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Abstract: Let � be a∗-algebra, � be a∗-� -bimodule, and δ be a linear mapping from � into � . δ is called
a∗-derivation if ( ) ( ) ( )= +δ AB Aδ B δ A B and ( ) ( )=

∗ ∗δ A δ A for each A B, in � . LetG be an element in � , δ is
called a ∗-antiderivable mapping at G if ( ) ( ) ( )= ⇒ = +

∗ ∗ ∗AB G δ G B δ A δ B A for each A B, in � . We prove
that if � is a ∗C -algebra, � is a Banach∗-� -bimodule andG in � is a separating point of � with =AG GA
for every A in � , then every∗-antiderivable mapping at G from � into � is a∗-derivation. We also prove
that if � is a zero product determined Banach ∗-algebra with a bounded approximate identity, � is an
essential Banach ∗-� -bimodule and δ is a continuous ∗-antiderivable mapping at the point zero from �

into � , then there exists a ∗-Jordan derivation Δ from � into � ♯♯ and an element ξ in � ♯♯ such that
( ) ( )= +δ A A AξΔ for every A in � . Finally, we show that if � is a von Neumann algebra and δ is a

∗-antiderivable mapping (not necessary continuous) at the point zero from � into itself, then there exists
a ∗-derivation Δ from � into itself such that ( ) ( ) ( )= +δ A A Aδ IΔ for every A in � .
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1 Introduction

Throughout this paper, let � be an associative algebra over the complex field � and � be an � -bimodule.
A linear mapping δ from � into � is called a derivation if

( ) ( ) ( )= +δ AB Aδ B δ A B

for each A, B in � ; and δ is called a Jordan derivation if

( ) ( ) ( )= +δ A Aδ A δ A A2

for every A in � . It follows from [1, Corollary 17] that every Jordan derivation from a ∗C -algebra � into
a Banach � -bimodule is a derivation.

Let G be an element in � , δ is called a derivable mapping at G if

( ) ( ) ( )= ⇒ = +AB G δ G Aδ B δ A B

for each A B, in � . In [2–9], the authors investigated derivable mappings at the point zero. In [10–16],
the authors investigated derivable mappings at nonzero points.

A linear mapping δ from � into � is called an antiderivable mapping at G if

( ) ( ) ( )= ⇒ = +AB G δ G Bδ A δ B A
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for each A B, in � . In [6,7] and [17,18], the authors characterized antiderivable mappings at the point zero
on properly infinite von Neumann algebras, ∗C -algebras and group algebras.

By an involution on an algebra � , we mean a mapping ∗ from � into itself, such that

( ) ( ) ( )+ = + = =
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗λA μB λA μB AB B A A A¯ ¯ , and ,

whenever A B, in � , λ μ, in � and λ μ¯, ¯ denote the conjugate complex numbers. An algebra � equipped
with an involution is called a ∗-algebra. Moreover, let � be a ∗-algebra, an � -bimodule � is called
a ∗-� -bimodule if � equipped with a ∗-mapping from � into itself, such that

( ) ( ) ( ) ( )+ = + = = =
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗λM μN λM μN AM M A MA A M M M¯ ¯ , , and ,

whenever A in � , M N, in � and λ μ, in � .
An element A in a∗-algebra � is called Hermitian if =

∗A A; an element P in � is called an idempotent
if =P P2 ; and P is called a projection if P is both a self-adjoint element and an idempotent.

In [19], Kishimoto studied the ∗-derivations on a ∗C -algebra and proved that the closure of a normal
∗-derivation on a UHF algebra satisfying a special condition is a generator of a one-parameter group of
∗-automorphisms. Let � be a∗-algebra and � be a∗-� -bimodule. A derivation δ from � into � is called
a ∗-derivation if ( ) ( )=

∗ ∗δ A δ A for every A in � . Obviously, every derivation δ is a linear combination of
two∗-derivations. In fact, we can define a linear mapping ♯δ from � into � by ( ) ( )=

♯ ∗ ∗δ A δ A for every A
in � ; therefore, = +δ δ δi1 2, where ( )= +

♯δ δ δ1
1
2 and ( )= −

♯δ δ δ2
1
2i . It is easy to show that δ1 and δ2 are

both ∗-derivations.
Similar to derivable and antiderivable mappings, we can consider ∗-derivable and ∗-antiderivable

mappings. Let � be a ∗-algebra, � be a ∗-� -bimodule and G be an element in � . A linear mapping δ
from � into � is called a ∗-derivable mapping at G if

