

Research Article

Guangyu An, Xueli Zhang, and Jun He*

Characterizations of *-antiderivable mappings on operator algebras

<https://doi.org/10.1515/math-2022-0047>

received June 30, 2021; accepted March 5, 2022

Abstract: Let \mathcal{A} be a *-algebra, \mathcal{M} be a ${}^*\mathcal{A}$ -bimodule, and δ be a linear mapping from \mathcal{A} into \mathcal{M} . δ is called a ${}^*\text{-derivation}$ if $\delta(AB) = A\delta(B) + \delta(A)B$ and $\delta(A^*) = \delta(A)^*$ for each A, B in \mathcal{A} . Let G be an element in \mathcal{A} , δ is called a ${}^*\text{-antiderivable mapping}$ at G if $AB^* = G \Rightarrow \delta(G) = B^*\delta(A) + \delta(B)^*A$ for each A, B in \mathcal{A} . We prove that if \mathcal{A} is a C^* -algebra, \mathcal{M} is a Banach ${}^*\mathcal{A}$ -bimodule and G in \mathcal{A} is a separating point of \mathcal{M} with $AG = GA$ for every A in \mathcal{A} , then every ${}^*\text{-antiderivable mapping}$ at G from \mathcal{A} into \mathcal{M} is a ${}^*\text{-derivation}$. We also prove that if \mathcal{A} is a zero product determined Banach ${}^*\text{-algebra}$ with a bounded approximate identity, \mathcal{M} is an essential Banach ${}^*\mathcal{A}$ -bimodule and δ is a continuous ${}^*\text{-antiderivable mapping}$ at the point zero from \mathcal{A} into \mathcal{M} , then there exists a ${}^*\text{-Jordan derivation}$ Δ from \mathcal{A} into $\mathcal{M}^{\sharp\sharp}$ and an element ξ in $\mathcal{M}^{\sharp\sharp}$ such that $\delta(A) = \Delta(A) + A\xi$ for every A in \mathcal{A} . Finally, we show that if \mathcal{A} is a von Neumann algebra and δ is a ${}^*\text{-antiderivable mapping}$ (not necessary continuous) at the point zero from \mathcal{A} into itself, then there exists a ${}^*\text{-derivation}$ Δ from \mathcal{A} into itself such that $\delta(A) = \Delta(A) + A\delta(I)$ for every A in \mathcal{A} .

Keywords: ${}^*\text{-derivation}$, ${}^*\text{-antiderivable mapping}$, C^* -algebra, von Neumann algebra

MSC 2020: 46L57, 47B47, 47C15, 16E50

1 Introduction

Throughout this paper, let \mathcal{A} be an associative algebra over the complex field \mathbb{C} and \mathcal{M} be an \mathcal{A} -bimodule. A linear mapping δ from \mathcal{A} into \mathcal{M} is called a *derivation* if

$$\delta(AB) = A\delta(B) + \delta(A)B$$

for each A, B in \mathcal{A} ; and δ is called a *Jordan derivation* if

$$\delta(A^2) = A\delta(A) + \delta(A)A$$

for every A in \mathcal{A} . It follows from [1, Corollary 17] that every Jordan derivation from a C^* -algebra \mathcal{A} into a Banach \mathcal{A} -bimodule is a derivation.

Let G be an element in \mathcal{A} , δ is called a *derivable mapping at G* if

$$AB = G \Rightarrow \delta(G) = A\delta(B) + \delta(A)B$$

for each A, B in \mathcal{A} . In [2–9], the authors investigated derivable mappings at the point zero. In [10–16], the authors investigated derivable mappings at nonzero points.

A linear mapping δ from \mathcal{A} into \mathcal{M} is called an *antiderivable mapping at G* if

$$AB = G \Rightarrow \delta(G) = B\delta(A) + \delta(B)A$$

* Corresponding author: Jun He, Department of Mathematics, Anhui Polytechnic University, Wuhu 241000, China,

e-mail: hejun_12@163.com

Guangyu An, Xueli Zhang: Department of Mathematics, Shaanxi University of Science and Technology, Xi'an 710021, China

for each A, B in \mathcal{A} . In [6,7] and [17,18], the authors characterized antiderivable mappings at the point zero on properly infinite von Neumann algebras, C^* -algebras and group algebras.

By an *involution* on an algebra \mathcal{A} , we mean a mapping $*$ from \mathcal{A} into itself, such that

$$(\lambda A + \mu B)^* = \bar{\lambda}A^* + \bar{\mu}B^*, \quad (AB)^* = B^*A^* \quad \text{and} \quad (A^*)^* = A,$$

whenever A, B in \mathcal{A} , λ, μ in \mathbb{C} and $\bar{\lambda}, \bar{\mu}$ denote the conjugate complex numbers. An algebra \mathcal{A} equipped with an involution is called a $*$ -algebra. Moreover, let \mathcal{A} be a $*$ -algebra, an \mathcal{A} -bimodule \mathcal{M} is called a $*$ - \mathcal{A} -bimodule if \mathcal{M} equipped with a $*$ -mapping from \mathcal{M} into itself, such that

$$(\lambda M + \mu N)^* = \bar{\lambda}M^* + \bar{\mu}N^*, \quad (AM)^* = M^*A^*, \quad (MA)^* = A^*M^* \quad \text{and} \quad (M^*)^* = M,$$

whenever A in \mathcal{A} , M, N in \mathcal{M} and λ, μ in \mathbb{C} .

An element A in a $*$ -algebra \mathcal{A} is called *Hermitian* if $A^* = A$; an element P in \mathcal{A} is called an *idempotent* if $P^2 = P$; and P is called a *projection* if P is both a self-adjoint element and an idempotent.

In [19], Kishimoto studied the $*$ -derivations on a C^* -algebra and proved that the closure of a normal $*$ -derivation on a UHF algebra satisfying a special condition is a generator of a one-parameter group of $*$ -automorphisms. Let \mathcal{A} be a $*$ -algebra and \mathcal{M} be a $*$ - \mathcal{A} -bimodule. A derivation δ from \mathcal{A} into \mathcal{M} is called a $*$ -*derivation* if $\delta(A^*) = \delta(A)^*$ for every A in \mathcal{A} . Obviously, every derivation δ is a linear combination of two $*$ -derivations. In fact, we can define a linear mapping δ^* from \mathcal{A} into \mathcal{M} by $\delta^*(A) = \delta(A^*)^*$ for every A in \mathcal{A} ; therefore, $\delta = \delta_1 + i\delta_2$, where $\delta_1 = \frac{1}{2}(\delta + \delta^*)$ and $\delta_2 = \frac{1}{2i}(\delta - \delta^*)$. It is easy to show that δ_1 and δ_2 are both $*$ -derivations.

