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Abstract: We discuss certain closure operators that generalize the Alexandroff topologies. Such a closure
operator is defined for every ordinal >α 0 in such a way that the closure of a set A is given by closures of
certain α-indexed sequences formed by points of A. It is shown that connectivity with respect to such a
closure operator can be viewed as a special type of path connectivity. This makes it possible to apply the
operators in solving problems based on employing a convenient connectivity such as problems of digital
image processing. One such application is presented providing a digital analogue of the Jordan curve
theorem.
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1 Introduction

One of the basic problems of digital topology is to equip the digital plane�2 with a convenient connectivity,
i.e., a connectivity behaving analogously to the connectivity in the Euclidean plane �2. In particular, such
a connectivity is required to satisfy a digital analogue of the Jordan curve theorem because digital Jordan
curves represent borders of objects in digital pictures. In this note, we study certain closure operators (more
general than the Kuratowski ones) and show that they provide a convenient connectivity for the digital
plane.

By a closure operator u on a set X , we mean amap →u X X: exp exp (where Xexp denotes the power set
of X), which is
(i) grounded (i.e., ∅ = ∅u ),
(ii) extensive (i.e., ⊆ ⇒ ⊆A X A uA), and
(iii) monotonic (i.e., ⊆ ⊆ ⇒ ⊆A B X uA uB).

The pair ( )X u, is then called a closure space.
These closure operators were studied in the pioneering paper [1] by Čech published as early as in 1936.
Recall that a closure operator u on X which is

(iv) additive (i.e., ( )∪ = ∪u A B uA uB whenever ⊆A B X, ) and
(v) idempotent (i.e., =uuA uA whenever ⊆A X)

is called a Kuratowski closure operator or a topology, and the pair ( )X u, is called a topological space.
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In the literature, closure operators are usually understood to be idempotent and not necessarily
grounded, while the ones introduced above are named preclosure operators. But, in this note, we follow
the terminology of categorical topology where closure operators in the above sense are commonly used.

Given a cardinal >m 1, a closure operator u on a set X and the closure space ( )X u, are called
an Sm-closure operator and an Sm-closure space (briefly, an Sm-space), respectively, if the following
condition is satisfied:

{ }⊆ ⇒ = ⋃ ⊆ <A X uA uB B A B m; , card .

The closure operators usually employed in algebra are the idempotent ones. The so-called algebraic
closure operators are then simply the idempotent ℵS 0-closure operators (cf. [2]).

In the categorical topology, an important role is played by the closure operators on categories studied,
e.g., in [3]. They generalize the above closure operators by considering them on subobject lattices in a given
category (instead of on power sets, i.e., the subobject lattices in the category Set).

In [4], (additive) S2-closure operators and S2-spaces are called quasi-discrete. S2-topologies (S2-topo-
logical spaces) are usually called Alexandroff topologies (Alexandroff spaces) [5]. Alexandroff topologies
play an important role in general topology and many other branches of mathematics, particularly in general
and topological algebra (Scott topologies, monoid actions, commutative algebra) and computer science
(Khalimsky topology), cf. [6–11]. Of course, every S2-closure operator is additive, and every Sα-closure
operator is an Sβ-closure operator whenever <α β. Since any closure operator on a set X is obviously an
Sα-closure operator for each cardinal α with >α Xcard , there exists a least cardinal α such that u is an
Sα-closure operator. Such a cardinal is then an important invariant of the closure operator u. Evidently,
if ≤ ℵα 0, then every additive Sα-closure operator is an S2-closure operator.

