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Abstract: In this paper, we study the existence of solutions for the neutral evolution equations with non-
local conditions and delay in α-norm, which are more general than in many previous publications.
We assume that the linear part generates an analytic semigroup and transforms them into suitable integral
equations. By using the Kuratowski measure of noncompactness and fixed-point theory, some existence
theorems are established without the assumption of compactness on the associated semigroup. Particularly,
our results cover the caseswhere the nonlinear term F takes values in different spaces such as Xα. An example
of neutral partial differential system is also given to illustrate the feasibility of our abstract results.
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1 Introduction

In this paper, we are concerned with the existence of solutions for the following neutral evolution equations
with nonlocal conditions and delay
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whereu( )⋅ takes value in a subspace D Aα( ) of Banach space X , which will be defined later, A D A X X: ( ) ⊂ →

is a linear operator and A− generates an analytic semigroupT t( ) t 0( )≥ ,α,h anda be three constants such that
α0 1< < and h a0 ,< < +∞. For every t a0,[ ]∈ , F , G are given functions satisfying some assumptions,

ϕ C h D A, 0 , α([ ] ( ))∈ − is a priori given history, while the function g C h a D A C r D A: , , , 0 ,α α([ ] ( )) ([ ] ( ))− → −

implicitly defines a complementary history, chosen by the system itself. Following the standard notation
(see [1]), if u C h a D A, , α([ ] ( ))∈ − and t a0,[ ]∈ , we denote by ut the function u h D A: , 0t

α[ ] ( )− → , defined by
u θ coloneu t θt( ) ( )+ for θ h, 0[ ]∈ − .

Many complex processes in nature and technology are described by functional differential equations,
which are dominant nowadays because the functional components in equations allow one to consider after-
effect or prehistory influence. Delay differential equations are one of the important types of functional
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differential equations, in which the response of the system depends not only on the current state of the
system but also on the history of the system. For more details on this topic, see, for example, the books of
Hale and Verduyn Lunel [1] and Wu [2], and the papers of Chen et al. [3], Chen [4], Dong and Li [5], Fu [6],
Fu and Ezzinibi [7], Li [8], Travis and Webb [9,10], Vrabie [11,12] and Wang et al. [13].

The theory of neutral partial differential equations with a delay has an extensive physical background
and realistic mathematical model; hence, it has been considerably developed and the numerous properties
of their solutions have been studied, see [6,8,14–19] and the references therein. The problem concerning
neutral partial differential equations with nonlocal conditions and delay is an important area of investiga-
tion in recent years. Especially, the existence of solutions of neutral evolution equations with nonlocal
conditions and delay have been considered by several authors, see [7,20].

In problem (1.1), when α 0= in interpolation space Xα, Dong et al. [21] studied the neutral partial
functional differential equations with nonlocal conditions
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With the aid of Hausdorff’s measure of noncompactness and fixed-point theory, the authors established
some existence results of mild solutions for the problem (1.2). However, their results cannot be applied to
equations with terms involving spatial derivatives.

The existence and regularity problem on the compact interval a0,[ ], in the very simplest case when
r 0= , i.e., when the delay is absent, was studied by Chang and Liu [22]. In this case, C α

0 identifies with Xα,
F t u u, , 0( ) identifies with a function F from a X X0, α[ ] × → , andG t u u, , 0( ) identifies with a functionG from

a X X0, α[ ] × → , and so the previous paper [22] has considered the problem:
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where the operator A D A X X: ( )− ⊂ → generates an analytic and compact semigroup. The authors of [22]
showed existence results of solutions to neutral evolution equations with nonlocal conditions (1.3) in the
α-norm under the assumptions that the linear part of equations generates a compact analytic semigroup
and the nonlinear part satisfies some Lipschitz conditions with respect to the α-norm. In their work, a key
assumption is that the associated semigroup is compact.

In 2013, Fu [6] investigated the existence of mild solutions for the following abstract neutral evolution
equation with an infinite delay
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where u( )⋅ takes values in a subspace of Banach space X . Under the assumption that the linear part of
equations generates a compact analytic semigroup, the author obtained the existence of mild solutions to
the problem (1.4) by using fractional power theory and α-norm. The results in [6] can be applied to
equations with terms involving spatial derivatives. However, to the best of the authors’ knowledge, in all
of the existing articles, such as [6], the neutral evolution equations with nonlocal conditions via fractional
operator have been studied under the hypothesis that the corresponding linear partial differential operator
generates a compact semigroup, and the existence of mild solutions for neutral evolution equations with
nonlocal conditions via fractional operator with noncompact semigroup has not been investigated yet.

