudsav
0 -L V+S , (19)
t+r 0 v
+ 2F I ma(v - a(v))j ()| I FO\(u — a(u)))ldudsdv | — 0 (r — 0),
4 -T V+S
and
e 2 (6
El Y6+ 1) - 0P < z(e‘ [, matu-acau _ 1) E j o ) m e s agsypaws)
0
t+r ter 2
+2E I el ma- X (15 _ g(s)))dW(s)
" (20)

t
_f“” mauayd ) 2] matu-at 5
<2e Ju -1|E Ie s g2(x™ (s — a(s)))ds
0

t+r
2 J (u-a(w)du

+ 2m’E _[ eﬁ s g2(x™ (s — a(s)))ds - 0 (r — 0).

[

t+r

So E|lx"(t + r) — x"(t)|? < SZ;‘:OE 7Yt + 1) — I Y(4)]2 — 0, the mean square continuity of x"(t) is verified.
(3) This part proves the convergence of sequences {x"(t)}n>o-
By using the similar method of Step (1), we have

2

t t
E sup [x"™1(t) — x"(t)|? < 5E sup I(X"(V) - x"(v)ma(v - a(v))efjv mau-ato)dty,,
0<t<T 0<t<T
0

2

t t
+ 5E sup j(x”(v —a(v)) - x"Yv - a(v))ma(v - a(v))e_-[v malu-a@o)du g,
0<t<T
0

2

0 t
+ 5K’E sup le(s)l I [x"(u — a(u)) — x" Yu - a(u))|du|ds| + 5K*E sup
o<t<T o<t<T

-L t+s

2

t ¢ 0 v

x lj' R I|p(s)| j X — o) — XY — a(u))|du |ds [dv
0 -L V+s

2

t t
+ 5KE sup Ie-[ ma-aI nis _ B(s)) — xn1(s - B(s))IAW(S)

0<t<T
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2

t t
<10E sup |X'(t) — x"Y(¢)PE sup jma(v - a(v))e’fv mau-a@)du g,
0

—L-t<t<T 0st<T
0 2

+ 5K%E| | |p(s)s|dsE sup [x"(t) — x"71(¢t)|
L —L-t<t<T

t 0
+5K%E| sup J‘ef-[v ma('H)((u))duma(v - a(v))dv I |p(s)s|ds sup |x™(t) — x™1(t)|?
o<t<T t>-L-1
0 L

t —ija(u—a(u))du
+5KE sup |e = Ix"(s — B(s)) — x"1(s — B(s))lds
0<t<T
2

0
< M(1 —e™DE sup [x"(t) - x"(t)]? + 5K? I|p(s)s|ds E[ sup [x"(t) — x™ ()]
u

-L-1<t<T o<t<T (21)

-L
0 2

+ 5K°E| sup (1 -e -[0 ma(ua(u))du] |p(s)s|ds sup |x"(t) — x"1(¢)]

0<t<T
-L

+ S5K2E| sup | e?%(t=9ds sup |x"(t) — x""I(t)]?
0<t<T 0 0<t<T

2

0
< 5K? iK(l — ey 4 ) I|p(s)s|ds + sup L(1 — e 2ty [« E sup |x"(t) — x"I(¢)[]2
u

L ost<T <MY 0<t<T

< SKZ[L(l —e Ty 4y 2m? + L(1 - e‘zm"T)]E sup |x"(t) — x|
uK 2mu o<t<T

< 8E sup |x"(t) — x"™I(t)[]2.
0<t<T

_cr2| 21 _ amuT 2,1 0 ompuT
6= SK[“K(l e ™y + 2mf + 2my(l e M )], SO

E sup [x™1(t) - x"(t)]* < M6™.
0<t<T

By Chebyshev inequality, we obtain

Mo
< Mo _

P{ sup [x"1(t) — x"(O)? > 5”/4} < SwE s Mb3.

o<t<T

From Assumption Hs, we have § < 1. By Borel-Cantelli lemma, it follows that there exists a positive

integer ng = no(w) for almost all w € Q, satisfying
sup |x"i(t) — x"(t)| < 674,
o<t<T

for any n > n,.