Similar to derivable and antiderivable mappings, we can consider $*$ -derivable and $*$ -antiderivable mappings. Let \mathcal{A} be a $*$ -algebra, \mathcal{M} be a $*$ - \mathcal{A} -bimodule and G be an element in \mathcal{A} . A linear mapping δ from \mathcal{A} into \mathcal{M} is called a $*$ -*derivable mapping at G* if

$$AB^* = G \Rightarrow \delta(G) = A\delta(B)^* + \delta(A)B^*$$

for each A, B in \mathcal{A} and δ is called a $*$ -*antiderivable mapping at G* if

$$AB^* = G \Rightarrow \delta(G) = B^*\delta(A) + \delta(B)^*A$$

for each A, B in \mathcal{A} .

In [6], Ghahramani supposed that \mathcal{G} is a locally compact group, $L^1(\mathcal{G})$ and $M(\mathcal{G})$ denote the group algebra and the measure convolution algebra of \mathcal{G} , respectively, and showed that if δ is a $*$ -derivable mapping or a $*$ -antiderivable mapping at the point zero from $L^1(\mathcal{G})$ into $M(\mathcal{G})$, then there exist two elements B, C in $M(\mathcal{G})$ such that $\delta(A) = AB - CA$ for every A in $L^1(\mathcal{G})$. In [7], Ghahramani and Pan supposed that \mathcal{A} is a properly infinite W^* -algebra or a simple C^* -algebra with a nontrivial idempotent, and proved that if δ is a $*$ -derivable mapping at the point zero from \mathcal{A} into itself, then there exist two elements B, C in \mathcal{A} such that $\delta(A) = AB - CA$ for every A in \mathcal{A} ; if δ is a $*$ -antiderivable mapping at the point zero from \mathcal{A} into itself, then $\delta(A) = \delta(I)A$ for every A in \mathcal{A} . In [17], Abulhamil et al. supposed that \mathcal{A} is a C^* -algebra and \mathcal{M} is an essentially Banach \mathcal{A} -bimodule, and proved that if δ is a continuous $*$ -antiderivable mapping at the point zero from \mathcal{A} into \mathcal{M} , then there exists a $*$ -derivation Δ from \mathcal{A} into $\mathcal{M}^{\#}$ and ξ in $\mathcal{M}^{\#}$ such that $\delta(A) = \Delta(A) + A\xi$ for every A in \mathcal{A} , where $\mathcal{M}^{\#}$ is the second dual of \mathcal{M} . In [18], Fadaee and Ghahramani supposed that \mathcal{A} is a von Neumann algebra or a simple unital C^* -algebra, and proved that if δ is a $*$ -derivable mapping or a $*$ -antiderivable mapping at the point zero from \mathcal{A} into itself, then there exist two elements B, C in \mathcal{A} such that $\delta(A) = AB - CA$ for every A in \mathcal{A} .

For an algebra \mathcal{A} and an \mathcal{A} -bimodule \mathcal{M} , we call an element G in \mathcal{A} a *left (right) separating point* of \mathcal{M} if $GM = 0$ ($MG = 0$) implies $M = 0$ for every M in \mathcal{M} . It is easy to see that every left(right) invertible element in \mathcal{A} is a left(right) separating point of \mathcal{M} . If $G \in \mathcal{A}$ is both the left and right separating point, then G is called a *separating point* of \mathcal{M} .

In Section 2, we prove that if \mathcal{A} is a C^* -algebra, \mathcal{M} is a Banach $*$ - \mathcal{A} -bimodule and G in \mathcal{A} is a separating point of \mathcal{M} with $AG = GA$ for every $A \in \mathcal{A}$, then every $*$ -antiderivable mapping at G from \mathcal{A} into \mathcal{M} is a $*$ -derivation.

In Section 3, we investigate $*$ -antiderivable mappings at the point zero and prove that if \mathcal{A} is a zero product determined Banach $*$ -algebra with a bounded approximate identity, \mathcal{M} is an essential Banach

$*\text{-}\mathcal{A}$ -bimodule and δ is a continuous $*$ -antiderivable mapping at the point zero from \mathcal{A} into \mathcal{M} , then there exists a $*$ -Jordan derivation Δ from \mathcal{A} into $\mathcal{M}^{\#}$ and ξ in $\mathcal{M}^{\#}$, such that $\delta(A) = \Delta(A) + A\xi$ for every A in \mathcal{A} , where $\mathcal{M}^{\#}$ stands for the second dual of \mathcal{M} . Thus, we generalize [6, Theorem 3.2(2)] and [17, Theorem 9]. Finally, we prove that every $*$ -antiderivable mapping at the point zero from a von Neumann algebra \mathcal{A} into itself satisfies that $\delta(A) = \Delta(A) + A\delta(I)$ for every A in \mathcal{A} , where Δ is a $*$ -derivation from \mathcal{A} into itself.

2 *-Antiderivable mappings at a separating points

Before we give the main result in this section, we need to prove the following proposition.

Proposition 2.1. *Suppose that \mathcal{A} is a unital Banach algebra, \mathcal{M} is a unital Banach \mathcal{A} -bimodule and G in \mathcal{A} is a separating point of \mathcal{M} with $AG = GA$ for every A in \mathcal{A} . If δ and τ are two linear mappings from \mathcal{A} into \mathcal{M} such that*

$$AB = G \Rightarrow \delta(G) = B\delta(A) + \tau(B)A$$

for each A, B in \mathcal{A} , then τ is a Jordan derivation, δ is a generalized Jordan derivation, that is, for every A in \mathcal{A} , $\delta(A^2) = A\delta(A) + \delta(A)A - A\delta(I)A$. Moreover, the following identities hold:

$$\tau(AG) = \tau(G)A + G\delta(A) - AG\delta(I)$$

and

$$\delta(GA) = A\delta(G) + \tau(A)G$$

for every A in \mathcal{A} .

