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Abstract: The aim of this paper is to study the structure of arbitrary split twisted inner derivation triple
systems. We obtain a sufficient condition for the decomposition of arbitrary twisted inner derivation
triple system .7~ which is of the form 7" = U + Y5, 7, _lio) With U a subspace of 7, and any g a well-
described ideal of 7, satisfying {I[g], 7, 1[71]} = {I[g], I[’l]’ 3-} = {9-, I[g], I[U]} = {I[e], 7, I[Tl]}l = {I[g], I[U]’ f}’ =
{7, Loy, I}’ = 0 if [0] # [n]. In particular, a necessary and sufficient condition for the simplicity of the
triple system is given.
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1 Introduction

Split algebras are very active in the research and applications of mathematics and physics. The split
structure of an algebra has an important relationship with quantum theory and deformation. A special
Lie algebra-split Lie algebra was first defined in [1,2], that is, a Lie algebra contains a split Cartan sub-
algebra. In 2008, Calder6n used the techniques of connections of roots to study the decomposition and
simplicity of split Lie algebras with symmetric roots on any dimension and any field, in particular, he
obtained the necessary and sufficient conditions for the simplicity of split Lie algebras in [3]. Since then,
many authors have started the research on the structure of different classes of split algebras. The decom-
position and simplicity of split Leibniz algebras and one of the split Lie color algebras were determined
in [4,5]. In [6,7], Cao studied the structure of split regular Hom-Lie color algebras and split regular Hom-
Leibniz algebras.

Hopkins in 1985 introduced the definition of twisted inner derivation triple system in [8]. The twisted
inner derivation triple systems are generalized Lie triple systems containing Lie triple systems and Jordan
triple systems. It is one of the important fundamental topics in Lie theory to study the structure of split
generalized Lie triple systems, and results of this project are important to the study of many subjects such as
quantum theory, deformation theory, and conformal field theory. In [9], locally finite split Lie triple systems
were introduced and studied. In [10-13], some applications of Lie triple systems were widely studied. In
[14], the author used techniques of connections of roots to study the structure of arbitrary split Lie triple
system with a coherent O-root space. In [15], infinite dimensional simple split Lie triple systems were
studied. The authors extended conclusions of splitting Lie triple systems with a coherent O-root space to
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arbitrary Lie triple systems with no restrictions on their 0-root spaces in [16]. In [17,18], the structures of
arbitrary split Leibniz triple systems and graded Leibniz triple systems were studied. In [19], a necessary
and sufficient condition for the simplicity of a split Lie color triple system was determined. In [20], Calder6n
studied the structure of arbitrary split twisted inner derivation triple system with a coherent O-root space,
that is, those satisfying {7, 79, 7} = 0 and {7, Ty, To} # 0. In this paper, we need to study the structure
of arbitrary split twisted inner derivation triple systems with no restrictions on their 0-root spaces.

In this paper, split twisted inner derivation triple system 7 are considered of arbitrary dimension and
over an arbitrary base field K. The structure of the paper is organized as follows. In Section 2, we give the
preliminaries on split twisted inner derivation triple systems theory. In Section 3, we obtain a sufficient
condition for the decomposition of arbitrary twisted inner derivation triple system 7, which is of the form
I =U+ Z[e]e N /~I[9] with U a subspace of 7, and any Ig a well-described ideal of 7, satisfying
oy 7 Iy = 177 Doy It = oy Iy 73 = oy, 75 Iy’ = 1775 Doy, it = i), Iy 773 = O i [6] # [n].
In Section 4, we obtain a necessary and sufficient condition for the simplicity of the triple system.

2 Preliminaries

First we recall the definitions of Lie triple systems, Jordan triple systems, and twisted inner derivation triple
systems. The following definition is well known from the theory of triple systems.

Definition 2.1. Let 7 be a triple system such that its triple product satisfies:

1) {x,y, z} = €y, x, z}, with € a fixed element in *1,

@ Xy, zt+{y,z,x} +{z,x, ¥} = 0,

(3) {X’ y’ {a’ b’ C}} - {a’ b’ {X’ y’ C}} = {{X’ y’ a}9 b’ C} + {a’ {X’ y’ b}’ C}’

for x,y,z,a,b,c € 7. Then 7 is called Lie triple system if € = -1, and an anti-Lie triple system if € = 1.

Definition 2.2. A triple system .7 is called Jordan triple system if its triple product satisfies:
1) {X9 Y, Z} = {Z’ Vs X},

(2) {X’ Vs {a’ b’ C}} - {as b’ {X’ Y, C}} = {{X’ Vs a}’ b’ C} - {a, {)’, X, b}’ C}’

forx,y,z,a,b,ceT.

Definition 2.3. [8] Let (7, {-,-,-}) be a triple system. We say that 7 is a twisted inner derivation triple
system, if there exists a linear bijection, 7, of order one or two on . := spang{#(x,y) : x,y € 7}, where
Z(x,y) denotes the left multiplication operator in 7, Z(x, y)(z) = {x, y, z}, such that

{X’ )’, {ar b’ C}} - {a’ b’ {X’ y’ C}} = {{X’ )’, a}’ b’ C} + {a’ {X’ y’ b},’ C} (21)
and

oy da, b, c}'Y —{a, b, {x,y, c}'Y = {{x,y, a}, b, ¢} +{a, {x,y, b}, ¢}/ 2.2)

for any x, y, z,a, b, c € 7, where {a, b, c} = 1[%(a, b)](c).