We will use some known topological concepts (see, e.g., [12]) naturally extended to closure spaces.
Given a closure space ( )X u, , a subset ⊆A X is called closed if =uA A, and open if −X A is closed. A closure
space ( )X u, is said to be a subspace of a closure space ( )Y v, if = ∩uA vA X for each subset ⊆A X . We will
speak briefly about a subspace X of ( )Y v, . A closure space ( )X u, is said to be connected if ∅ and X are the
only subsets of X to be both closed and open. A subset ⊆X Y is connected in a closure space ( )Y v, if the
subspace X of ( )Y v, is connected. A maximal connected subset of a closure space is called a component of
this space. All the basic properties of connected subsets and components in topological spaces are also
preserved in closure spaces. In particular, if { }∈A i I;i is a family of connected subsets with a non-empty
intersection, then ⋃ ∈ Ai I i is connected, too.

In the paper, we will work with α-indexed sequences of points of a set X , where α is an ordinal, i.e., with
sequences of the form ( ∣ )< ⊆x i α Xi

α. We will write ( ∣ )≤x i αi instead of ( ∣ )< +x i α 1i .

2 α-discrete closure operators

In the sequel, >α 0 will be an ordinal.

Definition 2.1. Let ( )X u, be a closure space. A sequence ( ∣ )≤ ⊆ +x i α Xi
α 1 is called a u-connected element if

{ }∈ <x u x i j;j i for each < ≤j j α, 0 . The elements x0 and xα are called the end points of the u-connected
element ( ∣ )≤x i αi .

Definition 2.2. A closure operator u on a set X is called α-discrete if the following condition is fulfilled:
For any ⊆A X and any ∈x uA, there exists a u-connected element ( ∣ )≤x i αi such that ( ∣ )< ⊆x i α Ai

α

and =x xα .

Thus, every α-discrete closure operator is an ⟨ ⟩S α -space, where⟨ ⟩α denotes the least of all cardinals that
are greater than α. The 1-discrete closure operators coincide with the S2-closure operators so that idempo-
tent 1-discrete closure operators are simply Alexandroff topologies, i.e., topologies with completely additive
closures.

Connectivity with respect to α-discrete closure operators  683



Example 2.3. Let u be the closure operator on the set { }=X a b c, , given by { } { }=u a a b, , { } { }=u b b ,
{ } { }=u c c , { } { }= =u a b u a c X, , , and { } { }=u b c b c, , . Then, u is a 2-discrete closure operator on X (which

is not 1-discrete). This results from the fact that the sequences ( )a a a, , , ( )b b b, , , ( )c c c, , , ( )a a b, , , and
( )a b c, , are u-connected elements and, for every ⊆A X and ∈x uA, there exists ( ∣ ) {( )≤ ∈x i a a a2 , , ,i

( ) ( ) ( ) ( )}b b b c c c a a b a b c, , , , , , , , , , , such that ( ∣ )< ∈x i A2i
2 and =x x2 .

For a closure operator u on a set X , we denote by uα the closure operator on X given by {= ∈u A x Xα ;
there is a u-connected element ( ∣ )≤x i αi such that =x xi0 for some < ≤i i α, 00 0 , and ∈x Ai for all }<i i0 .

Proposition 2.4. A closure operator u on a set X is α-discrete if and only if =u uα.

Proof. Let u be a closure operator on X . Let u be α-discrete and let ⊆A X be a subset. It is evident that
⊆uA u Aα . To show the converse inclusion, let ∈x u Aα . Then, there is a u-connected element ( ∣ )≤x i αi such

that =x xi0 for some < ≤i i α, 0 ,0 0 and ∈x Ai for all <i i0. Thus, { }∈ < ⊆x u x i i uA;i 0 . Therefore, =u uα.
Conversely, let =u uα. Let ⊆A X and ∈x uA. Then, there exists a u-connected element ( ∣ )≤x i αi such

that =x xi0 for some < ≤i i α, 00 0 , and ∈x Ai for all <i i0. Put ′ =x xi i for all <i i0, ′ =x xi 0 for all i, ≤ <i i α0 ,

and ′ =x xα i0. Then, ( ∣ )′ ≤x i αi is a u-connected element such that ( ∣ )′ < ⊆x i α Ai
α and =x xα . Therefore, u is