Proof. By $IG = GI = G$, we have that

$$\delta(G) = G\delta(I) + \tau(G) \quad (2.1)$$

and

$$\delta(G) = \delta(G) + \tau(I)G. \quad (2.2)$$

Since G is a separating point for \mathcal{M} , by (2.2), we have $\tau(I) = 0$. Let T be a invertible element in \mathcal{A} . By $GT^{-1}T = T^{-1}GT = G$, we obtain

$$\delta(G) = T\delta(GT^{-1}) + \tau(T)GT^{-1} \quad (2.3)$$

and

$$\delta(G) = T^{-1}G\delta(T) + \tau(T^{-1}G)T. \quad (2.4)$$

Multiplying by T^{-1} from the left-hand side of (2.3), we can obtain that

$$\delta(GT^{-1}) = T^{-1}\delta(G) - T^{-1}\tau(T)GT^{-1}. \quad (2.5)$$

Multiplying by T^{-1} from the right-hand side of (2.4), we have that

$$\tau(T^{-1}G) = \delta(G)T^{-1} - T^{-1}G\delta(T)T^{-1}. \quad (2.6)$$

Let A be in \mathcal{A} , n be a positive integer with $n > (\|A\| + 1)$ and $B = nI + A$. Then, both B and $I - B$ are invertible in \mathcal{A} . By replacing T with B in (2.3), by (2.5) and $\tau(I) = 0$, we obtain

$$\begin{aligned} \tau(B)GB^{-1} &= \delta(G) - B\delta(GB^{-1}) \\ &= \delta(G) - B\delta(GB^{-1}(I - B) + G) \\ &= (I - B)\delta(G) - B\delta(GB^{-1}(I - B)) \\ &= (I - B)\delta(G) - B[B^{-1}(I - B)\delta(G) - B^{-1}(I - B)\tau((I - B)^{-1}B)GB^{-1}(I - B)] \end{aligned}$$

$$\begin{aligned}
&= (I - B)\tau((I - B)^{-1}B)GB^{-1}(I - B) \\
&= (I - B)\tau((I - B)^{-1} - I)GB^{-1}(I - B) \\
&= (I - B)\tau((I - B)^{-1})GB^{-1}(I - B).
\end{aligned}$$

Since $AG = GA$ for every A in \mathcal{A} , it follows that

$$\tau(B)B^{-1}G = (I - B)\tau((I - B)^{-1})B^{-1}(I - B)G. \quad (2.7)$$

By replacing T with B in (2.4), we obtain

$$\begin{aligned}
B^{-1}G\delta(B) &= \delta(G) - \tau(B^{-1}G)B \\
&= \delta(G) - \tau(B^{-1}(I - B)G + G)B \\
&= \delta(G) - \tau(G)B - \tau(B^{-1}(I - B)G)B.
\end{aligned}$$

By (2.6), it implies that

$$\begin{aligned}
B^{-1}G\delta(B) &= \delta(G) - \tau(G)B - \tau(B^{-1}(I - B)G)B \\
&= \delta(G) - \tau(G)B - [\delta(G)B^{-1}(I - B) - B^{-1}(I - B)G\delta((I - B)^{-1}B)B^{-1}(I - B)]B \\
&= \delta(G) - \tau(G)B - \delta(G)(I - B) + B^{-1}(I - B)G\delta((I - B)^{-1}B)(I - B) \\
&= (\delta(G) - \tau(G))B + B^{-1}(I - B)G\delta((I - B)^{-1} - I)(I - B),
\end{aligned}$$

and by (2.1), it follows that

$$\begin{aligned}
B^{-1}G\delta(B) &= (\delta(G) - \tau(G))B + B^{-1}(I - B)G\delta((I - B)^{-1} - I)(I - B) \\
&= G\delta(I)B - B^{-1}(I - B)G\delta(I)(I - B) + B^{-1}(I - B)G\delta((I - B)^{-1})(I - B).
\end{aligned}$$

By $AG = GA$ for every A in \mathcal{A} , we can obtain that

$$GB^{-1}\delta(B) = G[\delta(I)B - B^{-1}(I - B)\delta(I)(I - B) + B^{-1}(I - B)\delta((I - B)^{-1})(I - B)]. \quad (2.8)$$

Since G is a separating point of \mathcal{M} , by (2.7) and (2.8), we obtain

$$\tau(B)B^{-1} = (I - B)\tau((I - B)^{-1})B^{-1}(I - B) \quad (2.9)$$

and

$$B^{-1}\delta(B) = \delta(I)B - B^{-1}(I - B)\delta(I)(I - B) + B^{-1}(I - B)\delta((I - B)^{-1})(I - B). \quad (2.10)$$

Multiplying by B from the right-hand side of (2.9) and from the left-hand side of (2.10), we can obtain that

$$\tau(B) = (I - B)\tau((I - B)^{-1})(I - B) \quad (2.11)$$

and

$$\delta(B) = B\delta(I)B - (I - B)\delta(I)(I - B) + (I - B)\delta((I - B)^{-1})(I - B). \quad (2.12)$$

Multiplying by G from the right-hand side of (2.11) and by $AG = GA$, it follows that

$$\tau(B)G = (I - B)\tau((I - B)^{-1})(I - B)G = (I - B)\tau((I - B)^{-1})G(I - B).$$

By (2.3),

$$\begin{aligned}
\tau(B)G &= (I - B)[\delta(G) - (I - B)^{-1}\delta(G(I - B))] \\
&= (I - B)\delta(G) - \delta(G - GB) \\
&= \delta(GB) - B\delta(G).
\end{aligned} \quad (2.13)$$

Multiplying by G from the left of (2.12) and by $AG = GA$, it follows that

$$\begin{aligned}
G\delta(B) &= GB\delta(I)B - G(I - B)\delta(I)(I - B) + G(I - B)\delta((I - B)^{-1})(I - B) \\
&= GB\delta(I)B - G(I - B)\delta(I)(I - B) + (I - B)G\delta((I - B)^{-1})(I - B),
\end{aligned}$$

and by (2.4),

$$\begin{aligned}
G\delta(B) &= GB\delta(I)B - G(I - B)\delta(I)(I - B) + [\delta(G) - \tau((I - B)G)(I - B)^{-1}](I - B) \\
&= GB\delta(I)B - G(I - B)\delta(I) + G(I - B)\delta(I)B + \delta(G) - \delta(G)B - \tau(G) + \tau(BG) \\
&= GB\delta(I)B - G\delta(I) + GB\delta(I) + G\delta(I)B - GB\delta(I)B + \delta(G) - \delta(G)B - \tau(G) + \tau(BG) \\
&= GB\delta(I) + [\delta(G) - \tau(G) - G\delta(I)] + [G\delta(I) - \delta(G)]B + \tau(BG),
\end{aligned}$$

and by (2.1), it implies that

$$G\delta(B) = GB\delta(I) - \tau(G)B + \tau(BG). \quad (2.14)$$

By (2.13), (2.14) and $AG = GA$, we have that

$$\delta(GB) = B\delta(G) + \tau(B)G$$

and

$$\tau(BG) = G\delta(B) + \tau(G)B - BG\delta(I).$$

Since $B = nI + A$, we have the following two equations:

$$\delta(GA) = A\delta(G) + \tau(A)G \quad (2.15)$$

and

$$\tau(AG) = \tau(G)A + G\delta(A) - AG\delta(I). \quad (2.16)$$

By (2.15), we know that for every invertible element T in \mathcal{A} , it follows that

$$\begin{aligned}
\delta(G) &= \delta(GTT^{-1}) \\
&= T^{-1}\delta(GT) + \tau(T^{-1})GT \\
&= T^{-1}[T\delta(G) + \tau(T)G] + \tau(T^{-1})TG \\
&= \delta(G) + T^{-1}\tau(T)G + \tau(T^{-1})TG.
\end{aligned}$$

