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Abstract: Let A be a *-algebra, M be a *-A-bimodule, and 6 be a linear mapping from A into M. § is called
a *-derivation if 5(AB) = A5(B) + 6(A)B and §(A*) = 6(A)* for each A, B in A. Let G be an element in A, § is
called a *-antiderivable mapping at G if AB* = G = 6(G) = B*6(A) + 6(B)*A for each A, B in A. We prove
that if A is a C*-algebra, M is a Banach *-A-bimodule and G in A is a separating point of M with AG = GA
for every A in A, then every *-antiderivable mapping at G from A into M is a *-derivation. We also prove
that if A is a zero product determined Banach *-algebra with a bounded approximate identity, M is an
essential Banach *-A-bimodule and § is a continuous *-antiderivable mapping at the point zero from A
into M, then there exists a *-Jordan derivation A from A into M* and an element ¢ in M such that
6(A) = A(A) + A¢ for every A in A. Finally, we show that if A is a von Neumann algebra and § is a
x-antiderivable mapping (not necessary continuous) at the point zero from A into itself, then there exists
a *-derivation A from A into itself such that 6(4) = A(A) + A6(I) for every A in A.
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1 Introduction

Throughout this paper, let A be an associative algebra over the complex field C and M be an A -bimodule.
A linear mapping é from A into M is called a derivation if

6(AB) = A5(B) + 6(A)B
for each A, B in A; and § is called a Jordan derivation if
86(A%) = AS(A) + 8(A)A
for every A in A. It follows from [1, Corollary 17] that every Jordan derivation from a C*-algebra A into

a Banach A-bimodule is a derivation.
Let G be an element in A, § is called a derivable mapping at G if

AB = G = 6(G) = A6(B) + 6(A)B
for each A, B in A. In [2-9], the authors investigated derivable mappings at the point zero. In [10-16],

the authors investigated derivable mappings at nonzero points.
A linear mapping é from A into M is called an antiderivable mapping at G if

AB =G = 6(G) = B6(A) + 6(B)A
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for each A, B in A. In [6,7] and [17,18], the authors characterized antiderivable mappings at the point zero
on properly infinite von Neumann algebras, C*-algebras and group algebras.
By an involution on an algebra A, we mean a mapping * from A into itself, such that

(AA + uB)* = AA* + iB*, (AB)* = B*A* and (&) = A4,

whenever A, B in A, A, u in C and A, ji denote the conjugate complex numbers. An algebra A equipped
with an involution is called a *-algebra. Moreover, let A be a *-algebra, an A-bimodule M is called
a *-A-bimodule if M equipped with a *-mapping from M into itself, such that

(AM + uN)* = AM* + iN*, (AM)* = M*A*, (MA)* = AM* and (M*)* = M,

whenever A in A, M, N in M and A,y in C.

An element A in a *-algebra A is called Hermitian if A* = A; an element P in A is called an idempotent
if P2 = P; and P is called a projection if P is both a self-adjoint element and an idempotent.

In [19], Kishimoto studied the *-derivations on a C*-algebra and proved that the closure of a normal
*-derivation on a UHF algebra satisfying a special condition is a generator of a one-parameter group of
*-gutomorphisms. Let A be a *-algebra and M be a *-A-bimodule. A derivation § from A into M is called
a *-derivation if §(A*) = 6(A)* for every A in A. Obviously, every derivation § is a linear combination of
two *-derivations. In fact, we can define a linear mapping 6 from A into M by 6%(A) = 6(4*)* for every A
in A; therefore, 6 = §; + i6,, where 6§; = %(5 + 6% and 8, = %(6 — 6%). It is easy to show that §; and §, are
both *-derivations.

Similar to derivable and antiderivable mappings, we can consider *-derivable and *-antiderivable
mappings. Let A be a *-algebra, M be a *-A-bimodule and G be an element in A. A linear mapping 6
from A into M is called a *-derivable mapping at G if

AB* = G = 6(G) = AS(B)* + 6(A)B*
for each A, B in A and 6 is called a *-antiderivable mapping at G if
AB* = G = 6(G) = B*6(A) + 6(B)*A

for each A, B in A.