( ) ( ) ( )= ⇒ = +
∗ ∗ ∗AB G δ G Aδ B δ A B

for each A B, in � and δ is called a ∗-antiderivable mapping at G if

( ) ( ) ( )= ⇒ = +
∗ ∗ ∗AB G δ G B δ A δ B A

for each A B, in � .
In [6], Ghahramani supposed that � is a locally compact group, �( )L1 and �( )M denote the the group

algebra and the measure convolution algebra of � , respectively, and showed that if δ is a ∗-derivable
mapping or a∗-antiderivable mapping at the point zero from �( )L1 into �( )M , then there exist two elements
B C, in �( )M such that ( ) = −δ A AB CA for every A in �( )L1 . In [7], Ghahramani and Pan supposed that � is
a properly infinite ∗W -algebra or a simple ∗C -algebra with a nontrivial idempotent, and proved that if δ is a
∗-derivable mapping at the point zero from � into itself, then there exist two elements B C, in � such that

( ) = −δ A AB CA for every A in � ; if δ is a∗-antiderivable mapping at the point zero from � into itself, then
( ) ( )=δ A δ I A for every A in � . In [17], Abulhamil et al. supposed that � is a ∗C -algebra and � is an
essentially Banach � -bimodule, and proved that if δ is a continuous∗-antiderivable mapping at the point
zero from � into � , then there exists a ∗-derivation Δ from � into � ♯♯ and ξ in � ♯♯ such that

( ) ( )= +δ A A AξΔ for every A in � , where � ♯♯ is the second dual of � . In [18], Fadaee and Ghahramani
supposed that � is a von Neumann algebra or a simple unital ∗C -algebra, and proved that if δ is a
∗-derivable mapping or a ∗-antiderivable mapping at the point zero from � into itself, then there exist
two elements B C, in � such that ( ) = −δ A AB CA for every A in � .

For an algebra � and an � -bimodule � , we call an elementG in � a left (right) separating point of �

if =GM 0 ( =MG 0) implies =M 0 for every M in � . It is easy to see that every left(right) invertible element
in � is a left(right) separating point of � . If �∈G is both the left and right separating point, then G is
called a separating point of � .

In Section 2, we prove that if � is a ∗C -algebra, � is a Banach∗-� -bimodule andG in � is a separating
point of � with =AG GA for every �∈A , then every ∗-antiderivable mapping at G from � into � is
a ∗-derivation.

In Section 3, we investigate ∗-antiderivable mappings at the point zero and prove that if � is a zero
product determined Banach ∗-algebra with a bounded approximate identity, � is an essential Banach
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∗-� -bimodule and δ is a continuous∗-antiderivable mapping at the point zero from � into � , then there
exists a∗-Jordan derivation Δ from � into � ♯♯ and ξ in � ♯♯, such that ( ) ( )= +δ A A AξΔ for every A in � ,
where � ♯♯ stands for the second dual of M . Thus, we generalize [6, Theorem 3.2(2)] and [17, Theorem 9].
Finally, we prove that every∗-antiderivable mapping at the point zero from a von Neumann algebra � into
itself satisfies that ( ) ( ) ( )= +δ A A Aδ IΔ for every A in � , where Δ is a ∗-derivation from � into itself.

2 ∗-Antiderivable mappings at a separating points

Before we give the main result in this section, we need to prove the following proposition.

Proposition 2.1. Suppose that � is a unital Banach algebra, � is a unital Banach � -bimodule andG in � is
a separating point of � with =AG GA for every A in � . If δ and τ are two linear mappings from � into �

such that

( ) ( ) ( )= ⇒ = +AB G δ G Bδ A τ B A

for each A B, in � , then τ is a Jordan derivation, δ is a generalized Jordan derivation, that is, for every A in � ,
( ) ( ) ( ) ( )= + −δ A Aδ A δ A A Aδ I A2 . Moreover, the following identities hold:

( ) ( ) ( ) ( )= + −τ AG τ G A Gδ A AGδ I

and

( ) ( ) ( )= +δ GA Aδ G τ A G

for every A in � .

Proof. By = =IG GI G, we have that

( ) ( ) ( )= +δ G Gδ I τ G (2.1)

and

( ) ( ) ( )= +δ G δ G τ I G. (2.2)

Since G is a separating point for � , by (2.2), we have ( ) =τ I 0. Let T be a invertible element in � .
By = =

− −GT T T GT G1 1 , we obtain

( ) ( ) ( )= +
− −δ G Tδ GT τ T GT1 1 (2.3)

and

( ) ( ) ( )= +
− −δ G T Gδ T τ T G T.1 1 (2.4)

Multiplying by −T 1 from the left-hand side of (2.3), we can obtain that

( ) ( ) ( )= −
− − − −δ GT T δ G T τ T GT .1 1 1 1 (2.5)