Since G is a separating point,

$$T^{-1}\tau(T) + \tau(T^{-1})T = 0. \quad (2.17)$$

By (2.16), we know that for every invertible element T in \mathcal{A} , it follows that

$$\begin{aligned}
\delta(G) &= \delta(T^{-1}TG) \\
&= TG\delta(T^{-1}) + \tau(TG)T^{-1} \\
&= TG\delta(T^{-1}) + [\tau(G)T + G\delta(T) - TG\delta(I)]T^{-1} \\
&= TG\delta(T^{-1}) + \tau(G) + G\delta(T)T^{-1} - TG\delta(I)T^{-1} \\
&= GT\delta(T^{-1}) + \tau(G) + G\delta(T)T^{-1} - GT\delta(I)T^{-1}.
\end{aligned}$$

Thus,

$$\delta(G) - \tau(G) = GT\delta(T^{-1}) + G\delta(T)T^{-1} - GT\delta(I)T^{-1}.$$

By (2.1), we have that

$$G\delta(I) = GT\delta(T^{-1}) + G\delta(T)T^{-1} - GT\delta(I)T^{-1}.$$

Since G is a separating point, we know that

$$\delta(I) = T\delta(T^{-1}) + \delta(T)T^{-1} - T\delta(I)T^{-1}. \quad (2.18)$$

It follows from (2.17), (2.18) and [13, Lemma 2.1] that τ and $\Delta(A) := \delta(A) - A\delta(I)$ both are Jordan derivations, and hence, δ is a generalized Jordan derivation. \square

Let $G = I$ in Proposition 2.1, we have the following result.

Corollary 2.2. Suppose \mathcal{A} is a unital Banach algebra and \mathcal{M} is a unital Banach \mathcal{A} -bimodule. If δ and τ are two linear mappings from \mathcal{A} into \mathcal{M} , such that

$$AB = I \Rightarrow \delta(I) = B\delta(A) + \tau(B)A$$

for each A, B in \mathcal{A} , then τ is a Jordan derivation and δ is a generalized Jordan derivation. Moreover, for every A in \mathcal{A} , we have that

$$\delta(A) = A\delta(I) + \tau(A).$$

For every $*$ -antiderivable mapping at unit element from a unital Banach $*$ -algebra into its unital Banach $*$ - \mathcal{A} -bimodule, we have the following result.

Corollary 2.3. Suppose that \mathcal{A} is a unital Banach $*$ -algebra and \mathcal{M} is a unital Banach $*$ - \mathcal{A} -bimodule. If δ is a linear mapping from \mathcal{A} into \mathcal{M} such that

$$AB^* = I \Rightarrow \delta(I) = B^*\delta(A) + \delta(B)^*A$$

for each A, B in \mathcal{A} , then δ is a $*$ -Jordan derivation.

Proof. Let τ be the linear mapping from \mathcal{A} into \mathcal{M} such that for every A in \mathcal{A} ,

$$\delta^\sharp(A) = \delta(A^*)^*.$$

It follows that for each A, B in \mathcal{A} , we have that

$$AB = I = A(B^*)^* = I \Rightarrow \delta(I) = B\delta(A) + \delta(B^*)^*A \Rightarrow \delta(I) = B\delta(A) + \delta^\sharp(B)A.$$

It follows from Proposition 2.1 that δ^\sharp is a Jordan derivation, and hence, δ is also a Jordan derivation.

Finally, we prove that δ is a $*$ -Jordan derivation, that is, $\delta(A^*) = \delta(A)^*$ for every A in \mathcal{A} . In fact, by $\delta(I) = 0$ and Corollary 2.2, we have that $\delta(A) = \delta^\sharp(A) = \delta(A^*)^*$. It implies that $\delta(A)^* = \delta(A^*)$ for every A in \mathcal{A} . \square

For every $*$ -antiderivable mapping from a unital C^* -algebra into its Banach $*$ - \mathcal{A} -bimodule, we have the following theorem.

Theorem 2.4. Suppose that \mathcal{A} is a unital C^* -algebra, \mathcal{M} is a unital Banach $*$ - \mathcal{A} -bimodule and G in \mathcal{A} is a separating point of \mathcal{M} with $AG = GA$ for every A in \mathcal{A} . If δ is a linear mapping from \mathcal{A} into \mathcal{M} such that

$$AB^* = G \Rightarrow \delta(G) = B^*\delta(A) + \delta(B)^*A$$

for each A, B in \mathcal{A} , then δ is a $*$ -derivation.

Proof. Let τ be a linear mapping from \mathcal{A} into \mathcal{M} such that for every A in \mathcal{A}

$$\tau(A) = \delta(A^*)^*.$$

It follows that for each A, B in \mathcal{A} , we have that

$$AB = G = A(B^*)^* = G \Rightarrow \delta(G) = B\delta(A) + \delta(B^*)^*A \Rightarrow \delta(G) = B\delta(A) + \tau(B)A.$$

By Proposition 2.1, τ is a Jordan derivation, and hence, δ is also a Jordan derivation. Since \mathcal{A} is a C^* -algebra, δ is a derivation.

Finally, we show that δ is a $*$ -derivation, that is, $\delta(A^*) = \delta(A)^*$ for every A in \mathcal{A} . Let A be an invertible element in \mathcal{A} , by $GA((A^{-1})^*)^* = G$, we have that

$$\delta(G) = A^{-1}\delta(GA) + \delta((A^{-1})^*)^*GA.$$

Since δ is a derivation and $AG = GA$, it follows that

$$\delta(G) = \delta((A^{-1})^*)^*AG + A^{-1}(A\delta(G) + \delta(A)G),$$

that is,

$$\delta((A^{-1})^*)^*AG + A^{-1}\delta(A)G = 0.$$

Since G is a separating point, we have that

$$\delta((A^{-1})^*)^*A + A^{-1}\delta(A) = 0. \quad (2.19)$$

On the other hand, we can obtain that

$$\delta(A^{-1})A + A^{-1}\delta(A) = \delta(I) = 0. \quad (2.20)$$

By (2.19) and (2.20), we know that $\delta((A^{-1})^*)^*A = \delta(A^{-1})A$, that is, $\delta((A^{-1})^*) = \delta(A^{-1})^*$. Thus, for every invertible element $A \in \mathcal{A}$, we have showed that $\delta(A)^* = \delta(A^*)$.