In [6], Ghahramani supposed that G is a locally compact group, L'(¢) and M(G) denote the the group
algebra and the measure convolution algebra of G, respectively, and showed that if § is a *-derivable
mapping or a *-antiderivable mapping at the point zero from LY(@) into M(&G), then there exist two elements
B, C in M(G) such that §(A) = AB — CA for every A in L(G). In [7], Ghahramani and Pan supposed that A is
a properly infinite W*-algebra or a simple C*-algebra with a nontrivial idempotent, and proved that if § is a
*-derivable mapping at the point zero from A into itself, then there exist two elements B, C in A such that
6(A) = AB - CA for every A in A; if § is a *-antiderivable mapping at the point zero from A into itself, then
6(A) = 6(1)A for every A in A. In [17], Abulhamil et al. supposed that A is a C*-algebra and M is an
essentially Banach A-bimodule, and proved that if § is a continuous *-antiderivable mapping at the point
zero from A into M, then there exists a *-derivation A from A into M and & in M* such that
8(A) = A(A) + Aé for every A in A, where MM is the second dual of M. In [18], Fadaee and Ghahramani
supposed that A is a von Neumann algebra or a simple unital C*-algebra, and proved that if § is a
x-derivable mapping or a *-antiderivable mapping at the point zero from A into itself, then there exist
two elements B, C in A such that 6(A) = AB — CA for every A in A.

For an algebra A and an A-bimodule M, we call an element G in A a left (right) separating point of M
if GM = 0 (MG = 0) implies M = O for every M in M. It is easy to see that every left(right) invertible element
in A is a left(right) separating point of M. If G € A is both the left and right separating point, then G is
called a separating point of M.

In Section 2, we prove that if A is a C*-algebra, M is a Banach *-A-bimodule and G in A is a separating
point of M with AG = GA for every A € A, then every *-antiderivable mapping at G from A into M is
a *-derivation.

In Section 3, we investigate *-antiderivable mappings at the point zero and prove that if A is a zero
product determined Banach *-algebra with a bounded approximate identity, M is an essential Banach
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*-A-bimodule and § is a continuous *-antiderivable mapping at the point zero from A into M, then there
exists a *-Jordan derivation A from A into M* and & in M, such that §(4) = A(A) + A& for every A in A,
where M! stands for the second dual of M. Thus, we generalize [6, Theorem 3.2(2)] and [17, Theorem 9].
Finally, we prove that every *-antiderivable mapping at the point zero from a von Neumann algebra A into
itself satisfies that 6(A) = A(A) + A6(I) for every A in A, where A is a *-derivation from A into itself.

2 *=-Antiderivable mappings at a separating points
Before we give the main result in this section, we need to prove the following proposition.

Proposition 2.1. Suppose that A is a unital Banach algebra, M is a unital Banach A-bimodule and G in A is
a separating point of M with AG = GA for every A in A. If 6 and T are two linear mappings from A into M
such that

AB =G = 6(G) = B6(A) + 1(B)A

foreach A, Bin A, then T is a Jordan derivation, 6 is a generalized Jordan derivation, that is, for every A in A,
5(A%) = A8(A) + 8(A)A — AS(I)A. Moreover, the following identities hold:

T(AG) = T(G)A + G6(A) — AGS(D)
and
6(GA) = A6(G) + T(A)G

for every A in A.

Proof. By IG = GI = G, we have that

6(G) = G6() + 1(G) (2.1)
and

8(G) = 6(G) + T()G. (2.2)

Since G is a separating point for M, by (2.2), we have 7(I) = 0. Let T be a invertible element in A.
By GT'T = T"'GT = G, we obtain

8(G) = TS(GT™Y) + ©(T)GT? (2.3)
and
6(G) = T'G6(T) + 1(T'G)T. (2.4)
Multiplying by T-! from the left-hand side of (2.3), we can obtain that
8(GT™) = T6(G) — T (T)GT™. (2.5)
Multiplying by T-! from the right-hand side of (2.4), we have that
7(T7'G) = 6(G)T! - T-'GS6(T)T . (2.6)

Let A be in A, n be a positive integer with n > (|A|| + 1) and B = nI + A. Then, both B and I — B are
invertible in A. By replacing T with B in (2.3), by (2.5) and 7(I) = 0, we obtain