Multiplying by −T 1 from the right-hand side of (2.4), we have that

( ) ( ) ( )= −
− − − −τ T G δ G T T Gδ T T .1 1 1 1 (2.6)

Let A be in � , n be a positive integer with ( )> ‖ ‖ +n A 1 and = +B nI A. Then, both B and −I B are
invertible in � . By replacing T with B in (2.3), by (2.5) and ( ) =τ I 0, we obtain

( ) ( ) ( )

( ) ( ( ) )

( ) ( ) ( ( ))

( ) ( ) [ ( ) ( ) ( ) (( ) ) ( )]

= −

= − − +

= − − −

= − − − − − − −

− −

−

−

− − − −

τ B GB δ G Bδ GB
δ G Bδ GB I B G
I B δ G Bδ GB I B
I B δ G B B I B δ G B I B τ I B B GB I B

1 1

1

1

1 1 1 1
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( ) (( ) ) ( )

( ) (( ) ) ( )

( ) (( ) ) ( )

= − − −

= − − − −

= − − −

− −

− −

− −

I B τ I B B GB I B
I B τ I B I GB I B
I B τ I B GB I B .

1 1

1 1

1 1

Since =AG GA for every A in � , it follows that

( ) ( ) (( ) ) ( )= − − −
− − −τ B B G I B τ I B B I B G.1 1 1 (2.7)

By replacing T with B in (2.4), we obtain

( ) ( ) ( )

( ) ( ( ) )

( ) ( ) ( ( ) )

= −

= − − +

= − − −

− −

−

−

B Gδ B δ G τ B G B
δ G τ B I B G G B
δ G τ G B τ B I B G B.

1 1

1

1

By (2.6), it implies that

( ) ( ) ( ) ( ( ) )

( ) ( ) [ ( ) ( ) ( ) (( ) ) ( )]

( ) ( ) ( )( ) ( ) (( ) )( )

( ( ) ( )) ( ) (( ) )( )

= − − −

= − − − − − − −

= − − − + − − −

= − + − − − −

− −

− − − −

− −

− −

B Gδ B δ G τ G B τ B I B G B
δ G τ G B δ G B I B B I B Gδ I B B B I B B
δ G τ G B δ G I B B I B Gδ I B B I B
δ G τ G B B I B Gδ I B I I B ,

1 1

1 1 1 1

1 1

1 1

and by (2.1), it follows that

( ) ( ( ) ( )) ( ) (( ) )( )

( ) ( ) ( )( ) ( ) (( ) )( )

= − + − − − −

= − − − + − − −

− − −

− − −

B Gδ B δ G τ G B B I B Gδ I B I I B
Gδ I B B I B Gδ I I B B I B Gδ I B I B .

1 1 1

1 1 1

By =AG GA for every A in � , we can obtain that

( ) [ ( ) ( ) ( )( ) ( ) (( ) )( )]= − − − + − − −
− − − −GB δ B G δ I B B I B δ I I B B I B δ I B I B .1 1 1 1 (2.8)

Since G is a separating point of � , by (2.7) and (2.8), we obtain

( ) ( ) (( ) ) ( )= − − −
− − −τ B B I B τ I B B I B1 1 1 (2.9)

and

( ) ( ) ( ) ( )( ) ( ) (( ) )( )= − − − + − − −
− − − −B δ B δ I B B I B δ I I B B I B δ I B I B .1 1 1 1 (2.10)

Multiplying by B from the right-hand side of (2.9) and from the left-hand side of (2.10), we can obtain that

( ) ( ) (( ) )( )= − − −
−τ B I B τ I B I B1 (2.11)

and

( ) ( ) ( ) ( )( ) ( ) (( ) )( )= − − − + − − −
−δ B Bδ I B I B δ I I B I B δ I B I B .1 (2.12)

Multiplying by G from the right-hand side of (2.11) and by =AG GA, it follows that

( ) ( ) (( ) )( ) ( ) (( ) ) ( )= − − − = − − −
− −τ B G I B τ I B I B G I B τ I B G I B .1 1

By (2.3),

( ) ( )[ ( ) ( ) ( ( ))]

( ) ( ) ( )

( ) ( )

= − − − −

= − − −

= −

−τ B G I B δ G I B δ G I B
I B δ G δ G GB

δ GB Bδ G .