When 7 =1Id, (7, {,-,-}) is called inner derivation triple system. Obviously, Lie triple system and
anti-Lie triple system are inner derivation triple system and twisted inner derivation triple system. If
T2, y) = -Z(x,y), then twisted inner derivation triple systems are Jordan triple systems, and the ternary
algebras considered in [21]. Let us observe that (2.1) means that .¥ = spang{%(x,y) : x,y € J } is a Lie
algebra, the product being

[Z(x,y), Z(a, b)] = Z({x,y, a}, b) + ZL(a, {x,y, b}), 2.3)

and that equations (2.1), (2.2) give 7 is a Lie algebra automorphism of ..
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Due to every l € ¢ is of the form X% (x;, y;), by equation (2.3) we have

[, Z(a, b)] = ¥(a, b) + L(a, T()b), (2.4)
with a, b € 9 and l € .. Particularly, for any x,y € 7

[t2Kx,y), L(a,b)]l = L@ZLx,y)a, b) + L(a, L(x,y)b) (2.5)

or
xy.{a,b, Y —{a, b, {x,y, c}'} ={x,y, a', b, ¢} + {a, {x, y, b}, c}. (2.6)

By acting 7 on both sides of equation (2.5) we obtain

[Zx,y), 1¥%(a, b)] =tL@TZ(x,y)a, b) + T¥(a, L(x,y)b) (2.7)

or
.y, {a, b, 'y —{a, b, {x,y, ¢} = {{x,y,al', b, ¢} +{a, {x,y, b}, c}'. (2.8)

Identities (2.4)—(2.8) play a key role during the study of split twisted inner derivation triple system.
Definition 2.4. Let I be a linear subspace of a twisted inner derivation triple system . If {I, I, I}
+{I,I,I}Y cI, we say that I is a subsystem of . If {{,7,7}+{7,[,7} + {7,797, +{,7,7}
+{7,1, 7} <1, we say that I is an ideal of 7.

Clearly, {7, 7,1} c I implies {7, 7,1} cI.

Definition 2.5. The annihilator of a twisted inner derivation triple system 7 is the set Ann(J) =
xeT :{x,7,7}+{7,x,T}+{7,7,x} =0}

Definition 2.6. [8] The standard embedding of a twisted inner derivation triple system (7, {,-,-}) is
the two-graded algebra A = ¥ @ 7, whose product is given by

xy =2Xx,Y), (2.9)
L, y)z = —zt[L(x, y)] = X, y, 2}, (2.10)
hh = [, L], (2.11)

forany x,y,ze 7,and I, , € Z.

By equation (2.10), we have
oy, 2Y =1L, )z = 22X, y) = -z(xy),
or
z(xy) =zZ(x,y) = —{x,y, 2}
So the following hold for any x,y,z € 7 :

L, y)z ={x,y,z} = )z,
T[g(x’ Y)]Z = {X’ Y, Z}, = —Z(X)/),
z2(x,y)=-{x,y, 2} = z(xy),
zt[ L, y)] = -{x,y, 2} = —(xy)z.
Given an element x of a Lie algebra L, we denote by ad(x) the adjoint mapping defined as

ad(x)(y) = [x, y] for any y € L. The concept of a split Lie algebra and its related content can be seen in [3].

Definition 2.7. [20] Let 7 be a twisted inner derivation triple system, A = ¥ & 7 be its standard embed-
ding, and H be an MASA of Lie algebra .# satisfying T(H) c H. For a linear functional 6 € (H)*, we define
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the root space of 7 (with respect to H) associated with 6 as the subspace Jy:={tge J:
htg = O(h)ty for anyh € H}. The elements 0 € (H)* satisfying Jy + 0 are called roots of 7 with respect
to H and we denote A7 = {0 € (H)*\{0} : Fy # O}.

Let us observe that 7y :={typ € 7 : hty = 0 foranyh € H}, and that for any fy € 99 and h e H,
teh = —1(h)tg = —6(T(h))t.

Next, A? stands for the set of all nonzero 0 € (H)* such that % = {eg € ¥ : [h, eg] = O(h)eg for
any h € H} # 0.

Definition 2.8. [20] Let 7 be a twisted inner derivation triple system, A = ¥ & .7 be its standard embed-
ding, and let H be an MASA of Lie algebra . satisfying 7(H) ¢ H. We shall call that .7 is a split twisted
inner derivation triple system with respect to H if

T =90 | ® Tyl
OeN”

We say that A” is the root system of 7.

Lemma 2.9. Let J be a split twisted inner derivation triple system, for any 0 ¢ A?, then 6r ¢ A
and % = 1(%).

Proof. Given any O # eg € % and h € H, one has [h, 1(ey)] = T([T(h), eg]) = T(6(T(h))eg) = O(T(h))T(eg) =
(6r)(h)1(ey), with T(eg) # 0; therefore, 6t € AY and 7(%) ¢ %,. Thus, for any 0 ¢ AY, one has
(%) c (%), as 0t € AZ, we have %, = 1(%). O

Lemma 2.10. Let 7 be a split twisted inner derivation triple system with a standard embedding A = ¥ & 7.
H is an MASA of Lie algebra % satisfying T(H) c H. For any 0,1, { € A’ U {0} and any 8, € AZ U {0},
then the following statements hold:

(1) If 797, # O, then 797 C Lyyr, that is, 6 + nT € A7 U {0}.

(2) If %J4 + 0, then %7y € Ts.9, thatis, 5 + 8 € A7 U {0}.

(3) If 795 # 0, then 9% C T.60, that is, 8 + 6T € A7 U {0}.

4) If[%, %] + 0, then %, L] € Lsie, thatis, § + € € A U {O}.