α-discrete. □

Example 2.5. As usual, we denote by ω the least infinite ordinal. Let u be the closure operator on the set
(ordinal) +ω 1 given by {=uA α α; is an ordinal such that }≤ ≤A α ωmin . Let ∈x uA be a point. Then, the
points ∈y Awith <y x forman increasing sequence ( ∣ )<y i αi , where ≤α ω, =y Amin0 , and { }∈ <x u x i j;j i

for each < <j j α, 0 . Put ′ =y yi i for all <i α and ′ =y xi for all i, ≤ ≤α i ω. Then, ( ∣ )′ ≤y i ωi is a u-connected
element such that = ′x yα and ′ ∈y Ai for all <i α. Therefore, =u uω. By Proposition 2.4, u is an ω-discrete
closure operator (which is not α-discrete for any finite ordinal α).

Proposition 2.6. Let u be an α-discrete closure operator on a set X. Then:
(1) The union of a system of closed subsets of ( )X u, is a closed subset of ( )X u, .
(2) u is idempotent if and only if ( )X u, is an Alexandroff space.

Proof. (1) Let { }∈A j J;j be a system of closed subsets of ( )X u, and let ∈ ⋃ ∈x u Aj J j. Then, there exists
a u-connected element ( ∣ )≤x i αi such that =x xα and ∈ ⋃ ∈x Ai j J j for all <i α. In particular, we have

∈ ⋃ ∈x Aj J j0 , and so there exists ∈j J0 such that ∈x Aj0 0. Suppose that { }<x i α;i is not a subset of Aj0.
Then, there is the smallest ordinal <i α1 such that ∉x Ai j1 0. Consequently, < i0 1 and ∈x Ai j0 for all <i i1.
Thus, we have { }∈ < ⊆ =x u x i i uA A;i i j j11 0 0, which is a contradiction. Therefore, { }< ⊆x i α A;i j0, and

hence, { }∈ < ⊆ ⊆ ⋃ ∈x u x i α uA uA;i j j J j0 . We have shown that ⋃ ⊆ ⋃∈ ∈u A uAj J j j J j. As the converse inclusion
is obvious, the proof is complete.

(2) Let u be idempotent, let ⊆A X and ∈x uA. Then, there is a u-connected element ( ∣ )≤x i αi such that
( ∣ )< ⊆x i α Ai

α and =x xα . Thus, we have { }∈ <x u x i j;j i for all j, < ≤j α0 , and clearly, { }∈x u x0 0 . Let j be
an ordinal, < ≤j α0 , such that { }∈x u xi 0 for all <i j. Then, { } { } { }∈ < ⊆ =x u x i j uu x u x;j i 0 0 . Therefore, by
transfinite induction, { }∈x u xj 0 for every ≤j α. Consequently, { }= ∈x x u xα 0 . Hence, u is an Alexandroff
topology. The converse implication is obvious. □

Definition 2.7. Let u be an α-discrete closure operator on a set X and ∈x y X, . A finite sequence

of u-connected elements ( ) (( ∣ ))= ≤= =p x i αj j
k

i
j

j
k

1 1 (k a positive integer) is said to be an α-path connecting
x and y if
• x is an end point of p1 with the other end point of p1 coinciding with an end point of p2,
• an end point of pj coincides with an end point of −pj 1 and the other end point of pj coincides with an end

point of +pj 1 for = … −j k2, 3, , 1, and
• y is an end point of pk and the other end point of pk coincides with an end point of −pk 1.
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Thus, every u-connected element ( ∣ )<x i αi is an α-path connecting x0 and xα (and also an α-path
connecting xα and x0). Clearly, if ( ) =pj j

k
1 is an α-path connecting x and y, then ( )− + =pk j j

k
1 1 is an α-path

connecting y and x. It is also evident that any α-path (connecting a pair of points) (( ∣ ))≤ =x i αi
j

j
k

1

is a connected set, namely, the set { }⋃ ≤= x i α;j
k

i
j

1 . If ( ) =pj j
k

1 is an α-path connecting x and y and ( ) =qj j
l

1

is an α-path connecting y and z , then the α-path ( ) =
+rj j

k l
1, where =r pj j whenever ≤ ≤j k1 and = −r qj j k

whenever < ≤ +k j k l is an α-path connecting x and z .