Since every element in a unital C^* -algebra is a linear combination of four unitaries [20], it follows that $\delta(A)^* = \delta(A^*)$ for every $A \in \mathcal{A}$. \square

In particular, let $G = I$ in Theorem 2.4, the following corollary holds.

Corollary 2.5. *Suppose \mathcal{A} is a unital C^* -algebra and \mathcal{M} is a unital Banach ${}^*\mathcal{A}$ -bimodule. If δ is a linear mapping from \mathcal{A} into \mathcal{M} such that*

$$AB^* = I \Rightarrow \delta(I) = B^*\delta(A) + \delta(B)^*A$$

for each A, B in \mathcal{A} , then δ is a *-derivation.

Remark 2.6. Suppose that \mathcal{A} is a unital *-algebra, \mathcal{M} is a unital Banach ${}^*\mathcal{A}$ -bimodule and δ is a linear mapping from \mathcal{A} into \mathcal{M} . We should notice that the following two conditions are not equivalent:

- (1) $A, B \in \mathcal{A}, AB^* = G \Rightarrow B^*\delta(A) + \delta(B)^*A = \delta(G)$;
- (2) $A, B \in \mathcal{A}, A^*B = G \Rightarrow B\delta(A)^* + \delta(B)A^* = \delta(G)$.

Hence, we also can define a *-derivable mapping at G in \mathcal{A} from \mathcal{A} into \mathcal{M} by

$$A, B \in \mathcal{A}, A^*B = G \Rightarrow B\delta(A)^* + \delta(B)A^* = \delta(G).$$

Through the minor modifications, we can obtain the corresponding results.

3 *-Antiderivable mappings at the point zero

A (Banach) algebra \mathcal{A} is said to be *zero product determined* if every (continuous) bilinear mapping ϕ from $\mathcal{A} \times \mathcal{A}$ into any (Banach) linear space \mathcal{X} satisfying

$$\phi(A, B) = 0, \text{ whenever } AB = 0$$

can be written as $\phi(A, B) = T(AB)$, for some (continuous) linear mapping T from \mathcal{A} into \mathcal{X} . In [21], Brešar showed that if $\mathcal{A} = \mathfrak{J}(\mathcal{A})$, then \mathcal{A} is a zero product determined, where $\mathfrak{J}(\mathcal{A})$ is the subalgebra of \mathcal{A} generated by all idempotents in \mathcal{A} , and in [2], the authors proved that every C^* -algebra \mathcal{A} is zero product determined.

Suppose that \mathcal{A} is a Banach algebra and \mathcal{M} is a Banach- \mathcal{A} -bimodule. \mathcal{M} is called an *essential Banach \mathcal{A} -bimodule* if

$$\mathcal{M} = \overline{\text{span}}\{ANB : A, B \in \mathcal{A}, N \in \mathcal{M}\},$$

where $\overline{\text{span}}\{\cdot\}$ denotes the norm closure of the linear span of the set $\{\cdot\}$.

Let \mathcal{A} be a Banach *-algebra, a *bounded approximate identity* for \mathcal{A} is a net $(e_i)_{i \in \Gamma}$ of self-adjoint elements in \mathcal{A} such that $\lim_i \|Ae_i - A\| = \lim_i \|e_iA - A\| = 0$ for every A in \mathcal{A} and $\sup_{i \in \Gamma} \|e_i\| \leq K$ for some $K > 0$.

Theorem 3.1. Suppose \mathcal{A} is a zero product determined Banach $*$ -algebra with a bounded approximate identity and \mathcal{M} is an essential Banach $*$ - \mathcal{A} -bimodule. If δ is a continuous linear mapping from \mathcal{A} into \mathcal{M} such that

$$AB^* = 0 \Rightarrow B^*\delta(A) + \delta(B)^*A = 0$$

for each A, B in \mathcal{A} , then there are a $*$ -Jordan derivation Δ from \mathcal{A} into $\mathcal{M}^{\#}$ and an element ξ in $\mathcal{M}^{\#}$, such that

$$\delta(A) = \Delta(A) + A\xi$$

for every A in \mathcal{A} . Furthermore, ξ can be chosen in \mathcal{M} in each of the following cases:

- (1) \mathcal{A} has an identity.
- (2) \mathcal{M} is a dual $*$ - \mathcal{A} -bimodule.

In [17, Section 4] and in [22, p. 720], the authors showed that $\mathcal{M}^{\#}$ is also a Banach $*$ - \mathcal{A} -bimodule, where $\mathcal{M}^{\#}$ is the second dual space of \mathcal{M} . But, for the sake of completeness, we recall the argument here.

In fact, since \mathcal{M} is a Banach $*$ - \mathcal{A} -bimodule, $\mathcal{M}^{\#}$ turns into a dual Banach \mathcal{A} -bimodule with the operation defined by

$$A \cdot M^{\#} = \lim_{\mu} AM_{\mu} \text{ and } M^{\#} \cdot A = \lim_{\mu} M_{\mu}A$$

for every A in \mathcal{A} and every $M^{\#}$ in $\mathcal{M}^{\#}$, where (M_{μ}) is a net in \mathcal{M} with $\|M_{\mu}\| \leq \|M^{\#}\|$ and $(M_{\mu}) \rightarrow M^{\#}$ in the weak*-topology $\sigma(\mathcal{M}^{\#}, \mathcal{M}^{\#})$.

We define an involution $*$ in $\mathcal{M}^{\#}$ by

$$(M^{\#})^*(\rho) = \overline{M^{\#}(\rho^*)}, \rho^*(M) = \overline{\rho(M^*)},$$

where $M^{\#}$ in $\mathcal{M}^{\#}$, ρ in $\mathcal{M}^{\#}$ and M in \mathcal{M} . Moreover, if (M_{μ}) is a net in \mathcal{M} and $M^{\#}$ is an element in $\mathcal{M}^{\#}$ such that $M_{\mu} \rightarrow M^{\#}$ in $\sigma(\mathcal{M}^{\#}, \mathcal{M}^{\#})$, then for every ρ in $\mathcal{M}^{\#}$, we have that

$$\rho(M_{\mu}) = M_{\mu}(\rho) \rightarrow M^{\#}(\rho).$$

It follows that

$$(M_{\mu}^*)(\rho) = \rho(M_{\mu}^*) = \overline{\rho^*(M_{\mu})} \rightarrow \overline{M^{\#}(\rho^*)} = (M^{\#})^*(\rho)$$

for every ρ in $\mathcal{M}^{\#}$. It means that the involution $*$ in $\mathcal{M}^{\#}$ is continuous in $\sigma(\mathcal{M}^{\#}, \mathcal{M}^{\#})$. Thus, we can obtain that

$$(A \cdot M^{\#})^* = (\lim_{\mu} AM_{\mu})^* = \lim_{\mu} M_{\mu}^*A^* = (M^{\#})^* \cdot A^*.$$

Similarly, we can show that $(M^{\#} \cdot A)^* = A^* \cdot (M^{\#})^*$. It implies that $\mathcal{M}^{\#}$ is a Banach $*$ - \mathcal{A} -bimodule.