7(B)GB™' = 6(G) — BS(GB™)
= 6(G) - BS(GBY(I - B) + G)
= (I - B)5(G) — BS(GB™\(I - B))
= (I - B)5(G) — B[BX(I - B)8(G) — B'\(I - B)t((I - B)"'B)GB™\(I - B)]
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= - B)r(d - BY''B)GB'(I - B)
=(I-B)1({{-B'-1GBYI-B)
= - B)({d - BYYGB'(I - B).
Since AG = GA for every A in A, it follows that
7(B)B'G = (I - B)r(I - B)'Y)BY(I - B)G. 2.7)
By replacing T with B in (2.4), we obtain

BG8(B) = 6(G) - 1(B'G)B
= 6(G) - ©(BY(I - B)G + G)B
= 8(G) - 7(G)B - (B\(I - B)G)B.

By (2.6), it implies that

BG8(B) = 6(G) - 1(G)B - 1(B'\(I - B)G)B
= 8(G) - 7(G)B - [6(G)BX(I - B) — B'\(I - B)GS((I - BY'B)B(I - B)]B
= 8(G) — 7(G)B - 8(G)(I - B) + B\ — BYGS((I — BY'B)(I — B)
= (8(G) - 7(G)B + B\(I - B)GS((I - B)™* — I)(I - B),

and by (2.1), it follows that

B1G8(B) = (6(G) — (G))B + BX(I - B)GS((I - B)™ — I)(I - B)
=G6(I)B - B\(I - B)GS(I)I - B) + B\(I - B)GS((I - By )(I - B).

By AG = GA for every A in A, we can obtain that
GB'6(B) = G[6(I)B - B™\(I - B)6(I)I - B) + B™\(I - B)6(I - By™H{U - B)]. (2.8)
Since G is a separating point of M, by (2.7) and (2.8), we obtain
7(B)B™' = (I - B)r((I - By)B'(I - B) (2.9)
and
B16(B) = 6(I)B - B'\(I - B)6(I)(I - B) + B'(I - B)6((I - By'){I - B). (2.10)
Multiplying by B from the right-hand side of (2.9) and from the left-hand side of (2.10), we can obtain that
7(B) = (I - Byr((I - By')(I - B) (2.11)
and
8(B) = B6(I)B — (I - B)6(I)(I - B) + (I - B)6(I - B)™H){U - B). (2.12)
Multiplying by G from the right-hand side of (2.11) and by AG = GA, it follows that
T(B)G = (I - Byr((I - By)(I - B)G = (I - B)r((I - B)')G({ - B).
By (2.3),

1(B)G = (I - B)[6(G) - (I - B)'6(G(UI - B))]
=(I - B)8(G) - 8(G — GB) (2.13)
= 5(GB) - B5(G).

Multiplying by G from the left of (2.12) and by AG = GA, it follows that

G8(B) = GBS(I)B — G(I — BYS(I)(I - B) + G(I — B)S((I - B)™)(I - B)
= GBS()B - G(I - B)S(I)I - B) + (I - B)GS((I - By ) - B),

and by (2.4),
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G8(B) = GBS(I)B — G(I - B)S(I)(I - B) + [6(G) - 7({I - B)G)(I - B)']U - B)
= GBS(I)B - G - B)S(I) + G - B)S(I)B + 8(G) - 8(G)B — 1(G) + 1(BG)
= GBS(I)B — G8(I) + GBS(I) + GS(I)B — GBS(I)B + 6(G) — 8(G)B - 1(G) + 7(BG)
= GBS(I) + [6(G) - 1(G) — GS(D)] + [GS(I) - 8(G)]B + T(BG),

and by (2.1), it implies that
G6(B) = GB6(I) — 1(G)B + 1(BG). (2.14)
By (2.13), (2.14) and AG = GA, we have that
6(GB) = B6(G) + 1(B)G
and
7(BG) = G6(B) + 1(G)B — BG6(I).
Since B = nlI + A, we have the following two equations:
6(GA) = A6(G) + t(A)G (2.15)
and
T(AG) = T(G)A + G6(A) — AGS(I). (2.16)
By (2.15), we know that for every invertible element T in A, it follows that

8(G) = 6(GTT-Y)
= T6(GT) + ©(THGT
=TTS(G) + ©(T)G] + (T HTG
= 8(G) + T(T)G + T(THTG.