Theorem 2.8. Let u be an α-discrete closure operator on a set X and ⊆A X a subset. Then, A is connected in
( )X u, if and only if any two points of A can be joined by an α-path contained in A.

Proof. If = ∅A , then the statement is trivial. Let ≠ ∅A . In ( )X u, , if any two points of A can be connected by
an α-path, then A is clearly connected (because, choosing a point ∈x A, we have {⋃ -∈ P P α, is an pathy A y y

contained in A connecting } =x y Aand , i.e., A is the union of connected setswith a non-empty intersection).
Conversely, let A be connected and suppose that there are points ∈x y A, that cannot be connected by
an α-path contained in A. Let B be the set of all points of A that can be connected with x by an α-path
contained in A. Let ∈ ∩z uB A be a point. Then, there is a u-connected element ( ∣ )≤x i αi such that
( ∣ )< ⊆x i α Bi

α and =x zα . Hence, ( ∣ )≤x i αi is a u-connected element contained in A, thus an α-path
connecting the points ∈x B0 and ∈z A. Since x and x0 can also be connected by an α-path contained
in A, so can x and z . Therefore, ∈z B, i.e., ∩ =uB A B. Consequently, B is closed in the subspace A of
( )X u, . Next, let ( )∈ − ∩z u A B A be a point. Then, there is a u-connected element ( ∣ )≤x i αi such that
( ∣ ) ( )< ⊆ −x i α A Bi

α and =x zα . Suppose that ∈z B. Then, x can be connected with z by an α-path
contained in A. Further, z can be connected with x0 by an α-path – the u-connected element ( ∣ )≤x i αi
– contained in A. Consequently, x and x0 can be connected by an α-path contained in A, which is a
contradiction with ∉x B0 . Thus, ∉z B, i.e., ( )− ∩ = −u A B A A B implying that −A B is closed in the
subspace A of ( )X u, . Hence, A is the union of the non-empty disjoint sets B and −A B closed in the
subspace A of ( )x u, . But this is a contradiction because A is connected. Therefore, any two points of A
can be connected by an α-path contained in A. □

It is well known [13] that closure operators that are more general than the Kuratowski ones have useful
applications in computer science. By Theorem 2.8, connectivity with respect to an α-discrete closure
operator is a certain type of path connectivity. This enables us to apply these closure operators in digital
image processing because they provide connectivity structures suitable for studying the geometric and
topological properties of digital images (cf. [14]). There are two well-known 1-discrete topologies on �2

employed in digital image processing,Marcus topology [15] and Khalimsky topology [16]. In [17], a 2-discrete
closure operator on �2 is used to formulate and prove a digital analogue of the Jordan curve theorem – see
the following example.

Example 2.9. Let u be a closure operator on�2 andG be a simple undirected graph (without loops)with the
vertex set �2. A circuit in G is said to be a simple closed curve in G with respect to u if it is a minimal (with
respect to set inclusion of vertex sets) circuit inG that is a connected subset of �( )u,2 . A simple closed curve
in G with respect to u is called a Jordan curve (with respect to u) if it separates the space �( )u,2 into exactly
two components, i.e., if the subspace � − J2 of �( )u,2 has exactly two components.

Let �( )= ∈z x y, 2 be a point. We put

( ) {( ) { }}
( ) {( ) { }}
( ) {( ) { }}
( ) {( ) { }}

= + ∈ −

= + ∈ −

= + + ∈ −

′ = + − ∈ −

H z x i y i
V z x y i i
D z x i y i i
D z x i y i i

, ; 1, 0, 1 ,
, ; 1, 0, 1 ,

, ; 1, 0, 1 ,
, ; 1, 0, 1 .