In the following, we prove that Theorem 3.1.

Proof. Let $(e_i)_{i \in \Gamma}$ be a bounded approximate identity of \mathcal{A} . Since δ is a continuous mapping, $(\delta(e_i))_{i \in \Gamma}$ is bounded in \mathcal{M} . Moreover, $(\delta(e_i))_{i \in \Gamma}$ is also bounded in $\mathcal{M}^{\#}$. By the Alaoglu-Bourbaki theorem, we may assume that $(\delta(e_i))_{i \in \Gamma}$ converges to the element ξ in $\mathcal{M}^{\#}$ with the weak*-topology $\sigma(\mathcal{M}^{\#}, \mathcal{M}^{\#})$.

Since \mathcal{M} is an essential Banach \mathcal{A} -bimodule, Me_i converges to M with respect to the weak*-topology $\sigma(\mathcal{M}^{\#}, \mathcal{M}^{\#})$ for every M in \mathcal{M} . In fact, since $\mathcal{M} = \overline{\text{span}}\{ANB : A, B \in \mathcal{A}, N \in \mathcal{M}\}$, there exists a sequence $M_n = \sum_{k=1}^{m_n} A_k^n N_k^n B_k^n \in \mathcal{M}$ converging to M in the norm topology, where $A_k^n, B_k^n \in \mathcal{A}$ and $N_k^n \in \mathcal{M}$, $k = 1, 2, \dots$, $m_n, n = 1, 2, \dots$. Since $(ANBe_i)$ converges to ANB in the norm topology for each $A, B \in \mathcal{A}$ and $N \in \mathcal{M}$, it follows that Me_i converges to M in the norm topology for every M in \mathcal{M} .

Define a continuous bilinear mapping from $\mathcal{A} \times \mathcal{A}$ into \mathcal{M} by

$$\phi(A, B) = \delta(B^*)^*A + B\delta(A)$$

for every A, B in \mathcal{A} . It follows that

$$AB = 0 \Rightarrow \phi(A, B) = 0.$$

Since \mathcal{A} is a zero product determined Banach algebra, there exists a continuous linear mapping $T : \mathcal{A} \rightarrow \mathcal{M}$ such that $\phi(A, B) = T(AB)$ for every $A, B \in \mathcal{A}$. Moreover, for every $A, B, C \in \mathcal{A}$, we have that

$$\phi(AB, C) = \phi(A, BC).$$

That is,

$$\delta(C^*)^*AB + C\delta(AB) = \delta(C^*B^*)^*A + BC\delta(A). \quad (3.1)$$

Let $A = e_i$ in (3.1) and take the limit on both sides with the weak*-topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^\sharp)$, we can obtain that

$$\delta(C^*)^*B + C\delta(B) = \delta(C^*B^*)^* + BC\xi. \quad (3.2)$$

Take the involution on both sides in (3.2), it implies that

$$B^*\delta(C^*) + \delta(B)^*C^* = \delta(C^*B^*) + \xi^*C^*B^*. \quad (3.3)$$

Let $C = e_i$ in (3.3) and take the limit on both sides of (3.3) with the weak*-topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^\sharp)$, we can obtain that

$$B^*\xi + \delta(B)^* = \delta(B^*) + \xi^*B^*,$$

that is,

$$\delta(B^*) - B^*\xi = \delta(B)^* - \xi^*B^*. \quad (3.4)$$

Define a linear mapping Δ from \mathcal{A} into $\mathcal{M}^{\sharp\sharp}$ by

$$\Delta(A) = \delta(A) - A\xi$$

for every A in \mathcal{A} . Next, we prove that Δ is a *-Jordan derivation. By (3.4), we have that $\Delta(A^*) = \Delta(A)^*$ for every $A \in \mathcal{A}$.

By replacing C^*, B^* with A, B in (3.3), respectively, we can obtain that

$$B\delta(A) + \delta(B^*)^*A = \delta(AB) + \xi^*AB,$$

that is,

$$\delta(AB) = B\delta(A) + \delta(B^*)^*A - \xi^*AB. \quad (3.5)$$

In the following, we prove that

$$\Delta(A^2) = A\Delta(A) + \Delta(A)A$$

for every A in \mathcal{A} . By the definition of Δ and (3.5), we have the following two equations:

$$\Delta(A^2) = \delta(A^2) - A^2\xi = A\delta(A) + \delta(A^*)^*A - \xi^*A^2 - A^2\xi \quad (3.6)$$

and

$$A\Delta(A) + \Delta(A)A = A(\delta(A) - A\xi) + (\delta(A) - A\xi)A = A\delta(A) - A^2\xi + \delta(A)A - A\xi A. \quad (3.7)$$

By $\Delta(A^*) = \Delta(A)^*$, it implies that $\delta(A^*) - A^*\xi = (\delta(A) - A\xi)^*$, and

$$\delta(A^*)^* - \xi^*A = \delta(A) - A\xi. \quad (3.8)$$

Multiplying by A from the right side of (3.8), we have that

$$(\delta(A^*)^* - \xi^*A)A = (\delta(A) - A\xi)A. \quad (3.9)$$

Finally, by (3.6), (3.7), and (3.9), it follows that $\Delta(A^2) = A\Delta(A) + \Delta(A)A$. Thus, Δ is a *-Jordan derivation.

Suppose that \mathcal{A} is a unital Banach algebra, we can assume that $\xi = \delta(I)$.

Suppose that \mathcal{M} is a dual essential Banach $*\text{-}\mathcal{A}$ -bimodule and \mathcal{M}^\sharp is the pre-dual space of \mathcal{M} , since δ is continuous, we can assume that the net $(\delta(e_i))_{i \in \Gamma}$ converges to element $\xi \in \mathcal{M}$ with the weak*-topology $\sigma(\mathcal{M}^{\sharp\sharp}, \mathcal{M}^\sharp)$. \square

Let G be a locally compact group. The group algebra and the measure convolution algebra of G , are denoted by $L^1(G)$ and $M(G)$, respectively. The convolution product is denoted by \cdot , and the involution is denoted by $*$. It is well known that $M(G)$ is a unital Banach $*$ -algebra, and $L^1(G)$ is a closed ideal in $M(G)$ with a bounded approximate identity. By [23, Lemma 1.1], we know that $L^1(G)$ is zero product determined. By [24, Theorem 3.3.15(ii)], it follows that $M(G)$ with respect to convolution product is the dual of $C_0(G)$ as a Banach $M(G)$ -bimodule.