Motivated by all the aforementioned aspects, in this article, we apply the theory of fractional power
operator, α-norm, Kuratowski measure of noncompactness and corresponding fixed-point theory to obtain
the existence and uniqueness of mild solutions for neutral evolution equations with nonlocal conditions
and delay via fractional operator (1.1) without the assumptions of compactness on the associated semi-
group. Particularly, our results cover the cases where the nonlinear term F takes values in different spaces
such as Xα and Xμ.
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The rest of this paper is organized as follows. In Section 2, we recall some preliminary results on the
fractional powers of unbounded linear operators generating analytic semigroups, and the results of
Kuratowski’s measure of noncompactness, which will be used in the proof of our main results. Section 3
states and proves the existence and uniqueness of mild solutions for the problems (1.1) in the α-norm by
utilizing the fixed-point theorem and Kuratowski’s measure of noncompactness. An example of the neutral
partial differential system is also given in Section 4 to illustrate the feasibility of our abstract results.

2 Preliminaries

In this section, we introduce some notations, definitions and preliminary facts that are used throughout this
paper.

Assume that X is a real Banach space with norm ‖⋅‖, A D A X X: ( ) ⊂ → is a densely defined closed
linear operator and A− generates an analytic semigroupT t( ) t 0( )≥ . Then there exists a constant M 1≥ such
that T t M( )‖ ‖ ≤ for t 0≥ . Without loss of generality, we suppose that ρ A0 ( )∈ ; otherwise instead of A,
we take A λI− , where λ is chosen such that ρ A λI0 ( )∈ − where ρ A( ) is the resolvent set of A. Then it
is possible to define the fractional power Aα for α0 1< < , as a closed linear operator on its domain D Aα( ).
Furthermore, the subspace D Aα( ) is dense in X and

x A x x D A,α
α α( )‖ ‖ = ‖ ‖ ∈

defines a norm on D Aα( ). Hereafter, we denote by Xα the Banach space D Aα( ) normed with α‖⋅‖ . In addition,
we have the following properties.

Lemma 2.1. [23] Let α0 1< < . Then
(i) T t X X: α( ) → for each t 0> ;
(ii) A T t x T t A xα α( ) ( )= , for each x Xα∈ and t 0≥ ;

(iii) For every t 0> , the linear operator A T tα ( ) is bounded and A T tα M
t

α
α( )‖ ‖ < , where Mα is a positive real

constant;
(iv) For α0 1≤ ≤ , one has A Nα

α‖ ‖ ≤
− , where Cα is a positive real constant;

(v) For α β0 1< < ≤ , we obtain X Xβ α↪ .

Set

C C r X u h X, 0 , : , 0 is continuous ,α
α α0 ([ ] ) { [ ] }≔ − = − →

C C r a X u h a X, , : , is continuous .a
α

α α([ ] ) { [ ] }≔ − = − →
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respectively. For any R 0> , let D u X u R:R α α{ }= ∈ ‖ ‖ ≤ , D CR
α
0( ) = u C u R:α

C0 α
0{ }∈ ‖ ‖ ≤ , D C u C :R a

α
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u RCa
α }‖ ‖ ≤ .
Moreover, we introduce the Kuratowski measure of noncompactness μ( )⋅ defined by

μ D δ D D D δ i ninf 0 : and diam for 1, 2, ,
i
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for a bounded set D in the Banach space X . In this article, we denote by μ( )⋅ , μα( )⋅ and μCa
α( )⋅ the Kuratowski

measure of noncompactness on the bounded set of X , Xα and Ca
α, respectively. For any D Ca

α
⊂ , s h a,[ ]∈ −

and t a0,[ ]∈ , set

D s u s u D X D u u D: , : .t t( ) { ( ) } { }= ∈ ⊂ = ∈
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Lemma 2.2. [24] Let X be a Banach space and D C α
0⊂ be a bounded and equicontinuous set. Then μ D t( ( ))

is continuous on h a,[ ]− , and μ D μ D tmaxC t h a,α
0
( ) ( ( ))[ ]= ∈ − .

Lemma 2.3. [25] Let X be a Banach space and D u C a X0, ,n n 1{ } ([ ] )= ⊂
=

∞ be a bounded and countable set.
Then μ D t( ( )) is Lebesgue integral on a0,[ ], and
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( ( ))∫ ∫∈ ≤

Lemma 2.4. [26] Let X be a Banach space, and let D X⊂ be bounded. Then there exists a countable subset
D D⊂

∗ , such that μ D μ D2( ) ( )≤
∗ .