(5) If{Z9, Ty, T} # O, then{Tg, Ty, T¢} € Tgunrar, thatis, 0 + Nt + { € A7 U {0},

(6) If{T9, Ty, T¢Y # 0, then{Tg, Ty, T¢Y' € Toransg thatis, 6T + 1 + € A7 U {0},

Proof.
(1) For any tg € 79, ty € I, and h € H, by equation (2.4), one has

[h, l‘gtrl] = (htg)t,l + tg(T(h)t,l) =(0+ rl‘l')(h)tetn.

Therefore, 797, C Lo, yr.
(2) For anyes € %, tg € 79, and h € H, we can write

m
h = Zx,yi
i=1
and
n
es = ZZju,-
j=1

with x;, y;, zj, uj € 7. By equations (2.1) and (2.4), one obtains
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h(este) = Y. {Xi» ¥ {25, ), to}}

i=1j=1

m n

= ZZ({{Xi, Yi» Zi}, Uy, to} + 125, X0 v Wi, to} + {25, w, {Xi, i, to}})
i= ] 1
n

= Y {hzj, uj, tg} + Z{z,, T(h)u;, to} + Z{z,, uj, O(h)te}
i

= j=1 j=1

(Z(hz])u, + ZZ,(T(h)u,)]tg + O(Westy
ia

j=1

(Z[h Z]u}])te + B(h)esty
j=1

=[h, esltg + O(h)ests
=(6 + 0)(h)esty.

Therefore, %79 C T5.0.
(3) Consequence of Lemma 2.9 and items (2).
(4) For any es € Z,e. € ¥, and h € H, by Jacobi identity of Lie algebra .#, one obtains [h, [es, e:]] =

les, [h, ec]] + [[h, es], e] = [es5, e(ee] + [6(h)es, e] = (6 + €)(h)|es, e]. Therefore, [, L] € L.
(5) Consequence of items (1) and (2).
(6) Consequence of items (1) and (2), and Lemma 2.9. O

We noted that the facts H ¢ ¥ = TT and 7 = g & (@gcp” ) imply

=907 + z T0T _or- 2.12)
feN”
Finally, as 7079 ¢ % = H, we have
{70, 70, 7o} = 0. (2.13)

In [20], Calder6n and Piulestan introduced and studied structures of arbitrary split twisted inner
derivation triple system with a coherent O-root space, that is, those satisfying {7y, 79, 7} =0 and
{Z0, 9, 70} = 0 for any nonzero root and where 7, denotes the 0-root space and .7y the 0-root space.
In this paper, we will study the structures of arbitrary inner derivation triple systems with no restrictions on
their 0-root spaces.

Definition 2.11. Let A” be a root system of a split twisted inner derivation triple system .7, if it satisfies
that 8 ¢ A7 implies -0, 6t € A7, we say that A7 is symmetric.
A similar concept applies to the set AZ of nonzero roots of Z.

In the following, 7 denotes a split twisted inner derivation triple system with a symmetric root system
N ,and 7 = Ty ® (@7 7o) the corresponding root decomposition. Using the properties of connections of
roots is an important method to study split twisted inner derivation triple systems. Next, we will give the
definition of connections of roots of a split twisted inner derivation triple system 7

Definition 2.12. Let 6 and 1 be two nonzero roots, we shall say that 6 and 5 are connected if there exists
a family {01, 05, ...,05, O21} € A7 U {0} of roots of J such that

(1) {01, 01+ 07 + 03,0, + 0T + O3+ 0,7 + Os, ...,00 + OsT +---+00T + O} € A7

(2) {01+ 051,01 + 0,7 + 03 + O47, ...,00 + OoT + - +0y7} C AY;

(3) 61=0and 0; + 6,1 + -+ Oy + Oppyq € {21, 2T}

We shall also say that {0y, 65, ...,02, 02,41} is a connection from 6 to 7.
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We denote by
A/ ={n € N7 : 6 and n are connected}.

Clearly, if n € AJ, then -n, +n1 € AJ .

Definition 2.13. Let Q7 be a subset of a root system A7, if it is symmetric, and given 6, n, { € Q7 U {0} such
that 0 + nT € AZ and 0 + nt + { € A7, then 0 + n7 + { € Q7, and we say that Q7 is a root subsystem.

Definition 2.14. Let Q7 be a root subsystem of A”. We define

To.q7 = spang{{Tg, Ty, T¢}: 0+ nT + (= 0; {Tg, Ty, 7¢} : 61 + n + { = 0; where 0,1, Q7 U {0}

< Jo,
and V7 = @gcq7 7. Taking into account the fact that {7, 79, 70} = 0, it is straightforward to verify that

QO/.Q*/‘ = f/.O,Qf [53) VQJ

is a subsystem of 7. We will say that 7~ is a twisted inner derivation triple subsystem associated with
the root subsystem Q7.

Proposition 2.15. If A is symmetric, then the relation ~ in A7, defined by 6 ~ n if and only if n € A], is
of equivalence.

The proof process is similar to Proposition 4.2 in [20].
Proposition 2.16. Let 6 be a nonzero root and suppose N is symmetric. Then Aj is a root subsystem.

The proof process is similar to Lemma 4.5 in [20].

3 Decompositions

In this section, 7 denotes a split twisted inner derivation triple system, we will state a series of previous
results in order to show that for a fixed 6, € A7, the twisted inner derivation triple-subsystem .7, A7, @SSO-

ciated with the root subsystem Ag; is an ideal of 7.