Next, we put

( ) ( ) ( ) ( ) ( )= ∪ ∪ ∪ ′A z H z V z D z D z .
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In the literature, the points of ( ) ( )∪H z V z and ( )A z different from z are said to be 4-adjacent and 8-
adjacent to z, respectively. Here, for all �∈z 2, each of the sets ( ) ( ) ( )H z V z D z, , , and ( )′D z will be called
a basic segment. Note that basic segments may be regarded as digital (three-element) line segments (where

( )H z is oriented horizontally, ( )V z is oriented vertically, and ( )D z and ( )′D z are oriented diagonally in �2).
For every point �∈z 2, we put

� �

� �

�
{ }

⎧

⎨
⎪

⎩
⎪

( ) ( )
( ) ( )
( ) ( )

{ }

=

= + ∈ ≠ + ∈

= + ∈ ≠ + ∈

= + + ∈
w z

H z z k y k y l l
V z z x l l x k k
A z z k l k l
z

if 4 2, where and 4 2 for every ,
if , 4 2 where and 4 2 for every ,
if 4 2, 4 2 , , ,

otherwise

and, for every two-element subset �{ } ⊆z t, 2, we put { } { } { }= ∪ ∪ ⟨ ⟩w z t w z w t z t, , where

�

�

�

�

⎧

⎨

⎪
⎪

⎩
⎪
⎪

( ) ( ) ( ) { }
( ) ( ) ( ) { }
( ) ( ) ( ) { }
( ) ( ) ( ) { }

{ }

⟨ ⟩ =

= + + = + ∈ ∈ −

= + + = + ∈ ∈ −

= + + + + = + + ∈ ∈ −

′ = + + + − = + + ∈ ∈ −

z t

H z z k i l t k l k l i
V z z k l i t k l k l i
D z z k i l i t k l k l i
D z z k i l i t k l k l i
z t

,

if 4 2 , and 4 2, , , , 1, 1 ,
if , 4 2 and , 4 2 , , , 1, 1 ,
if 4 2 , 4 2 and 4 2, 4 2 , , , 1, 1 ,
if 4 2 , 4 2 and 4 2, 4 2 , , , 1, 1 ,

, otherwise.

It was pointed out by one of the referees that { ( )}⟨ ⟩ = + −z t z t z t z, , , 2 if one of the following three con-
ditions is satisfied
(1) ( )= + +z k l4 2, 4 2 and ( ) ( )∈ =t w z A z ,
(2) ( )= +z k l4 2, 4 and ( ) ( )∈ =t w z H z ,
(3) ( )= +z k l4 , 4 2 and ( ) ( )∈ =t w z V z

or one of the three conditions obtained by interchanging z and t in (1)–(3) is satisfied while { }⟨ ⟩ =z t z t, ,
otherwise.

Now, putting { }= ⋃ ⊆ <wA wB B A B; , card 3 for every subset ⊆A X (card >A 2), we obtain an
S3-closure operator on �2. The closure operator w is demonstrated in Figure 1. For any point �∈z 2, a point

�∈u 2, ≠u z, belongs to { }w z if and only if there is an edge from z to u in the directed graph demonstrated
in the left part of Figure 1. If �{ } ⊆z t, 2 is a two-element subset, then a point �∈u 2 with { } { }∉ ∪u w z w t
belongs to { }w z t, if and only if, in the directed graph demonstrated in the right part of Figure 1, z and t are
the end points of a dotted line segment containing no other point of �2 (the dotted line segments are not
edges of the graph), there is an edge from z or t to u, and the points z t, , and u lie on a line (with z or t lying
between the other two points so that the set { }z t u, , is a basic segment with { }∈t w z or { }∈z w t – cf,
the directed graph in the left part of the figure).