Since G is a separating point,
T(T) + 7(T"H)T = 0. (2.17)
By (2.16), we know that for every invertible element T in A, it follows that

8(G) = 8(T-'TG)
=TGS(T™) + 7(TG)T!
= TGS(TY) + [1(G)T + G&(T) — TGS(I)|T!
— TGS(T-Y) + 7(G) + G8(T)T-! — TGE()T-!
= GTS(T™) + 7(G) + GS(T)T-! — GTS(I)T.

Thus,
8(G) — 7(G) = GTS(TY) + GS(T)T - GTS(I)T .
By (2.1), we have that
G8(I) = GTS(T) + G6(T)T! — GTS(I)T
Since G is a separating point, we know that
8(I) = TS(T™Y) + 6(T)T! - TS()T L (2.18)
It follows from (2.17), (2.18) and [13, Lemma 2.1] that T and A(4) = 6(4) — AS(I) both are Jordan derivations,

and hence, § is a generalized Jordan derivation. O

Let G = I in Proposition 2.1, we have the following result.
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Corollary 2.2. Suppose A is a unital Banach algebra and M is a unital Banach A-bimodule. If 6 and T are
two linear mappings from A into M, such that

AB =1 = 8(I) = B§(A) + 1(B)A

foreach A, B in A, then T is a Jordan derivation and § is a generalized Jordan derivation. Moreover, for every
A in A, we have that

8(A) = AS(I) + T(A).

For every *-antiderivable mapping at unit element from a unital Banach *-algebra into its unital Banach
*-A-bimodule, we have the following result.

Corollary 2.3. Suppose that A is a unital Banach *-algebra and M is a unital Banach *-A-bimodule. If § is
a linear mapping from A into M such that

AB* =1 = 8(I) = B*5(A) + 6(B)*A

for each A, B in A, then § is a *-Jordan derivation.

Proof. Let 7 be the linear mapping from A into M such that for every A in A,
8% A) = 6(A).
It follows that for each A, B in A, we have that
AB=1=AB* =1= 6(I) = B6(A) + 6(B*)*A = 6(I) = B6(A) + 6%(B)A.

It follows from Proposition 2.1 that ! is a Jordan derivation, and hence, § is also a Jordan derivation.
Finally, we prove that § is a *-Jordan derivation, that is, 6(4*) = §(A)* for every A in A. In fact, by

8(I) = 0 and Corollary 2.2, we have that §(A) = 6%(4) = §(A*)*. It implies that 6(A)* = 8(4*) for every A in

A. O

For every *-antiderivable mapping from a unital C*-algebra into its Banach #-A-bimodule, we have
the following theorem.

Theorem 2.4. Suppose that A is a unital C*-algebra, M is a unital Banach *-A-bimodule and G in A is
a separating point of M with AG = GA for every A in A. If § is a linear mapping from A into M such that

AB* = G = 6(G) = B*6(4) + 6(B)°A

for each A, B in A, then § is a *-derivation.

Proof. Let T be a linear mapping from A into M such that for every A in A
T(A) = 6(A)~.
It follows that for each A, B in A, we have that
AB =G = A(B*)* =G = 6(G) = B6(A) + 6(B*)*A = 6(G) = B6(A) + 1(B)A.

By Proposition 2.1, T is a Jordan derivation, and hence, § is also a Jordan derivation. Since A is a C*-algebra,
6 is a derivation.

Finally, we show that § is a *-derivation, that is, §(4*) = §(A)* for every A in A. Let A be an invertible
element in A, by GA((A1)*)* = G, we have that

8(G) = A16(GA) + 6((A1H)")*GA.
Since 6 is a derivation and AG = GA, it follows that

8(G) = 8((A1))AG + AV(AS(G) + 8(A)G),
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that is,

S((AN))*AG + A 16(A)G = 0.
Since G is a separating point, we have that

S((AH) A + A16(4) = 0. (2.19)

On the other hand, we can obtain that

S(AHA + A16(A4) = 6(I) = 0. (2.20)
By (2.19) and (2.20), we know that §((41)*)*A = 6(A™)A, that is, §((A1)*) = §(A1)*. Thus, for every invertible
element A € A, we have showed that §(4)* = 6(4*).