Lemma 3.1. The following assertions hold:

(1) Suppose 0,n € N7, T9F, + 0, then 6 ~ .

(2) Suppose6,n € N”,0 € N?, %7, + 0, then § ~ .

(3) Suppose@,n e N”,0 ¢ N, 7,% + 0, then6 ~ 1.

(4) Suppose0,n € N”,0,n € AN, [ %, %] + 0, then 6 ~ .

(5) Suppose 6,7 € A7 such that 0 is not connected with 7, then 7975 =0, %77 =0 and T7% = 0 if
furthermore 6 € A?. Suppose 0, 7] € A7 such that 6 is not connected with i, [ %y, %] = O if furthermore
0,7 € A7,

Proof.

(1) Suppose 9.7, # 0, by Lemma 2.10 (1), we obtain 6 + 17 € A U{0}.If0 + nT = 0, then 5 = —67 and so
6 ~ n. Suppose 6 + nt # 0, by 6 + nt € A, we find {0, n, -6} is a connection from 6 to n, so 6 ~ 1.

(2) Suppose %7, #+ 0, by Lemma 2.10 (2), we obtain 6 + 1 ¢ N U{0}.If 0 + n = 0, then 6 ~ n. Suppose
0+n#0,by6+nelN,wefind {0, 0, -6 — n} is a connection from 6 to 1, so 6 ~ n.
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(3) Suppose 7,% # 0, by Lemma 2.10 (3), we obtainn + 61 € N U {0} Ifn + 6t = 0, then 6 ~ n. Suppose
n+6r+0,byn+6reA’, wefind {6, 0, -nr - 6} is a connection from 6 to n, so 6 ~ 1.
(4) Suppose[.%), %] # 0, by Lemma 2.10 (4), we obtain 6 + € A” U {0}.If6 + = 0, then & ~ n. Suppose

0+n#+0,by6+neA?, we find {0, nr, -6} is a connection from 6 to 1, so 6 ~ 1.
(5) It is a consequence of items (1), (2), (3), and (4). O

Lemma 3.2. If 0, ] € A7 are not connected, then

(767 -6) = N(1(T9T_¢)) = O

Proof. If 797 ¢, =0 it is clear. One suppose that 797 ¢ + 0 and 7(J97_¢;) #+ 0, one obtains
(90T _6r, L) = N(TT_6:) % # 0. But see equation (2.4), one obtains

[767-0r, 4] = =% Z67-0c] < (%70)T-or + Zo(7( %) T-61).-
By Lemmas 2.9 and 3.1 (5), one obtains %;79 = 1(%;)7_¢, = O, that is, [79.7_¢;, ;] = 0, a contradiction.

Finally, one suppose 79.7_¢, # 0 and f(1(97_¢;)) # O, one obtains [1(F97_g;), %G| = T(1(T9T_6:)) L5 # 0.
But see equation (2.7), one obtains

(17 a0, 4] = [ 7 a0] € T((90) ) 7ar) + T(7 47 )

By Lemmas 2.9 and 3.1 (5), one obtains (1.%;) 7 = %;.7_¢; = 0, that is, [1(79.7_6), %] = 0, a contradic-
tion. O

Lemma 3.3. Fix 6, € A” and suppose \? is symmetric. For 6 € Ay, and n, { € A” U {0}, then the following
assertions hold:

) If{Zg, Ty, T} # O (vesp., {Tg, Ty, T} #0), thenn, {, 0 + nt + { € Ay U {0} (resp., n, {, 0T + 1 + (€
Ag0 u {0}).

Q) If{7y, T9, T} # 0 (resp., {Ty, To, ¢} #0), thenn, {,n+ 01 + (€ Ag’; U {0} (resp., n, {, Nt + 0 + { €
Ag U {0}).

() If{Ty, T¢, To} # O (resp., {Ty, T¢, T} #0), thenn, {, n + {T+ 6 € Ay U{O} (resp.n, {, nT + {+ 6 €
Ay U {0}).

Proof. (1) It is easy to see that 797, # 0 (resp., 7(J97y) # 0), for 0 ¢ A‘g; and n € A U {0}. By Lemma 3.1
(1), one obtains 8 ~ n in the case n # 0. From here, 1 € A;Z U {0}. In order to complete the proof, we will
show {, 6 + nt + { € Ay U {0} (resp., {, 61 + n + { € Ay U {0}). We distinguish two cases.

Case 1. Suppose 0 + nt + { =0 (resp., Ot + n + {=0). It is clear that 0 + n7 + { € Agi u {0} (resp.,
Or+n+{e Ag’; U {0}). If we have {+ O, as 0 + nt = —-{ (resp., 0t + n = —(), {0, 0, nt} would be a con-
nection from 6 to { and we conclude ¢ € Aj U {0}.

Case 2. Suppose 0 + nt + { # O (resp., 87 + n + { + 0). We treat separately two cases.

Suppose 0 + nt + 0 (resp., 6t + n # 0). By Lemma 2.10 (1), we have 6 + n7 € AY and so {6, n, {}
(resp., {6, n, (1}) is a connection from 6 to 6 + nt + { (resp., from O to 6t + n + {). Hence, 6 + nt + { € A’é’;
(resp.,0t + n + (€ A'g’;). In the case { # 0, we have {0, n, -6 — nt - {} (resp., {0, n, -6 — nt — {r}) is a con-
nection from 6 to {. So { € Aj . Hence, { € Aj U {0}.