1

(2.13)

Multiplying by G from the left of (2.12) and by =AG GA, it follows that

( ) ( ) ( ) ( )( ) ( ) (( ) )( )

( ) ( ) ( )( ) ( ) (( ) )( )

= − − − + − − −

= − − − + − − −

−

−

Gδ B GBδ I B G I B δ I I B G I B δ I B I B
GBδ I B G I B δ I I B I B Gδ I B I B ,

1

1

and by (2.4),
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( ) ( ) ( ) ( )( ) [ ( ) (( ) )( ) ]( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( ) ( )] [ ( ) ( )] ( )

= − − − + − − − −

= − − + − + − − +

= − + + − + − − +

= + − − + − +

−Gδ B GBδ I B G I B δ I I B δ G τ I B G I B I B
GBδ I B G I B δ I G I B δ I B δ G δ G B τ G τ BG
GBδ I B Gδ I GBδ I Gδ I B GBδ I B δ G δ G B τ G τ BG
GBδ I δ G τ G Gδ I Gδ I δ G B τ BG ,

1

and by (2.1), it implies that

( ) ( ) ( ) ( )= − +Gδ B GBδ I τ G B τ BG . (2.14)

By (2.13), (2.14) and =AG GA, we have that

( ) ( ) ( )= +δ GB Bδ G τ B G

and

( ) ( ) ( ) ( )= + −τ BG Gδ B τ G B BGδ I .

Since = +B nI A, we have the following two equations:

( ) ( ) ( )= +δ GA Aδ G τ A G (2.15)

and

( ) ( ) ( ) ( )= + −τ AG τ G A Gδ A AGδ I . (2.16)

By (2.15), we know that for every invertible element T in � , it follows that

( ) ( )

( ) ( )

[ ( ) ( ) ] ( )

( ) ( ) ( )

=

= +

= + +

= + +

−

− −

− −

− −

δ G δ GTT
T δ GT τ T GT
T Tδ G τ T G τ T TG
δ G T τ T G τ T TG.

1

1 1

1 1

1 1

Since G is a separating point,

( ) ( )+ =
− −T τ T τ T T 0.1 1 (2.17)

By (2.16), we know that for every invertible element T in � , it follows that

( ) ( )

( ) ( )

( ) [ ( ) ( ) ( )]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

=

= +

= + + −

= + + −

= + + −

−

− −

− −

− − −

− − −

δ G δ T TG
TGδ T τ TG T
TGδ T τ G T Gδ T TGδ I T
TGδ T τ G Gδ T T TGδ I T
GTδ T τ G Gδ T T GTδ I T .

1

1 1

1 1

1 1 1

1 1 1

Thus,

( ) ( ) ( ) ( ) ( )− = + −
− − −δ G τ G GTδ T Gδ T T GTδ I T .1 1 1

By (2.1), we have that

( ) ( ) ( ) ( )= + −
− − −Gδ I GTδ T Gδ T T GTδ I T .1 1 1

Since G is a separating point, we know that

( ) ( ) ( ) ( )= + −
− − −δ I Tδ T δ T T Tδ I T .1 1 1 (2.18)

It follows from (2.17), (2.18) and [13, Lemma 2.1] that τ and ( ) ( ) ( )≔ −A δ A Aδ IΔ both are Jordan derivations,
and hence, δ is a generalized Jordan derivation. □

Let =G I in Proposition 2.1, we have the following result.
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Corollary 2.2. Suppose � is a unital Banach algebra and � is a unital Banach � -bimodule. If δ and τ are
two linear mappings from � into � , such that

( ) ( ) ( )= ⇒ = +AB I δ I Bδ A τ B A

for each A B, in � , then τ is a Jordan derivation and δ is a generalized Jordan derivation. Moreover, for every
A in � , we have that

( ) ( ) ( )= +δ A Aδ I τ A .

For every∗-antiderivable mapping at unit element from a unital Banach∗-algebra into its unital Banach
∗-� -bimodule, we have the following result.

Corollary 2.3. Suppose that � is a unital Banach∗-algebra and � is a unital Banach∗-� -bimodule. If δ is
a linear mapping from � into � such that

( ) ( ) ( )= ⇒ = +
∗ ∗ ∗AB I δ I B δ A δ B A

for each A B, in � , then δ is a ∗-Jordan derivation.

Proof. Let τ be the linear mapping from � into � such that for every A in � ,

( ) ( )=
♯ ∗ ∗δ A δ A .

It follows that for each A B, in � , we have that

( ) ( ) ( ) ( ) ( ) ( ) ( )= = = ⇒ = + ⇒ = +
∗ ∗ ∗ ∗ ♯AB I A B I δ I Bδ A δ B A δ I Bδ A δ B A.