3 Existence results

This section is devoted to investigate the existence of mild solutions for problem (1.1) in the subspace Xα

of Banach space X . By comparison with the abstract Cauchy problem
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whose properties are well known [23], we can obtain the definition of mild solution for the problem (1.1)
in Xα.

Definition 3.1. A function u Ca
α

∈ is said to be a mild solution to problem (1.1) in Xα if it satisfies
(i) For each t h, 0[ ]∈ − , u t g u t ϕ t( ) ( )( ) ( )= + ;
(ii) For each t a0,[ ]∈ the function s AT t s G s u s u, , s( ) ( ( ) )↦ − is integrable on t0,[ ], and the following

integral equation is satisfied:

u t T t g u ϕ G g u ϕ g u ϕ G t u t u

AT t s G s u s u s T t s F s u s u s
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(3.2)

Definition 3.2. A function F a X C X: 0, α
α
0[ ] × × → is said to be Carathéodory continuous if

(i) For all u v X C X, α
α
0( ) ∈ × → , F u v a X, , : 0,( ) [ ]⋅ → is measurable,

(ii) For a.e. t a0,[ ]∈ , F t X C X, , : α
α
0( )⋅ ⋅ × → is continuous.

In what follows, we make the following hypotheses on the data of problem (1.1).

(P1) The function F a X C X: 0, α
α
0[ ] × × → is Carathéodory continuous, and there exist constants q ∈

α0, 1[ )− , γ 0> and function φ L a0, ,R q
1

�([ ] )∈
+ such that for some positive constant R,

F t u v φ t
φ

R
γ, , , liminf ,R R

R L a0,q
1

( ) ( ) ([ ])
‖ ‖ ≤

‖ ‖

≔ < +∞

→+∞

for any u DR∈ , v D CR
α
0( )∈ and a.e. t a0,[ ]∈ .

(P2) There exists a constant β 0, 1( )∈ with α β 1+ ≤ , such that the function G a X C X: 0, α
α

α β0[ ] × × → +

satisfies Lipschitz condition, i.e., there exists a constant L 0G > such that

A G t u v A G t u v L t t u u v v, , , , ,β β
α G α C2 2 1 1 2 1 2 1 2 1 α

0( ) ( ) (∣ ∣ )‖ − ‖ ≤ − + ‖ − ‖ + ‖ − ‖

where t t a, 0,1 2 [ ]∈ , u u X, α1 2 ∈ and v v C, α
1 2 0∈ .
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(P3) There exists a positive constant Lg such that
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Theorem 3.3. Assume that conditions (P1)–(P5) are satisfied. Then for every ϕ C α
0∈ , problem (1.1) exists at

least one mild solution in Ca
α.

Proof. For some positive constant R, consider an operator D C C: R a
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a
αF ( ) → defined by
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From hypothesis (P2) and Lemma 2.1, one has
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Then from Bochner theorem, it follows that AT t s G s u s u, , s( ) ( ( ) )− is integrable on t0,[ ) for every t a0,( ]∈

and u D CR a
α( )∈ . Therefore, F is well defined and has values in Ca

α. In accordance with Definition 3.2, it is
easy to see that the mild solution of problem (1.1) is equivalent to the fixed-point of the operatorF defined
by (3.3). In the following, we will show that operatorF has a fixed-point by applying the famous Sadovskii’s
fixed-point theorem, which can be found in [27].

First, we prove that there exists a positive constant R such that the operatorF defined by (3.2)maps the
bounded set D CR a

α( ) into itself. If this is not true, there would exist u D Cr
r a

α( )∈ and t h a,r [ ]∈ − such that
u t rr r

α�( )( )‖ ‖ > for each r 0> . For t h, 0r [ ]∈ − , by (3.3) and the hypothesis (P3), one has
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and for t a0,r [ ]∈ , by (3.3), Lemma 2.1, the conditions (P1)–(P3) and Hölder inequality, we obtain that
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Combining with (3.4) and (3.5), we obtain that
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0 0( ){ }< + ‖ ‖ + ‖ ‖