Next we show that x"(t) are uniformly convergent on [-L - T, +0o]. Since x"(t) = x°(t) + Z;’zl[x"(t) -
xi1(t)] can be regarded as the partial sum of function series x°(t) + Y°,[xi(t) — x""(t)], as well as
SUpo<i<7|xi(t) — xI-1(t)| < 84-D/4(G = 1, 2, ...), it follows that x"(¢) are uniformly convergent on [-L — T, +00]
by using the convergence of constant series Y';°,6¢D/% and Weierstrass’ discriminance.

Let x(t) be the sum function, it obtains the function sequences {x"(t)},-o converge uniformly to x(¢) on
[-L - 1, +00). Considering x™(t) are continuous and F; compatible, we obtain the sum fucntion x(t) that is
also continuous and F; compatible. Using inequality (15), {x"(t)}.so are the Cauchy sequences in L2, so
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Elx"(t) - x()F - 0 (n — oo0).

On the other hand, by inequality (15), we have

10E|p(0)? + (10K?m{ + E[sup__r<s<ol@(s)P’]
E| sup [x(®)P| < . 22
[LTESTI © ] 10e KT — 10K?L*m3 - 5K - 9 2
So by Assumption Hs, it obtains E[sup_;_r<;<7|x(t)[*] < +oo.
(4) This part proves that x(t) is a solution for equation (2)
After simple calculation, we have
t t 2 t 2
E I(x"(v) _ x(vyma(v - atve b ™ @y | < gl sup ey — xop [[ 1 - e S, e
) Ost=<T (23)
- 0 (n—- o0)
and
t . 2
E[ j(x"(v —a()) - x(v - av)))ma(v — a(v))e I ma(u_a(u))dudv} -0 (n— o). (24)
0
Using Hoélder inequality, it follows
0 t 0 t 2
E | [ po) [ rocnu - ayduds - [ pes) [ £xtu - apauds
L t+s -L t+s
0 t 2
< K’E J|p(s)| f [x*(u - a(u)) - x(u — a(u))|du|ds
-L t+s ] (25)
0 o] t
< R I p2(s)ds| E f s jlx"(u — a(w) - x(u — a(u)Pdu|ds
-L | -L | t+s
o3 | ¢
< Le Ipz(s)ds E[ sup |x"(t) - x(t)|2] - 0.
e} o<t<T
By the similar method of Step (3), it obtains
t ¢ 0 v
E Iej malu-a), oy a(v))( I () I FO(u - a(u)))duds)dv
0 -L V+S
t ¢ 0 v 2
- Ief malu- ety ey — a(v))( I p(s) j Fou(u - a(u)))duds}iv (26)
0 -L V+s

0 2
< K{Ilp(s)slds) E[ sup |x"(t) - x(t)lz] -0 (n— co)

0<t<T
-L

and
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t t t t 2

E je‘fs maatOWe (en(s — B(s))AW(s) - je‘fs maee (x(s - B(s))AW(S)
0 0 (27)
K? [ ]
< ——E| sup |x"(t) - x()P| - 0 (n— o).
2mp | ost<t

Taking the limit on both sides on equation (9), it obtains x(t) satisfies equation (2), so x(t) is a solution of
the stochastic differential equation.

(5) This part proves the uniqueness.

Let ¢, = TA\inf{t € [0, T];|x(t)| > n} be the stopping time. Supposing x(¢t) and y(t) are the solutions to
the stochastic differential equation with the same initial value. Obviously, it obtains ¢, T T for n — oo.
Let r, = r\g,, By the similar method of Step (1), we have

o<r<t 0<s<ty

E sup|x(r,) — y(r)l < 8(1 — e™T)E [ sup |x(s) - y(S)Iz]
2

0 T,
+ 4E sup I p(s) j (fOx(u — a(w))) - f(y(u - a(w))))duds| + 4E sup
-L

o<r<t O<r<t
TntS

2

n Tma(u—a(u))du 0 v
x jev ma(v - a(v)) j () j (FOcCu - aQu)) — F(y(u — a(u)))duds |dv
0 -L V+S
2
f - jrn ma(u-a(u))du (28)
+ 4E sup j e ), (g(x(s - B(s))) — g(¥(s — BENAW(S)
<r<t

<[8(1 - e™XT) + 8K2L*m}? + 4K*)E [ sup |x(s) - y(s)|2].