It follows from Proposition 2.1 that ♯δ is a Jordan derivation, and hence, δ is also a Jordan derivation.
Finally, we prove that δ is a ∗-Jordan derivation, that is, ( ) ( )=

∗ ∗δ A δ A for every A in � . In fact, by
( ) =δ I 0 and Corollary 2.2, we have that ( ) ( ) ( )= =

♯ ∗ ∗δ A δ A δ A . It implies that ( ) ( )=
∗ ∗δ A δ A for every A in

� . □

For every ∗-antiderivable mapping from a unital ∗C -algebra into its Banach ∗-� -bimodule, we have
the following theorem.

Theorem 2.4. Suppose that � is a unital ∗C -algebra, � is a unital Banach ∗-� -bimodule and G in � is
a separating point of � with =AG GA for every A in � . If δ is a linear mapping from � into � such that

( ) ( ) ( )= ⇒ = +
∗ ∗ ∗AB G δ G B δ A δ B A

for each A B, in � , then δ is a ∗-derivation.

Proof. Let τ be a linear mapping from � into � such that for every A in �

( ) ( )=
∗ ∗τ A δ A .

It follows that for each A B, in � , we have that

( ) ( ) ( ) ( ) ( ) ( ) ( )= = = ⇒ = + ⇒ = +
∗ ∗ ∗ ∗AB G A B G δ G Bδ A δ B A δ G Bδ A τ B A.

By Proposition 2.1, τ is a Jordan derivation, and hence, δ is also a Jordan derivation. Since � is a ∗C -algebra,
δ is a derivation.

Finally, we show that δ is a∗-derivation, that is, ( ) ( )=
∗ ∗δ A δ A for every A in � . Let A be an invertible

element in � , by (( ) ) =
− ∗ ∗GA A G1 , we have that

( ) ( ) (( ) )= +
− − ∗ ∗δ G A δ GA δ A GA.1 1

Since δ is a derivation and =AG GA, it follows that

( ) (( ) ) ( ( ) ( ) )= + +
− ∗ ∗ −δ G δ A AG A Aδ G δ A G ,1 1
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that is,

(( ) ) ( )+ =
− ∗ ∗ −δ A AG A δ A G 0.1 1

Since G is a separating point, we have that

(( ) ) ( )+ =
− ∗ ∗ −δ A A A δ A 0.1 1 (2.19)

On the other hand, we can obtain that

( ) ( ) ( )+ = =
− −δ A A A δ A δ I 0.1 1 (2.20)

By (2.19) and (2.20), we know that (( ) ) ( )=
− ∗ ∗ −δ A A δ A A1 1 , that is, (( ) ) ( )=

− ∗ − ∗δ A δ A1 1 . Thus, for every invertible
element �∈A , we have showed that ( ) ( )=

∗ ∗δ A δ A .
Since every element in a unital ∗C -algebra is a linear combination of four unitaries [20], it follows that

( ) ( )=
∗ ∗δ A δ A for every �∈A . □

In particular, let =G I in Theorem 2.4, the following corollary holds.

Corollary 2.5. Suppose � is a unital ∗C -algebra and � is a unital Banach ∗-� -bimodule. If δ is a linear
mapping from � into � such that

( ) ( ) ( )= ⇒ = +
∗ ∗ ∗AB I δ I B δ A δ B A

for each A B, in � , then δ is a ∗-derivation.

Remark 2.6. Suppose that � is a unital ∗-algebra, � is a unital Banach ∗-� -bimodule and δ is a linear
mapping from � into � . We should notice that the following two conditions are not equivalent:
(1) � ( ) ( ) ( )∈ = ⇒ + =

∗ ∗ ∗A B AB G B δ A δ B A δ G, , ;
(2) � ( ) ( ) ( )∈ = ⇒ + =

∗ ∗ ∗A B A B G Bδ A δ B A δ G, , .

Hence, we also can define a ∗-derivable mapping at G in � from � into � by

� ( ) ( ) ( )∈ = ⇒ + =
∗ ∗ ∗A B A B G Bδ A δ B A δ G, , .

Through the minor modifications, we can obtain the corresponding results.

3 ∗-Antiderivable mappings at the point zero

A (Banach) algebra � is said to be zero product determined if every (continuous) bilinear mapping ϕ from
� �× into any (Banach) linear space � satisfying

( ) = =ϕ A B AB, 0, whenever 0

can be written as ( ) ( )=ϕ A B T AB, , for some (continuous) linear mapping T from � into �. In [21], Brešar
showed that if J� �( )= , then � is a zero product determined, where J �( ) is the subalgebra of �

generated by all idempotents in � , and in [2], the authors proved that every ∗C -algebra � is zero product
determined.