Since $L^1(G)$ is a semisimple algebra, we know from [25] that every continuous Jordan derivation from $L^1(G)$ into itself is a derivation. By [26, Corollary 1.2], we know that every continuous derivation Δ from $L^1(G)$ into $M(G)$ is an inner derivation, that is, there exists μ in $M(G)$ such that $\Delta(f) = f \cdot \mu - \mu \cdot f$ for every f in $L^1(G)$. Thus, by Theorem 3.1, we can rediscover [6, Theorem 3.2(ii)] as follows:

Corollary 3.2. [6, Theorem 3.2(ii)] *Let G be a locally compact group. If δ is a continuous linear mapping from $L^1(G)$ into $M(G)$ such that*

$$f \cdot g^* = 0 \Rightarrow \delta(g)^* \cdot f + g^* \cdot \delta(f) = 0,$$

for each f, g in $L^1(G)$, then there exist two-element $\mu, \nu \in M(G)$ such that

$$\delta(f) = f \cdot \nu - \mu \cdot f$$

for every f in $L^1(G)$ and $\text{Re}\mu \in \mathcal{Z}(M(G))$.

Proof. By Theorem 3.1, we know that there exist a $*$ -derivation Δ from $L^1(G)$ into $M(G)$ and an element ξ in $M(G)$ such that

$$\delta(f) = \Delta(f) + \xi \cdot f$$

for every f in $L^1(G)$. By [26, Corollary 1.2], it follows that there exists μ in $M(G)$ such that $\Delta(f) = f \cdot \mu - \mu \cdot f$. Since $\Delta(f^*) = \Delta(f)^*$, we have that

$$f^* \cdot \mu - \mu \cdot f^* = \mu^* \cdot f^* - f^* \cdot \mu^*$$

for every f in $L^1(G)$. By [23, Lemma 1.3(ii)], we know $\text{Re}\mu = \frac{1}{2}(\mu + \mu^*) \in \mathcal{Z}(M(G))$. Let $\nu = \mu - \xi$, from the definition of Δ , we have that $\delta(f) = f \cdot \mu - \nu \cdot f$ for every f in $L^1(G)$. \square

In [2], the authors proved that every C^* -algebra \mathcal{A} is zero product determined, and by [27, Corollary 7.5], we know that \mathcal{A} has a bounded approximate identity. Thus, by Theorem 3.1, we can obtain a new proof of [17, Theorem 9] as follows:

Corollary 3.3. [17, Theorem 9] *Let \mathcal{A} be a C^* -algebra and \mathcal{M} an essential Banach $*$ - \mathcal{A} -bimodule. If δ is a continuous linear mapping from \mathcal{A} into $\mathcal{M}^{\#}$ such that*

$$AB^* = 0 \Rightarrow B^* \delta(A) + \delta(B)^* A = 0$$

for every A, B in \mathcal{A} , then there exists a $$ -derivation Δ from \mathcal{A} into $\mathcal{M}^{\#}$ and ξ in $\mathcal{M}^{\#}$ such that*

$$\delta(A) = \Delta(A) + A\xi$$

for every A in \mathcal{A} . Furthermore, ξ can be chosen in \mathcal{M} in each of the following cases:

- (1) \mathcal{A} has an identity.
- (2) \mathcal{M} is a dual $*$ - \mathcal{A} -bimodule.

Suppose that \mathcal{A} is a zero product determined unital $*$ -algebra and δ is a $*$ -antiderivable mapping from \mathcal{A} into a $*$ - \mathcal{A} -bimodule. Let $(e_i)_{i \in \Gamma} = I$ and $\xi = \delta(I)$ in Theorem 3.1, we can obtain the following conclusion.

Corollary 3.4. *Let \mathcal{A} be a zero product determined unital $*$ -algebra and \mathcal{M} be a $*$ - \mathcal{A} -bimodule. If δ is a linear mapping (continuity is not necessary) from \mathcal{A} into \mathcal{M} such that*

$$AB^* = 0 \Rightarrow B^* \delta(A) + \delta(B)^* A = 0$$

for each A, B in \mathcal{A} , then there exists a *-Jordan derivation Δ from \mathcal{A} into \mathcal{M} such that

$$\delta(A) = \Delta(A) + A\delta(I)$$

for every A in \mathcal{A} .

Finally, we investigate *-antiderivable mappings at the zero point on a von Neumann algebra. The following result is the second main theorem in this section.

Theorem 3.5. *Let \mathcal{A} be a von Neumann algebra. If δ is a linear mapping from \mathcal{A} into itself, such that*

$$AB^* = 0 \Rightarrow B^*\delta(A) + \delta(B)^*A = 0$$

for each A, B in \mathcal{A} , then there exists a *-derivation Δ from \mathcal{A} into \mathcal{M} such that

$$\delta(A) = \Delta(A) + A\delta(I)$$

for every A in \mathcal{A} . In particular, δ is a *-derivation when $\delta(I) = 0$.

Proof. Suppose that \mathcal{B} is a commutative von Neumann subalgebra of \mathcal{A} . For each A, B in \mathcal{B} , we have that

$$AB = 0 \Leftrightarrow AB^* = 0 \Leftrightarrow A^*B = 0 \Leftrightarrow A^*B^* = 0.$$

Let A, B, C be in \mathcal{B} satisfying $AB = BC = 0$. Since $A^*B^* = 0$, we obtain $B^*\delta(A^*) + \delta(B)^*A^* = 0$. By multiplying the previous identity by C^* from the left-hand side, we have $C^*\delta(B)^*A^* = 0$, equivalently, $A\delta(B)C = 0$. Therefore, [28, Theorem 2.12] implies that δ is automatically continuous, and by [17, Theorem 9], we can prove this theorem. \square

Remark 3.6. Let \mathcal{A} be a unital *-algebra and \mathcal{M} be a unital Banach ${}^*\mathcal{A}$ -bimodule. δ is a linear mapping from \mathcal{A} into \mathcal{M} such that

$$A^*B = 0 \Rightarrow B\delta(A^*) + \delta(B)A^* = 0.$$

Through the minor modifications of Theorems 3.1 and 3.5, we can obtain the corresponding results.

Acknowledgements: The authors thank the referee for his or her suggestions. This research was partly supported by the National Natural Science Foundation of China (Grant Nos. 11801342 and 11801005); Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-693); Scientific research plan projects of Shannxi Education Department (Grant No. 19JK0130).

Conflict of interest: The author states no conflict of interest.