Since every element in a unital C*-algebra is a linear combination of four unitaries [20], it follows that
6(A)* = 6(A) for every A € A. O

In particular, let G = I in Theorem 2.4, the following corollary holds.

Corollary 2.5. Suppose A is a unital C*-algebra and M is a unital Banach *-A-bimodule. If § is a linear
mapping from A into M such that

AB* = I = 8(I) = B*8(A) + 8(B)*A

for each A, B in A, then 6 is a *-derivation.

Remark 2.6. Suppose that A is a unital *-algebra, M is a unital Banach *-A-bimodule and § is a linear
mapping from A into M. We should notice that the following two conditions are not equivalent:

(1) A,Be A,AB* = G = B*6(A) + 6(B)*A = 6(G);

(2) A,B € A, AB =G = BS§(A)* + 8(B)A* = 6(G).

Hence, we also can define a *-derivable mapping at G in A from A into M by
A,B e A,AB =G = B6(A) + 6(B)A* = 6(G).

Through the minor modifications, we can obtain the corresponding results.

3 =-Antiderivable mappings at the point zero

A (Banach) algebra A is said to be zero product determined if every (continuous) bilinear mapping ¢ from
A x A into any (Banach) linear space X satisfying

¢(A, B) = 0, whenever AB =0

can be written as ¢(4, B) = T(AB), for some (continuous) linear mapping T from A into X. In [21], BreSar
showed that if A = J(A), then A is a zero product determined, where J(A) is the subalgebra of A
generated by all idempotents in A, and in [2], the authors proved that every C*-algebra A is zero product
determined.

Suppose that A is a Banach algebra and M is a Banach-A-bimodule. M is called an essential Banach
A-bimodule if

M =5pan{ANB : A,B € A,N € M},

where 5pan{-} denotes the norm closure of the linear span of the set {-}.

Let A be a Banach *-algebra, a bounded approximate identity for A is a net (¢);r of self-adjoint
elements in A such that lim;|Ae; — A|| = lim;|le;A — A =0 for every A in A and supjcrllel < K for
some K > 0.
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Theorem 3.1. Suppose A is a zero product determined Banach *-algebra with a bounded approximate
identity and M is an essential Banach *-A-bimodule. If § is a continuous linear mapping from A into M
such that

AB* = 0 = B*6(A) + 6(B)*A = 0
foreach A, B in A, then there are a *-Jordan derivation A from A into M* and an element & in M, such that
8(A) = A(A) + AE

for every A in A. Furthermore, ¢ can be chosen in M in each of the following cases:
(1) A has an identity.
(2) M is a dual *-A-bimodule.

In [17, Section 4] and in [22, p. 720], the authors showed that M#! is also a Banach *-A -bimodule, where
Mt is the second dual space of M. But, for the sake of completeness, we recall the argument here.

In fact, since M is a Banach *-A-bimodule, M* turns into a dual Banach A-bimodule with the
operation defined by

A - M¥ =limAM, and M* - A = limM,A
H H

for every A in A and every M* in M, where (M,) is a net in M with |M,| < [M*¥| and (M,) — M* in
the weak*-topology a(MH, MH).

We define an involution * in M# by

(M¥)<(p) = M*(p*), p*(M) = p(M*),

where M* in M¥, p in M* and M in M. Moreover, if (M,) is a net in M and M* is an element in M* such
that M, — M* in o(M*, M?¥), then for every p in M?, we have that

pMy) = My(p) — M*(p).
It follows that
M)(p) = p(M) = p*(M,) — M¥(p*) = (M*")*(p)

for every p in M*. It means that the involution * in M* is continuous in a(M*, M*). Thus, we can obtain
that

(A - M“)* — (li}?lAMH)* — li}?lM;A* = (Mlili)*. A,

Similarly, we can show that (M* - A)* = A* -(M*)*. It implies that M" is a Banach *-#A-bimodule.
In the following, we prove that Theorem 3.1.