Suppose that � is a Banach algebra and � is a Banach-� -bimodule. � is called an essential Banach
� -bimodule if

� � �{ }= ∈ ∈ANB A B Nspan : , , ,

where { }⋅span denotes the norm closure of the linear span of the set { }⋅ .
Let � be a Banach ∗-algebra, a bounded approximate identity for � is a net ( )

∈
ei i Γ of self-adjoint

elements in � such that ‖ − ‖ = ‖ − ‖ =Ae A e A Alim lim 0i i i i for every A in � and ‖ ‖ ≤
∈

e Ksupi iΓ for
some >K 0.
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Theorem 3.1. Suppose � is a zero product determined Banach ∗-algebra with a bounded approximate
identity and � is an essential Banach ∗-� -bimodule. If δ is a continuous linear mapping from � into �

such that

( ) ( )= ⇒ + =
∗ ∗ ∗AB B δ A δ B A0 0

for each A B, in � , then there are a∗-Jordan derivation Δ from � into � ♯♯ and an element ξ in � ♯♯, such that

( ) ( )= +δ A A AξΔ

for every A in � . Furthermore, ξ can be chosen in � in each of the following cases:
(1) � has an identity.
(2) � is a dual ∗-� -bimodule.

In [17, Section 4] and in [22, p. 720], the authors showed that � ♯♯ is also a Banach∗-� -bimodule, where
� ♯♯ is the second dual space of � . But, for the sake of completeness, we recall the argument here.

In fact, since � is a Banach ∗-� -bimodule, � ♯♯ turns into a dual Banach � -bimodule with the
operation defined by

⋅ = ⋅ =
♯♯ ♯♯A M AM M A M Alim and lim

μ
μ

μ
μ

for every A in � and every ♯♯M in � ♯♯, where ( )Mμ is a net in � with ‖ ‖ ⩽ ‖ ‖
♯♯M Mμ and ( ) →

♯♯M Mμ in
the weak∗-topology � �( )♯♯ ♯σ , .

We define an involution ∗ in � ♯♯ by

( ) ( ) ( ) ( ) ( )= =
♯♯ ∗ ♯♯ ∗ ∗ ∗M ρ M ρ ρ M ρ M, ,

where ♯♯M in � ♯♯, ρ in � ♯ and M in � . Moreover, if ( )Mμ is a net in � and ♯♯M is an element in � ♯♯ such
that →

♯♯M Mμ in � �( )♯♯ ♯σ , , then for every ρ in � ♯, we have that

( ) ( ) ( )= →
♯♯ρ M M ρ M ρ .μ μ

It follows that

( )( ) ( ) ( ) ( ) ( ) ( )= = → =
∗ ∗ ∗ ♯♯ ∗ ♯♯ ∗M ρ ρ M ρ M M ρ M ρμ μ μ

for every ρ in � ♯. It means that the involution∗ in � ♯♯ is continuous in � �( )♯♯ ♯σ , . Thus, we can obtain
that

( ) ( ) ( )⋅ = = = ⋅
♯♯ ∗ ∗ ∗ ∗ ♯♯ ∗ ∗A M AM M A M Alim lim .

μ
μ

μ
μ

Similarly, we can show that ( ) ( )⋅ = ⋅
♯♯ ∗ ∗ ♯♯ ∗M A A M . It implies that � ♯♯ is a Banach ∗-� -bimodule.

In the following, we prove that Theorem 3.1.

Proof. Let ( )
∈

ei i Γ be a bounded approximate identity of � . Since δ is a continuous mapping, ( ( ))
∈

δ ei i Γ is
bounded in � . Moreover, ( ( ))

∈
δ ei i Γ is also bounded in � ♯♯. By the Alaoglu-Bourbaki theorem, we may

assume that ( ( ))
∈

δ ei i Γ converges to the element ξ in � ♯♯ with the weak∗-topology � �( )♯♯ ♯σ , .
Since � is an essential Banach-� -bimodule, Mei converges to M with respect to the weak∗-topology

� �( )♯♯ ♯σ , for every M in � . In fact, since � � �{ }= ∈ ∈ANB A B Nspan : , , , there exists a sequence
�= ∈

=
M Σ A N Bn k

m
k
n

k
n

k
n

1
n converging to M in the norm topology, where �∈A B,k

n
k
n and �∈Nk

n , = …k 1, 2, ,
= …m n, 1, 2,n . Since ( )ANBei converges to ANB in the norm topology for each �∈A B, and �∈N ,

it follows that Mei converges to � in the norm topology for every M in � .
Define a continuous bilinear mapping from � �× into � by

( ) ( ) ( )= +
∗ ∗ϕ A B δ B A Bδ A,

for every A B, in � . It follows that

( )= ⇒ =AB ϕ A B0 , 0.
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Since � is a zero product determined Banach algebra, there exists a continuous linear mapping
� �→T : such that ( ) ( )=ϕ A B T AB, for every �∈A B, . Moreover, for every �∈A B C, , , we have that

( ) ( )=ϕ AB C ϕ A BC, , .