Suppose 6 + nt = 0 (resp., 6t + n = 0). Then necessarily { € Ag; U {0}. Indeed, if {# 0 and @ is not
connected with {, by Lemma 3.2, {7, 73, ¢} = {(F9T7)T¢ = O (resp., {Zy, Ty, T} = {(1(F6T3) T = 0),
a contradiction. We also have 8 + nt + { = (¢ Ag; U {0} (resp., 0t + n + {= (e Ag; U {0}).

Item (2) can be proved similar to item (1); and item (3) is a consequence of items (1) and (2). O
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Lemma 3.4. Fix 6y € NV and suppose A’ is symmetric. For 6,n,{ € Ay U{0} with 6 +nr+{=0

(resp., 8t + n + { = 0) and 8, € € A7 U {0}, then the following assertions hold:

W) If {0, Tup T}, 75, T3 # 0 (resp., {{To, Ty, T¢Y, T5, Te}' #0), then 8, €, 6T+ ¢ e Mg U{0}
(resp., 8, €, 6 + € € Ay, U {O}).

2 If {T0, Tny T} 75, T # 0 (resp., {{To, Ty, T} 75, Teb # 0), then 6, &, &+eehg ui0}
(resp., 8, €, 6T + £ € Ay U {O}).

B) If {75,{79, T T}, T3 # 0 (resp., {75,170, Ty, ¢}, T} #0), then 6, &, &+¢ee Ay U{0}
(resp., 8, €, 6T + £ € Ay U {O}).

@) If {T5,{T0, Ty, T}, T # 0 (resp., {T5,{79, Typ T¢Y', T} # 0), then 6, &, 6T +¢ e g u{0}
(resp., 8, €, 6 + € € Ay U {O}).

) If {75, Te, {0, Tyy T}y # 0 (vesp., {Ts, Te, 179, Ty, (Y'Y #0), then 8, e, 6+ et e Aj {0}
(resp., 8, €, 6T + € € Ay U {O}).

6) If {Ts5, Te,{T0, Ty T3} # 0 (resp., {Ts, Tes{T9, Ty T}'} #0), then 68, €, 6T +eeAj u{0}
(resp., 8, €, 6 + €T € Ay U {O}).

Proof. (1) Suppose that at least two distinct elements in {6, n, {} are nonzero, since 8 + n7 + { =0,
{70, Z0, o} = 0, and {74, T_g;, To} = 0. Taking into account{J, 7, I¢} # 0,0 + nt # 0, and { + 0. Since

0 i {{(0/‘9’ %’ <0/.(}’ '9.63 '0/.8} C {‘%! <a/.r[; {%’ {0/‘5’ %}} + {'0/.(’ {‘%a 'Oj.rl’ %}I5 '9.8} + {f/.(’ ‘751 {'0/.9’ %, <0/.£}}’
any of the aforementioned three summands is nonzero. Suppose
{'0.9’ %p {'7{’ %1 <6/.£}} #: 0’

as {# 0 and {J¢, T5, 7} #+ 0, Lemma 3.3 (1) shows 6, €, and { + 67 + ¢ are connected with ¢ in the case
of being nonzero roots and so §,&,{+ 0T + € € Ag; U{0}. If {+ 6T + =0, then {+ 0T = —¢ ¢ Ag/;. If
{+ 0t + € # 0, taking into account 0 # {Fy, Ty, {T¢, Ts, Tt} € {T9, Ty T¢+60+e}, Lemma 3.3 (3) gives us
that @ + 7 + { + 67 + € = 87 + € € Ay . Therefore, 6, €, 67 + € € Ay, U {0}.

By Lemma 3.3, we argue similarly if either {7, {79, 73, Ts}', T¢} # O or {T¢, T5,{T9, Ty, T} # 0 tO
obtain 6, &, 6T + € ¢ Ag’; U {0}. Similarly, if one suppose {{7s, 75, ¢}, 75, 7} + 0, one obtains &,
€,6+&¢e g U{O}

Items (2), (3), (4), (5), and (6) can be proved as item (1). O

Definition 3.5. A split twisted inner derivation triple system .7 is said to be simple, if {7, 7, 7} + 0 and
its only ideals are {0} and 7.

Theorem 3.6. Suppose A? is symmetric, the following assertions hold:
(1) For any 0y € 7, the split twisted inner derivation triple subsystem

N

U — 78 T T
7, = o, ® Vag

of 7 associated with the root subsystem Ag’; is an ideal of 7 .
(2) If 7 is simple, then there exists a connection from 0 to 1 for any 6, n € A7 .

Proof. (1) Recall that

Tong = spanx{{ 7o, Ty, T3 : 0+ qT + (=05 {Tp, Ty TtY 1 0T + 1 + { = 0;

0

where 6,1, { € Ag U {0}} c To,
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and V7 := @cepy ;. Obviously,

{9‘,\5;), 7,7} = {fo,Af, T, 3‘} +{Vaz, 7, 7}

One obtains that {7 A7, 70, 70} € {70, 70, 70} = 0. Taking into account {77, 7o, Zo}, for 6 € A7,
if 6 €Az, by Lemma 2.10 (5), one obtains {Zong» 70, Te} c Vaz. 1f 0 ¢ Ag, by Lemma 3.4 (1),

one obtains {7, e J0, 7o} = 0. Hence, {7, e o, ®gen” T o} C ,7/\«;. Similarly, one obtains that

{707 ®0cn” 70, 70} ¢ 7. Next, we will consider that {7 57, 75, 74}, where 6,1 € A7 . We discuss

8-\,

five cases.
(i) If6 € Ay, n € Az, 6T + n = 0, this means that {Zong» 70, Tut € Tong,
(ii) If6 € Ay, n € Ay, 0T + 1+ 0, by Ay is a root subsystem, this means that {3‘0 sy 7os Tn} € Vg
(i) If0 € Ay, n ¢ Ay, satisfy Lemma 3.4 (1), this means that {7, 57 gy 70 T} =
(iv) If n € Ae 0¢ Ag , satisfy Lemma 3.4 (1), this means that {7 A.éf T6, Ty} = 0.
) Ifne Aeo’ 0¢ Ago, satisfy Lemma 3.4 (1), this means that {7, g 76 T, Ty} = 0.