Proof. Let (e);cr be a bounded approximate identity of A. Since § is a continuous mapping, (6(e;))ier is
bounded in M. Moreover, (6(e;));cr is also bounded in M. By the Alaoglu-Bourbaki theorem, we may
assume that (6(e;));er converges to the element & in M with the weak*-topology a(M?#, MH).

Since M is an essential Banach-A-bimodule, Me; converges to M with respect to the weak*-topology
o(MH, M?) for every M in M. In fact, since M = Span{ANB : A, B € A, N € M}, there exists a sequence
M, = ZmAPN{BY € M converging to M in the norm topology, where Af', Bf' € A and Ny e M, k=1,2,...,
my, n =1,2,.... Since (ANBe;) converges to ANB in the norm topology for each A,B € A and N ¢ M,
it follows that Me; converges to M in the norm topology for every M in M.

Define a continuous bilinear mapping from A x A into M by

¢(4, B) = 6(B*)*A + B6(A)
for every A, B in A. It follows that
AB =0 = ¢(A,B) =0.
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Since A is a zero product determined Banach algebra, there exists a continuous linear mapping
T: A — M such that ¢(A, B) = T(AB) for every A, B € A. Moreover, for every A, B, C € A, we have that

¢(AB, C) = ¢(4A, BC).
That is,
6(C*»*AB + C6(AB) = 6(C*B*)*A + BC6(A). (3.1
Let A = ¢; in (3.1) and take the limit on both sides with the weak*-topology o(M?*, M?¥), we can obtain that
6(C*)*B + C6(B) = 6(C*B*)* + BC¢. (3.2
Take the involution on both sides in (3.2), it implies that
B*6(C*) + 6(B)*C* = 6(C*B*) + &*C*B*. (3.3

Let C = ¢ in (3.3) and take the limit on both sides of (3.3) with the weak*-topology c(M¥, M%), we can
obtain that

B*¢ + 6(B)* = 6(B*) + ¢&*B*,
that is,
8(B*) — B = 8(B) — £°B. (3.4)
Define a linear mapping A from A into M¥ by
AA) = 8(A) — A&

for every A in A. Next, we prove that A is a *-Jordan derivation. By (3.4), we have that A(4*) = A(A)* for
every A € A.
By replacing C*, B* with A, B in (3.3), respectively, we can obtain that

B6(A) + 6(B*)*A = 6(AB) + ¢*AB,
that is,
86(AB) = B6(A) + 6(B*)*A — ¢*AB. (3.5
In the following, we prove that
AA?) = ANA) + A(A)A
for every A in A. By the definition of A and (3.5), we have the following two equations:
A(A?) = §(A%) — A28 = AB(A) + (A ) A — &A? — A2 (3.6)
and
AA(A) + A(A)A = A(B(A) - A&) + (8(A) - AE)A = AB(A) — A?¢ + 5(A)A — AEA. (3.7)
By A(A*) = A(A)*, it implies that §(4*) — A*¢ = (6(A) — A&)*, and
(A" ) — &A = 6(A) - A¢. (3.8)
Multiplying by A from the right side of (3.8), we have that
(6(A) - §"A)A = (6(A) - ADA. 3.9

Finally, by (3.6), (3.7), and (3.9), it follows that A(4%) = AA(A) + A(A)A. Thus, A is a *-Jordan derivation.
Suppose that A is a unital Banach algebra, we can assume that & = ().
Suppose that M is a dual essential Banach *-A-bimodule and M is the pre-dual space of M, sinceé is
continuous, we can assume that the net (6(e;));cr converges to element & € M with the weak*-topology
oM, M), m|
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Let G be a locally compact group. The group algebra and the measure convolution algebra of G, are
denoted by LY(G) and M(G), respectively. The convolution product is denoted by -, and the involution is
denoted by *. It is well known that M(G) is a unital Banach *-algebra, and L(G) is a closed ideal in M(G)
with a bounded approximate identity. By [23, Lemma 1.1], we know that L(G) is zero product determined.
By [24, Theorem 3.3.15(ii)], it follows that M(G) with respect to convolution product is the dual of Co(G) as
a Banach M(G)-bimodule.