Clearly, any sequence �(( )∣ ) ( )≤ ∈x y i, 2i i
2 3 satisfying one of the following nine conditions is a w-con-

nected element:
(1) = =x x x0 1 2 and = =y y y0 1 2,
(2) = =x x x0 1 2 and there is �∈k such that = +y k i4i for all <i 3,

Figure 1: Closure operator w .
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(3) = =x x x0 1 2 and there is �∈k such that = −y k i4i for all <i 3,
(4) = =y y y0 1 2 and there is �∈k such that = +x k i4i for all <i 3,
(5) = =y y y0 1 2 and there is �∈k such that = −x k i4i for all <i 3,
(6) there is �∈k such that = +x k i4i for all <i 3 and there is �∈l such that = +y l i4i for all <i 3,
(7) there is �∈k such that = +x k i4i for all <i 3 and there is �∈l such that = −y l i4i for all <i 3,
(7) there is �∈k such that = −x k i4i for all <i 3 and there is �∈l such that = +y l i4i for all <i 3, and
(9) there is �∈k such that = −x k i4i for all <i 3 and there is �∈l such that = −y l i4i for all <i 3.

It may easily be seen that, for any subset �⊆A 2, ∈z wA if and only if there exists a sequence
�(( )∣ ) ( )≤ ∈x y i, 2i i

2 3 satisfying one of the above nine conditions such that ( )=z x y,i i0 0
for some i0,

< ≤i0 20 , and ( ) ∈x y A,i i for all <i 2. Thus, =w w2 so that w is a 2-discrete closure operator on �2.

The w-connected elements �(( )∣ ) ( )≤ ∈x y i, 2i i
2 3 satisfying (an arbitrary single) one of the conditions

(2)–(9) are demonstrated in Figure 2 by directed line segments with the starting point ( )x y,0 0 and the
end point ( )x y,2 2 (so that ( )x y,1 1 is the midpoint of the segment).

We denote by H the graph with the vertex set �2 such that, for all �∈z t, 2, z and t are adjacent in H
if and only if they are different and one of the following two conditions is satisfied:
(1) { }∈z w t or { }∈t w z ,
(2) there is a point �∈u 2, ≠ ≠z u t, such that either { }∈z w u and { }∈t w u z, or { }∈t w u and { }∈z w u t, .

A graphical representation of (a section of) the graph H is given by Figure 2 when forgetting all edge
directions.

The following results may be proved by applying Theorem 2.8 (in [17)], they were obtained by the help
of Lemma 3.3 proved there, which is nothing but a straightforward consequence of Theorem 2.8):
(1) The closure space �( )w,2 is connected.
(2) Every circuitC in the graph H that turns only at some of the points ( )k l4 , 4 , �∈k l, , is a Jordan curve in

H with respect to the closure operator w and has the property that its union with any of the two
components of the subspace � − C2 of �( )w,2 is connected.

Jordan curves in the graph H with respect to the closure operator w will be briefly called Jordan curves in
the closure space �( )w,2 . The possible turning points of the Jordan curves in �( )w,2 determined in state-
ment (2) are the points ( )k l4 , 4 , �∈k l, , where the curves may turn at the acute angle π

4
. This is an

advantage over the Jordan curves with respect to the Khalimsky topology because they may never turn
at the acute angle π

4
– cf. [16].

Figure 2: w -connected elements satisfying (an arbitrary but) one of the conditions (2)–(9).
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3 Conclusion

We have introduced, for every ordinal >α 0, closure operators that generalize the quasi-discrete closure
operators [4]. These closure operators, called α-discrete, are studied. In particular, it is shown that the
connectivity with respect to α-discrete closure operators is a certain type of path connectivity. This enables
us to apply the operators to solving various problems of a discrete nature based on connectivity. One such
application in digital topology is discussed. We have shown that there is a 2-discrete closure operator on the
digital plane �2 allowing for a digital analogue of the Jordan curve theorem, thus providing a convenient
structure on �2 for the study of digital images.
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