That is,

( ) ( ) ( ) ( )+ = +
∗ ∗ ∗ ∗ ∗δ C AB Cδ AB δ C B A BCδ A . (3.1)

Let =A ei in (3.1) and take the limit on both sides with the weak∗-topology � �( )♯♯ ♯σ , , we can obtain that

( ) ( ) ( )+ = +
∗ ∗ ∗ ∗ ∗δ C B Cδ B δ C B BCξ . (3.2)

Take the involution on both sides in (3.2), it implies that

( ) ( ) ( )+ = +
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗B δ C δ B C δ C B ξ C B . (3.3)

Let =C ei in (3.3) and take the limit on both sides of (3.3) with the weak∗-topology � �( )♯♯ ♯σ , , we can
obtain that

( ) ( )+ = +
∗ ∗ ∗ ∗ ∗B ξ δ B δ B ξ B ,

that is,

( ) ( )− = −
∗ ∗ ∗ ∗ ∗δ B B ξ δ B ξ B . (3.4)

Define a linear mapping Δ from � into � ♯♯ by

( ) ( )= −A δ A AξΔ

for every A in � . Next, we prove that Δ is a ∗-Jordan derivation. By (3.4), we have that ( ) ( )=
∗ ∗A AΔ Δ for

every �∈A .
By replacing ∗ ∗C B, with A B, in (3.3), respectively, we can obtain that

( ) ( ) ( )+ = +
∗ ∗ ∗Bδ A δ B A δ AB ξ AB,

that is,

( ) ( ) ( )= + −
∗ ∗ ∗δ AB Bδ A δ B A ξ AB. (3.5)

In the following, we prove that

( ) ( ) ( )= +A A A A AΔ Δ Δ2

for every A in � . By the definition of Δ and (3.5), we have the following two equations:

( ) ( ) ( ) ( )= − = + − −
∗ ∗ ∗A δ A A ξ Aδ A δ A A ξ A A ξΔ 2 2 2 2 2 (3.6)

and

( ) ( ) ( ( ) ) ( ( ) ) ( ) ( )+ = − + − = − + −A A A A A δ A Aξ δ A Aξ A Aδ A A ξ δ A A AξAΔ Δ .2 (3.7)

By ( ) ( )=
∗ ∗A AΔ Δ , it implies that ( ) ( ( ) )− = −

∗ ∗ ∗δ A A ξ δ A Aξ , and

( ) ( )− = −
∗ ∗ ∗δ A ξ A δ A Aξ . (3.8)

Multiplying by A from the right side of (3.8), we have that

( ( ) ) ( ( ) )− = −
∗ ∗ ∗δ A ξ A A δ A Aξ A. (3.9)

Finally, by (3.6), (3.7), and (3.9), it follows that ( ) ( ) ( )= +A A A A AΔ Δ Δ2 . Thus, Δ is a ∗-Jordan derivation.
Suppose that � is a unital Banach algebra, we can assume that ( )=ξ δ I .
Suppose that � is a dual essential Banach∗-� -bimodule and �

♯
is the pre-dual space of � , since δ is

continuous, we can assume that the net ( ( ))
∈

δ ei i Γ converges to element �∈ξ with the weak∗-topology
� �( )♯♯ ♯σ , . □
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Let G be a locally compact group. The group algebra and the measure convolution algebra of G, are
denoted by ( )L G1 and ( )M G , respectively. The convolution product is denoted by ⋅ , and the involution is
denoted by∗. It is well known that ( )M G is a unital Banach∗-algebra, and ( )L G1 is a closed ideal in ( )M G
with a bounded approximate identity. By [23, Lemma 1.1], we know that ( )L G1 is zero product determined.
By [24, Theorem 3.3.15(ii)], it follows that ( )M G with respect to convolution product is the dual of ( )C G0 as
a Banach ( )M G -bimodule.