So, one has {,70,\7, ®ocn” 79, Bnen” Ty € T a7 . Therefore, {7, A T, T} C Tpr.

Agy*

c
Next, we will prove that {V,s, 7, 7} ¢ 7). Note that

{eN] e e
_{ GBAQ/-(’%’ 70}+{®{€A'927(’%’ e):%}
{ehg, 0eN”

+ {G)(EAg;j{" @ '%7 3—0} + {QBCEA(;J(’) ®r%) ® e/)'1}
e’ neA”

One obtains that {®&gcp7 ,/(, T, To} C VA/ Next, we will consider {7;, 7, J¢}, for (¢ Ag;, 9e .
We discuss the followmg three cases.
(i) If{e Ay, 6 ¢ Ay, satisfying Lemma 3.3 (1), this means that {7¢, 7o, 7p} = 0

(ii) If{e Ay, 0 € Ay, {+0+0, by Ay is a root subsystem, this means that {77, 7o, 7} C Vaz-

(iii) If {eAy, OeAg, (+6=0, it is clear that {77, 7o, J6} C 7o, Hence, {®ceni 7¢s 7o,
®gen” To} C T, e Similarly, one obtains that {&¢c,7 " T¢s Dgen” 7o, To} € T, A At last, we will consider
{7, To, Ty}, where { € Aeo, 0 ¢ N7 and n € A7. We discuss the following five cases.

(i) f{e Ag,0 €Ay, nelg,+06r+n =0, this means that {7, g, T3} C To.n:

(ii) If{e Ay, 0 € Ag,n ey, +6r+n+0, this means that {7, 7y, T} C Vaz-

(ili) If (e Ay, 0 € Ay, n ¢ Ay, satisfying Lemma 3.3 (1), this means that {7, 75, 73} = 0
(iv) If (€ Ae ,0¢ Aeo, ne A(,O, satisfying Lemma 3.3 (1), this means that {7, J, 7} = 0.
(v) If{ e Ae ,0¢ Aeo, n¢ Aeo, satisfying Lemma 3.3 (1), this means that {7;, 4, 7} = 0
So, one has{ea(gAg;f(, ®oen” 79, Byen” Ty} C EA%.Therefore,{VAg;, T,T}c EA%.Then{fA%, T,T}c ,7',\5;.
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Similarly, one has

{Tonz, 72 T Y ={Tonz, To® (& Tp), Toe (@ Tp)Y
No? %o e N7 e
={Zonip 70 Zo} + FTongy 7o @ T
78 e 7 77U 7 a7, 7Y
+ { 0 AG/O’ 937;/91 0} + { O,A’e/o’ Ee?\TJG’ r]S\'f/n} C JA(;O’
and
(Vij, 7.7} =1 @ 70, T8 (@ Ty), Toe (& T}
%o (ehg) OeA” OeN
:{ @;7‘{,9& 0—~0},+{ & '%’%’ e);%},
el (eAg; 0N
+{® T & T9, T} +{ & Iy, @ Ty, & Ty} C I
{ehg Oen” ehy, Oen” nenN’ 0
Then

By the same argument, Lemmas 3.3 and 3.4 show {7, 77, 7} + {7, Tz, TV + {7, T, T

SN

——
N
NS
N

\
O &

(2) The simplicity of 7 implies .7, A= 7 . Hence, Ag; = A' .

Theorem 3.7. Suppose N? is symmetric. Then for a vector space complement U of
spang{{Zg, 7y, T¢}: 0+ T+ {=0; {T9, Ty, T} : 0T+ + {=0; where 0,n,{ec N U{0}
in 7,, we have

F:U+ Y I
0len” |~

where any Ig) is one of the ideals 77 of 7~ described in Theorem 3.6. Moreover, {Ijg), 7, Iy} = jgy, iy 773 =
7 Doy T} = oy 77> fd" = ey, s 73 =17, Loy, i)' = O ¥ [6] # [n].

Proof. Let us denote ¢,:= spanx{{Jy, 7y, 7¢}: 0+ N1+ {=0; {Fy, Ty, ¢} : 0T + n + {= 0; where
0,n, (e A U {0}} in J,. By Proposition 2.15, we can consider the quotient set A7 /~:= {[0] : 6 € A7}.
By denoting lig) = 757, 0,101 = Jo,a7 and Vig; == V,7, one obtains Ijg) := 7,10 ® V). From

T =TJoe( o T =U+§)e (e T,
OeN” OeN”

it follows Dgep? T = Dg1en” /,_V[g], €0 Z[Q]EA/ %,[9], which implies

y:(U+§O)@(9%%):U+ Y I

0)en” |~

where each Ijg) is an ideal of .7~ by Theorem 3.6.
It is sufficient to show that {Ijg), 7, Iy} = 0 if [8] # [n]. Note that,