0<s<ty
For n — oo, it obtains E sup,_,|[x(r) — y()? < [8(1 — e™T) + 8K’L*m} + 4K?|E supo<s<(|x(s) — y(s)I?, so

E sup |x(t) — y(®)? < [8(1 - e™T) + 8K2I*m3 + 4K2]E sup |x(t) - y(t)[. (29)
0<t<T 0<t<T

By Assumption Hs, it obtains
2 2
LN KL'm? + LS emKT 2 + KL*m3 + LS emKT < 1,
8 2 10 2

so we have 8(1 — e™KT) + 8K2[*m} + 4K? < 1 by some simple calculations, and it follows E supg<;<7|x(t) —
y(t)[> = 0. Hence, x(t) = y(t) for0 < t < T, the uniqueness of the solution to the stochastic differential equation
is proved. u

Remark 3.1. In the past, the contraction mapping principle has been the main method to prove the
existence and uniqueness of solutions for the stochastic Volterra-Levin equation. However, Theorem 3.1
is proved by the Picard iteration method, which is more intuitive and easier to understand than the other
methods. The preconditions in Theorem 3.1 are simpler than those in [2] and [3]. More importantly, the
Picard iteration method is applied to the case of variable delay, which can increase the application scope of
related problems, especially for the stochastic Volterra-Levin equation.
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4 Examples

Next, we give two examples to illustrate the application of Theorem 1.

Example 4.1. Considering equation (2) with f(x) = g(x) = %, a(t) = () = w—narccot(t) p(s) = s? and
L =1, it becomes

t
_ o X(s - als) x(t - B(6))
dx(t) = f (s - 022 s far + X Eaw. (30)

t-1

Then there exists a unique solution x(t) forany0 <t < T, where T = -601n 22(1).

Proof. By calculation, we have

fx 1 _
(1) llm " —B—ﬁ.

2 f(O) = g(0) = 0, there exists yu = %, such that @ = % > U.
0
3) m= I s%ds = = I_1|s3|ds = % and m, = maxX_<5<0S° = 1.

(4) There is a positive constant K = %, such that |[f(x) - f(y)| V |gx) — g(y)| = %lx —y| < K|x - y| for
all x,y € R.

(5) If T=-60 lnﬂ, then SKZ(HiK(l — ey 4y 2m? + ﬁ(l - e*szT)) ~0.77 <1 and (I@L“mz2 + %Kz + %)
KT = 0,989 < 1. O

So equation (30) satisfies Assumptions H;—Hs, it follows from Theorem 1 that the equation has a unique
solution in [0, T].

Example 4.2. Considering equation (2) with f(x) = %, gx) = g, pis)=1, L=1, at) = %ﬂarccot(t),

and f(t) = éarccot(t), it becomes

t
dx(¢) = - jx(s as)) 4 wclwa). (31)

t-1

Then there exists a unique solution x(¢t) for any 0 < t < T, where T = -20 ln%.

Proof. By calculation, we have

1
(1) hm)Hof(X) =5 =B

(2) f(0) = g(0) = 0, there exists u = 20, such that /% (X) 11) > .

0 0 1
3) m= les =1,m = L|s|ds =3 and m, = max_j<s<ol = 1.
(4) There is a positive constant K = %, such that [f(x) - f(¥)| V |g(x) — g(¥)| < l|x —y|forall x,y € R.
_ 800 2 2 ~muT 2 1 ~2muT 2 2
(5) fT=-20ln— R then 5K (H—K(l — ey 4+ dmf + %(1 - e 2 )) 0.77 <1 and (KL“m + K + B)
e™T =~ 0.965 < 1.

So equation (31) satisfies Assumptions H;—Hs, it follows from Theorem 1 that the equation has a unique
solutions in [0, T]. O
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5 Conclusion

This work studies the existence and uniqueness of solutions for the stochastic Volterra-Levin equation with
variable delays. The Picard iteration approach is utilized as the major technique to obtain the results. The
simpler sufficient conditions for the existence and uniqueness of solutions are constructed as the study’s
key conclusions. Finally, two examples are given to illustrate the validity of the theorem.
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