Since �( )L1 is a semisimple algebra, we know from [25] that every continuous Jordan derivation from
�( )L1 into itself is a derivation. By [26, Corollary 1.2], we know that every continuous derivation Δ from ( )L G1

into ( )M G is an inner derivation, that is, there exists μ in ( )M G such that ( ) = ⋅ − ⋅f f μ μ fΔ for every f in
( )L G1 . Thus, by Theorem 3.1, we can rediscover [6, Theorem 3.2(ii)] as follows:

Corollary 3.2. [6, Theorem 3.2(ii)] Let � be a locally compact group. If δ is a continuous linear mapping
from �( )L1 into �( )M such that

( ) ( )⋅ = ⇒ ⋅ + ⋅ =
∗ ∗ ∗f g δ g f g δ f0 0,

for each f g, in �( )L1 , then there exist two-element �( )∈μ ν M, such that

( ) = ⋅ − ⋅δ f f ν μ f

for every f in �( )L1 and � �( ( ))∈μ MRe .

Proof. By Theorem 3.1, we know that there exist a ∗-derivation Δ from ( )L G1 into ( )M G and an element ξ
in ( )M G such that

( ) ( )= + ⋅δ f f ξ fΔ

for every f in ( )L G1 . By [26, Corollary 1.2], it follows that there exists μ in ( )M G such that ( ) = ⋅ − ⋅f f μ μ fΔ .
Since ( ) ( )=

∗ ∗f fΔ Δ , we have that

⋅ − ⋅ = ⋅ − ⋅
∗ ∗ ∗ ∗ ∗ ∗f μ μ f μ f f μ

for every f in ( )L G1 . By [23, Lemma 1.3(ii)], we know � �( ) ( ( ))= + ∈
∗μ μ μ MRe 1

2 . Let = −ν μ ξ , from the
definition of Δ, we have that ( ) = ⋅ − ⋅δ f f μ ν f for every f in ( )L G1 . □

In [2], the authors proved that every ∗C -algebra � is zero product determined, and by [27, Corollary 7.5],
we know that � has a bounded approximate identity. Thus, by Theorem 3.1, we can obtain a new proof of
[17, Theorem 9] as follows:

Corollary 3.3. [17, Theorem 9] Let � be a ∗C -algebra and � an essential Banach ∗-� -bimodule. If δ is
a continuous linear mapping from � into � such that

( ) ( )= ⇒ + =
∗ ∗ ∗AB B δ A δ B A0 0

for every A B, in � , then there exists a ∗-derivation Δ from � into � ♯♯ and ξ in � ♯♯ such that

( ) ( )= +δ A A AξΔ

for every A in � . Furthermore, ξ can be chosen in � in each of the following cases:
(1) � has an identity.
(2) � is a dual ∗-� -bimodule.

Suppose that � is a zero product determined unital∗-algebra and δ is a∗-antiderivable mapping from
� into a∗-� -bimodule. Let ( ) =

∈
e Ii i Γ and ( )=ξ δ I in Theorem 3.1, we can obtain the following conclusion.

Corollary 3.4. Let � be a zero product determined unital∗-algebra and � be a∗-� -bimodule. If δ is a linear
mapping (continuity is not necessary) from � into � such that

( ) ( )= ⇒ + =
∗ ∗ ∗AB B δ A δ B A0 0
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for each A B, in � , then there exists a ∗-Jordan derivation Δ from � into � such that

( ) ( ) ( )= +δ A A Aδ IΔ

for every A in � .

Finally, we investigate∗-antiderivable mappings at the zero point on a von Neumann algebra. The fol-
lowing result is the second main theorem in this section.

Theorem 3.5. Let � be a von Neumann algebra. If δ is a linear mapping from � into itself, such that

( ) ( )= ⇒ + =
∗ ∗ ∗AB B δ A δ B A0 0

for each A B, in � , then there exists a ∗-derivation Δ from � into � such that

( ) ( ) ( )= +δ A A Aδ IΔ

for every A in � . In particular, δ is a ∗-derivation when ( ) =δ I 0.

Proof. Suppose that � is a commutative von Neumann subalgebra of � . For each A B, in � , we have that

= ⇔ = ⇔ = ⇔ =
∗ ∗ ∗ ∗AB AB A B A B0 0 0 0.

Let A B C, , be in � satisfying = =AB BC 0. Since =
∗ ∗A B 0, we obtain ( ) ( )+ =

∗ ∗ ∗ ∗B δ A δ B A 0. By multi-
plying the previous identity by ∗C form the left-hand side, we have ( ) =

∗ ∗ ∗C δ B A 0, equivalently, ( ) =Aδ B C 0.
Therefore, [28, Theorem 2.12] implies that δ is automatically continuous, and by [17, Theorem 9], we can
prove this theorem. □

Remark 3.6. Let � be a unital∗-algebra and � be a unital Banach∗-� -bimodule. δ is a linear mapping
from � into � such that

( ) ( )= ⇒ + =
∗ ∗ ∗A B Bδ A δ B A0 0.

Through the minor modifications of Theorems 3.1 and 3.5, we can obtain the corresponding results.
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