{Tep, 7, Iy ={ 70,161 @ Vier 70 @ (@’ 77), o @ Vi)
={J0,161 Z0» Zo,;i} + {70,160 T0» Vini} + {Jo s e’ I (s 0,[7]]}
+ {70,100 ®cer” 72, Vi + Viay 70, Zo,imp + (Vo To, Vigh
+ {Viey @cen 75, To,m} + {Viey cew 77, Vi}-
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Here, it is clear that {Jo 6}, 70, Zo,iq} € {70, Z0» Jo} = 0. If [0] # [n], by Lemmas 3.3 and 3.4, it
is easy to see {7o,0), 70, Vit = 0, {70,101 GB(eA/J(, Vit =0, {Viep, 70, Zo,iqt = 0, {Vep, 7o, Yyt = 0
{Viey ®cen” 7¢, To,imi} = 0, {Viep, &¢en” 77, Vinl} =

Next, we will prove {7 g}, ®;en” 77, %,MJ} =0. In fact, for {Jg, o, To,} € Jo,9) With 64, 0,
03¢ Af U{0}, 61+ 61 +65=0, and for {7y, Ty, Ty} € Toy With n, m,,m5 € Ay U{O}, my + 1,7 +
15 = 0, by the definition of twisted inner derivation triple system, one obtains

{{*0/.913 %2’ '6/.93}’ GB(GA”%, {'5/.711, ‘7712’ E9—;13}}
< {{{76. 76. 70}, ocen 70 T} 7 T} + {70 {700 70 T} 0w 70, 7} 70}
+ {7, 70, {700 Z61 T6,} @0 77, T} }-

By Lemma 3.4, it is easy to see that

for 61, 65,65 € Ay U {0}, 61+ 6,7 + 65 =0, ny, My, 15 € Ay U0}, my + 1,7 + 15 = O, [6] # [n]. In fact, if for
(T To,y To.,} € To,10) With 01, 0, 03 € A7 U {0}, and 6iT + 6, + 65 = 0, or for (T Tnyp T} € To,1q) with
T T M3 € Ay U {0}, and 0,7 + 1, + 15 = 0, one will obtain {70, (6}, ®¢er” 77, To,y1} = O.

Finally, by Lemmas 3.3 and 3.4, we also obtain {7, Ig}, I;} = e}, Iinp» 7} = o), 7, Iy’ = 477, Liey, I’
= {Iop Iy 7' = O. m|

Corollary 3.8. Suppose AZ is symmetric. If Ann(9) =0, and {7, 7, T} = 7, then 7 is the direct sum of
the ideals given in Theorem 3.7,
I = ® I[ 6]
[6]en” /~

Proof. From {7, 7, 7} = 7 and Theorem 3.7, we have

{U + Z 1[9], U+ z I U + Z 1[9]} =U+ Z I[g].

[6]en” [~ 0leN” |~ [6]en” [~ [6]en” |~

Taking into account U ¢ Jy, {70, Z0, Jo} = 0, Lemma 3.3, and the fact that {Ig), 7, I3} = 0 if [0] # [n]
(see Theorem 3.7) give us that U = 0. That is,

f:ZI

0len” |~

To finish, it is sufficient to show the direct character of the sum. For x € Ijgj N Ymen”/-I;y), using again
+0
the equation {fg}, 7, I} = O for [0] # 1], we obtain !

oG T oy =3%7, ) Iyt=0
[nlen” /~
n+6
So{x,7,7}=9, ]9 + Zm]e,« =y = {x, 7, L} + {x, 7, Zhﬂe/\”; /~I;p} =0+ 0=0. A same argument
TI+

shows {7 ,x,7}=0and {7, .7, x}= 0. Thatis, x € Ann(7) = 0. Thus x = 0, as desired. O
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4 The simple components

In this section, we study if any of the components in the decomposition given in Corollary 3.8 is simple.
Under certain conditions we give an affirmative answer. From now on char(K) = 0

Lemma 4.1. Let 7 = T @ (&9cn”79) be a split twisted inner derivation triple system. If I is an ideal of 7
then I = (IN J5) & (®gepz(I N Tp)).

Proof. We can see that 7 = 7, & (9g.n”Tp) as a weight module with respect to the split Lie algebra ¥ with
MASA H. The character of ideal of I and the fact ¥ = 77 give us that I is a submodule of 7. It is well-
known that a submodule of a weight module is again a weight module. From here, I is a weight module with
respect to ¥ (and H) and so I = (I N J5) @ (®gep”(I N Tp)). O

Definition 4.2. We say that a split twisted inner derivation triple system T is root-multiplicative if
6,1, { € AT U {0} are such that 6 + nt € A?, and 6 + n7 + ¢ € AT, then {Ty, T, T} # O.

Lemma 4.3. Let 7 be a root-multiplicative split twisted inner derivation triple system with Ann(J ) = 0
If for any 0 € N7, we have dim % < 1. Then there is not any nonzero ideal of 7 contained in 7.

Proof. Suppose there exists a nonzero ideal I of 7 such that I ¢ 7. Taking into account {7, o, To} =
{I, 70,70} =0, {J0,1, 79} =0. Given GEAJ/ as {I, 70, g} C TogNTy, {T0,1, T} CTgN Ty,
{To, 1, T0} ¢ TgN T and {1, Ty, To} € Tg: N To, I, T0o, To} ={T0, 1, To} = {T9, 1, T} =4{I, Ty, 3’} 0.
Given also ne A, if 6+n¢0 then {79,1, 7} C TgyN To=0. If Or+n#0, {I,T9, Iy}cC
Teren N Jo = 0. In addition, {7, 7, I} =