References

- [1] A. Peralta and B. Russo, *Automatic continuity of derivations on C^* -algebras and JB^* -triples*, J. Algebra **399** (2014), no. 2, 960–977, DOI: <https://doi.org/10.1016/j.jalgebra.2013.10.017>.
- [2] J. Alaminos, M. Bresssar, J. Extremera, and A. Villena, *Maps preserving zero products*, Studia Math. **193** (2009), no. 2, 131–159, DOI: <https://doi.org/10.4064/sm193-2-3>.
- [3] J. Alaminos, M. Bresssar, J. Extremera, and A. Villena, *Characterizing Jordan maps on C^* -algebras through zero products*, Proc. Edinburgh Math. Soc. **53** (2010), no. 3, 543–555, DOI: <https://doi.org/10.1017/S0013091509000534>.
- [4] M. Bresssar, *Characterizing homomorphisms, derivations and multipliers in rings with idempotents*, Proc. Roy. Soc. Edinburgh Sect. A **137** (2007), no. 1, 9–21, DOI: <https://doi.org/10.1017/S0308210504001088>.
- [5] H. Ghahramani, *On derivations and Jordan derivations through zero products*, Oper. Matrices **8** (2014), no. 3, 759–771, DOI: <https://doi.org/10.7153/oam-08-42>.
- [6] H. Ghahramani, *Linear maps on group algebras determined by the action of the derivations or anti-derivations on a set of orthogonal elements*, Results Math. **73** (2018), no. 4, 133, DOI: <https://doi.org/10.1007/s00025-018-0898-2>.
- [7] H. Ghahramani and Z. Pan, *Linear maps on *-algebras acting on orthogonal elements like derivations or anti-derivations*, Filomat **13** (2018), no. 13, 4543–4554, DOI: <https://doi.org/10.2298/FIL1813543G>.

- [8] M. Jiao and J. Hou, *Additive maps derivable or Jordan derivable at zero point on nest algebras*, Linear Algebra Appl. **432** (2010), no. 11, 2984–2994, DOI: <https://doi.org/10.1016/j.laa.2010.01.009>.
- [9] M. Kosssan, T. Lee, and Y. Zhou, *Bilinear forms on matrix algebras vanishing on zero products of xy and yx* , Linear Algebra Appl. **453** (2014), 110–124, DOI: <https://doi.org/10.1016/j.laa.2014.04.004>.
- [10] R. An and J. Hou, *Characterizations of Jordan derivations on rings with idempotent*, Linear Multilinear Algebra **58** (2010), no. 6, 753–763, DOI: <https://doi.org/10.1080/03081080902992047>.
- [11] J. He, J. Li, and W. Qian, *Characterizations of centralizers and derivations on some algebras*, J. Korean Math. Soc. **54** (2017), no. 2, 685–696, DOI: <https://doi.org/10.4134/JKMS.j160265>.
- [12] J. Hou and R. An, *Additive maps on rings behaving like derivations at idempotent-product elements*, J. Pure Appl. Algebra **215** (2011), no. 8, 1852–1862, DOI: <https://doi.org/10.1016/j.jpaa.2010.10.017>.
- [13] J. Li and J. Zhou, *Characterizations of Jordan derivations and Jordan homomorphisms*, Linear Multilinear Algebra **59** (2011), no. 2, 193–204, DOI: <https://doi.org/10.1080/03081080903304093>.
- [14] F. Lu, *Characterizations of derivations and Jordan derivations on Banach algebras*, Linear Algebra Appl. **430** (2009), no. 8, 2233–2239, DOI: <https://doi.org/10.1016/j.laa.2008.11.025>.
- [15] S. Zhao and J. Zhu, *Jordan all-derivable points in the algebra of all upper triangular matrices*, Linear Algebra Appl. **433** (2010), no. 11–12, 1922–1938, DOI: <https://doi.org/10.1016/j.laa.2010.07.006>.
- [16] J. Zhu and C. Xiong, *Derivable mappings at unit operator on nest algebras*, Linear Algebra Appl. **422** (2007), no. 2–3, 721–735, DOI: <https://doi.org/10.1016/j.laa.2006.12.002>.
- [17] D. Abulhamil, F. Jamjoom, and A. Peralta, *Linear maps which are anti-derivable at zero*, Bull. Malays. Math. Sci. Soc. **43** (2020), no. 2, 4315–4334, DOI: <https://doi.org/10.1007/s40840-020-00918-7>.
- [18] B. Fadaee and H. Ghahramani, *Linear maps behaving like derivations or anti-derivations at orthogonal elements on C^* -algebras*, Bull. Malays. Math. Sci. Soc. **43** (2020), no. 7, 2851–2859, DOI: <https://doi.org/10.1007/s40840-019-00841-6>.
- [19] A. Kishimoto, *Dissipations and derivations*, Commun. Math. Phys. **47** (1976), no. 1, 25–32, DOI: <https://doi.org/10.1007/BF01609350>.
- [20] R. Kadison and J. Ringrose, *Fundamentals of the theory of operator algebras*, Vol. I, Elementary theory, Pure and Applied Mathematics, 100, Academic Press, New York, 1983.
- [21] M. Bressar, *Multiplication algebra and maps determined by zero products*, Linear Multilinear Algebra **60** (2012), no. 7, 763–768, DOI: <https://doi.org/10.1080/03081087.2011.564580>.
- [22] M. Burgos, F. Fernández-Polo, and A. Peralta, *Local triple derivations on C^* -algebras and JB^* -triples*, Bull. Lond. Math. Soc. **46** (2014), no. 4, 709–724, DOI: <https://doi.org/10.1112/blms/bdu024>.
- [23] J. Alaminos, M. Bressar, J. Extremera, and A. Villena, *Orthogonality preserving linear maps on group algebras*, Math. Proc. Camb. Phil. Soc. **158** (2015), no. 3, 493–504, DOI: <https://doi.org/10.1017/S0305004115000110>.
- [24] H. Dales, *Banach Algebras and Automatic Continuity*, London Mathematical Society Monographs Series 24, Oxford Univ. Press, New York, 2000.
- [25] A. Sinclair, *Jordan automorphisms on a semisimple Banach algebra*, Proc. Amer. Math. Soc. **25** (1970), no. 3, 526–528, DOI: <https://doi.org/10.1090/S0002-9939-1970-0259604-2>.
- [26] V. Losert, *The derivation problem for group algebras*, Ann. Math. **168** (2008), no. 1, 221–246, DOI: <https://doi.org/10.4007/annals.2008.168.221>.
- [27] M. Takesaki, *Theory of Operator Algebras*, Springer-Verlag, New York, 2001.
- [28] A. Ben and M. Peralta, *Linear maps on C^* -algebras which are derivations or triple derivations at a point*, Linear Algebra Appl. **538** (2018), no. 1, 1–21, DOI: <https://doi.org/10.1016/j.laa.2017.10.009>.