Since L'(G) is a semisimple algebra, we know from [25] that every continuous Jordan derivation from
LY(@) into itself is a derivation. By [26, Corollary 1.2], we know that every continuous derivation A from LY(G)
into M(G) is an inner derivation, that is, there exists y in M(G) such that A(f) = f-u — u - f for every f in
LY(G). Thus, by Theorem 3.1, we can rediscover [6, Theorem 3.2(ii)] as follows:

Corollary 3.2. [6, Theorem 3.2(ii)] Let G be a locally compact group. If 6§ is a continuous linear mapping
from L{(G) into M(G) such that

f-g=0=26(@) f+g - 6(f) =0,
for each f, g in LX(G), then there exist two-element u, v € M(G) such that
6(f)=f-v-u-f
for every f in L(G) and Reu € Z(M(G)).

Proof. By Theorem 3.1, we know that there exist a *-derivation A from LY(G) into M(G) and an element &
in M(G) such that

§(f)=Af)+&-f

for every f in LY(G). By [26, Corollary 1.2], it follows that there exists y in M(G) such that A(f) = f-u - u - f.
Since A(f*) = A(f)*, we have that

frow-—pfr=pfr-fow

for every f in LY(G). By [23, Lemma 1.3(ii)], we know Reu = %(y + ) € Z(M(G)). Let v = u — ¢, from the
definition of A, we have that §(f) = f-u - v - f for every f in LY(G). O

In [2], the authors proved that every C*-algebra A is zero product determined, and by [27, Corollary 7.5],
we know that A has a bounded approximate identity. Thus, by Theorem 3.1, we can obtain a new proof of
[17, Theorem 9] as follows:

Corollary 3.3. [17, Theorem 9] Let A be a C*-algebra and M an essential Banach *-A-bimodule. If § is
a continuous linear mapping from A into M such that

AB* =0 = B*6(A) + 6(B)*A =0
for every A, B in A, then there exists a *-derivation A from A into M* and & in M* such that
8(A) = AA) + A&

for every A in A. Furthermore, ¢ can be chosen in M in each of the following cases:
(1) A has an identity.
(2) M is a dual *-A-bimodule.

Suppose that A is a zero product determined unital *-algebra and § is a *-antiderivable mapping from
A into a *-A-bimodule. Let (¢;);cr = I and £ = §(I) in Theorem 3.1, we can obtain the following conclusion.

Corollary 3.4. Let A be a zero product determined unital *-algebra and M be a *-A-bimodule. If § is a linear
mapping (continuity is not necessary) from A into M such that

AB*=0= B*6(A) + 6(B)*A =0
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for each A, B in A, then there exists a *-Jordan derivation A from A into M such that
6(A4) = A(A) + As(D)

for every A in A.

Finally, we investigate *-antiderivable mappings at the zero point on a von Neumann algebra. The fol-
lowing result is the second main theorem in this section.

Theorem 3.5. Let A be a von Neumann algebra. If 6 is a linear mapping from A into itself, such that
AB* =0 = B*6(A) + 6(B)*A =0
for each A, B in A, then there exists a *-derivation A from A into M such that
6(A) = A(A) + AS(D)

for every A in A. In particular, § is a *-derivation when 6(I) = 0.

Proof. Suppose that 8 is a commutative von Neumann subalgebra of A. For each A, B in 8, we have that
AB=0© AB*=0 AB=0 & A'B*=0.

Let A, B, C be in 8 satisfying AB = BC = 0. Since A*B* = 0, we obtain B*6(4*) + §(B)*A* = 0. By multi-
plying the previous identity by C* form the left-hand side, we have C*§(B)*A* = 0, equivalently, A6(B)C = 0.
Therefore, [28, Theorem 2.12] implies that § is automatically continuous, and by [17, Theorem 9], we can
prove this theorem. O

Remark 3.6. Let A be a unital *-algebra and M be a unital Banach *-A-bimodule. § is a linear mapping
from A into M such that

A*B =0 = B§(A*) + 6(B)A* = 0.
Through the minor modifications of Theorems 3.1 and 3.5, we can obtain the corresponding results.
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