As Ann(J") = 0, we have either {I, To, T_grt #+ 0 or {Fg, 1, T_g} # 0 for some 6 ¢ A”. In the case
{I, 79, T_o:} + 0, there exist ty € Ty, t_g; € T_g; and ty € I such that {to, ty, t_o;} # 0. Hence, O # totg € Lo
and so necessarily dim.%, = 1. The root-multiplicativity of .7 (consider the roots 0, 6r, 0 € A” U {0}),
and the fact that dim %, = 1 give us the existence of 0 # t; € F, such that O # {to, ty, t}} € Tp;. Asty eI,
we conclude 0 # t, := {to, tg, t{} € I ¢ Ty N Ty, a contradiction. If {Fy, I, T_g} #+ 0, we similarly obtain
a contradiction. Similarly, if {I, 7,7} # 0, {7,1, 7} # 0, we can obtain a contradiction. So I is not
contained in 7. O

Theorem 4.4. Let F be a root-multiplicative, with Ann(J") = 0 and satisfying 7 ={7, 7, 7 }. If AZ is
symmetric and for any 6 € N7, we have dim.7 = 1, dim % < 1, then .7 is simple if and only if it has all its
nonzero roots connected.

Proof. If 7 is simple, satisfy Theorem 3.6, it has all its nonzero roots connected. Let us prove the converse:
Consider I a nonzero ideal of 7. By Lemmas 4.1and 4.3, = (I N 75) & (@gep”(I N Tp)) with I n Ty, + O for
some 6, € A7. Taking into account dimJy, = 1, we have Jy, c I. The fact {7y, Ty, 70} # O gives us
Toqr C 1. Given 1, € A7 with Mo ¢ {+60, 007}, as Oy and 1, are connected, the root-multiplicativity of 7~
and the assumption dim7y =1 for any 6 € A” give us a connection {6, ...,05.1} from 6, to n, such
that 0, =0, 01+ 0,7 + 03,...,0; + 0T + -+ 0T + Oy € N7, O+ Oy1,--- ,0; + 0T +--+ 0,7 € AZ, and
01 + 057 + -+ 05T + 0341 € pnyv, where p € 1, v € {Id |y, T}, and To, = Ta,, {To1» Top» T05} = T0146,465
{{'%1’ '%2’ '0/.63}’ '%4’ %5} = %1+921+93+94T+05s ceey

{{{{%1’ ’%2’ '%3}’ ‘%4’ ‘%5}’ }’ '%an} € ,0/—},,[01,.

If 7, <1, we have {7, Ty To} ¢ 1, that is, Tnge € 1. 1f Ty o € I, we have {7, T s To} c I, that is,
Iy, € 1. From here, either

Ty €L Or Ty I, (4.14)

for any n, ¢ A7, and so {7, T s T} C L.
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Observe that as a consequence of 7 = {7, 7, 7}, we have

To= Y TeTnId+ Y {T0 Ty T
6+n1+¢=0 Or+n+{=0 (4-15)
6,n,{A” U{0} 6,1, A” u{0}

In order to show 7, c I, we carry out the following steps.

First, let us study the products {7y, 73, 7} with 8, 1, { ¢ N U {0}, 0 + nt + { = 0. Taking into account
{Z0> 70, To} = 0, and the fact 8 + nt + { = 0 with 6, n, { ¢ AZ U {0}, we can suppose { # 0 and either 6 # 0
or n + 0. Suppose 0 + 0 and = O (resp. 8 = 0 and n # 0), then 8 = —{ (resp., nt = —{) and by equation
(4.14), {Fo, Ty T3 =19 ¢, T0, I} 1 (vesp., {Te, Ty T¢} = {T0, T_z, I¢3 C I). If the three elements
in {6, n, {} are nonzero, in case some 7, c I, € € {0, 11, {}, then clearly {7y, 7,, 7;} c I. Finally, consider
the case in which any of the .7, does not belong to I. If {7y, 7y, 7¢} =0, then {J4, T, ¢} 1. If
{70, Ty» 77} # 0, necessarily 6 + nt # 0 and so 6 + nt € A?. From here, we have by root-multiplicativity
{70, T4y Ty} = T Equation (4.14) gives us 7, c I or J_; I, then Fy c I and so

{79, Ty T} C I (4.16)

Second, let us study the products {7, 7, 7¢} with 0,1, (€ N U {0}, Ot + n + { = 0. Similarly,
we can obtain

{(To» Typ 7Y < 1. (4.17)
Therefore, equations (4.15), (4.16), and (4.17) imply
g—() c 1. (4'18)

Fix now any 0, € A7 . By equation (4.14) either T, € I or T_gr c I. That is, either 7y, c I or T_g, C I.
Indeed, if 7_g < I,{Z0, 7_95t» To} # O, one obtains 7_g, C I. Write 7y, c I with A € +1, then we can show
T, € 1. Indeed, since 6, # 0, there exists ho € H such that 8y(hg) # 0 and so we have

t a0, = ~AB0(ho) (ho(ta0,) ) (4.19)

for any t_9, € T_s6,.
As

one suppose that either hy = toty with to, th € Ty or hg = tot_g; with tg € Ty, t_g; € T_g. In the first case,
by equations (4.18) and (4.19), we obtain

t a0, = ~ABoCho) {to, tg, t g} € 1, (4.20)

for any t_9, € T_10,.
In the second case, by equations (4.14) and (4.19), we obtain

t_r0, = ~ABo(ho) {to, t-or, t_ra,} € 1, (4.21)

for any t_/wo € (9—_)(90.
Since dim.7_», = 1, we conclude J_ g, € I. So g, C I for any 6, € A7 . From here, and taking into
account equation (4.18), we conclude I = . and so .7 is simple. O
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