Therefore, by the fact M 1≥ , one gets
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Dividing both side of the inequality (3.6) by r and taking the lower limit as r → +∞, combined with the
assumption (P4), we obtain that
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α( ). For t h, 0[ ]∈ − , by the formulation of the operator 1F and the hypothesis (P3), we obtain that for
t a0,[ ]∈ ,

u t v t g u t g v t g u g v L u v u v D C, , .α α C g C R a
α

1 1 α
a
α

0F F( )( ) ( )( ) ( )( ) ( )( ) ( ) ( ) ( )‖ − ‖ = ‖ − ‖ ≤ ‖ − ‖ ≤ ‖ − ‖ ∀ ∈ (3.7)
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On the basis of the definition of the operator 1F, Lemma 2.1 and the hypotheses (P2) and (P3), one obtains
that

u t v t
M g u g v G u u G v v G t u t u G t v t v

AT t s G s u s u G s v s v s

M g u g v A G u u G v v A G t u t u

G t v t v A T t s G s u s u G s v s v s

M L u v N L u v u v N L u t v t u v

M
t s

L u s v s u v s

M L N L N L L
M

t s
s u v

M L N L N L
L M a

β
u v u v u v D C

0 0 0, 0 , 0, 0 , , , , ,

, , , , d

0, 0 , 0, 0 , , ,

, , , , , , d

0 0

d

2 2 2 d

2 2
2

, , .

α

α α t t α
t

s s α

C
β

α β
β

t

t α β

t

β
s s α β

g C β G α C β G α t t C

t
β

β G α s s C

g β G β G G

t
β

β C

g β G β G
G β

β

C C R a
α

1 1

0 0

0

0 0

0

1

0 0

0

1
1

0

1
1

1

α

a
α α α

α

a
α

a
α

a
α

0

0 0

0

F F

�

( )( ) ( )( )

( ( )( ) ( )( ) ( ( ) ) ( ( ) ) ) ( ( ) ) ( ( ) )

( )[ ( ( ) ) ( ( ) )]

( ) ( ) ( ( ) ) ( ( ) ) ( ( ) )

( ( ) ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ) ( )

( )
( ) ( )

⎧
⎨
⎩

( )
( )

⎫
⎬
⎭

⎧
⎨⎩

( ) ⎫
⎬⎭

( )

∫

( )

∫

[ ( )] ( )

∫ ( )

∫

‖ − ‖

≤ ‖ − ‖ + ‖ − ‖ + ‖ − ‖

+ ‖ − − ‖

≤ ‖ − ‖ + ‖ ‖⋅‖ − ‖ + ‖ ‖⋅‖

− ‖ + ‖ − ‖⋅‖ − ‖

≤ ‖ − ‖ + ‖ − ‖ + ‖ − ‖ + ‖ − ‖ + ‖ − ‖

+

−

‖ − ‖ + ‖ − ‖

≤ + + +

−

‖ − ‖

≤ + + + ‖ − ‖ ≕ ‖ − ‖ ∀ ∈

−

+

−

+

−

+

−

−

−

−

−

(3.8)

Notice that M 1≥ yields that

L .g �≤ (3.9)

Thus, from (3.7), (3.8) and (3.9), it follows that

Q u t Q v t u v t h a, , .α C1 1 a
α�( )( ) ( )( ) [ ]‖ − ‖ ≤ ‖ − ‖ ∈ −

Taking supremum over t, we obtain that

Q u Q v u v .C C1 1 a
α

a
α�‖ − ‖ ≤ ‖ − ‖ (3.10)

This means that 1F is Lipschitzian with Lipschitz constant � .
Subsequently, we prove that the operator D C D C: R a

α
R a

α
2F ( ) ( )→ is continuous. To this end, letting

the sequence u D Cn n R a
α

1{ } ( )⊂
=

∞ such that u ulimn n =→+∞ in D CR a
α( ). Then

u t u t t h a u u t alim , , , lim , 0, .
n

n
n

n t t( ) ( ) [ ] ( ) [ ]= ∈ − = ∈

→∞ →∞

Combining with this and the condition (P1), one obtain that

F s u s u F s u s u s alim , , , , , a.e. 0, .
n

n n s s( ( ) ( ) ) ( ( ) ) [ ]= ∈

→∞

(3.11)

From the hypothesis (P1), we obtain that for a.e. s t0,[ ]∈ , t a0,[ ]∈ ,

t s F s u s u F s u s u t s φ s, , , , 2 .α
n n s s

α
R( ) ( ( ) ( ) ) ( ( ) ) ( ) ( )− ‖ − ‖ ≤ −

− − (3.12)

Using the fact the function s t s φ s2 α
R( ) ( )↦ −

− is Lebesgue integrable for a.e. s t0,[ ]∈ , t a0,[ ]∈ , by (3.11),
(3.12) and Lebesgue dominated convergence theorem, we obtain that

u t u t A T t s F s u s u F s u s u s

M t s F s u s u F s u s u s

n

, , , , d

, , , , d

0 as .

n α

t

α
n n s s

α

t

α
n n s s

2 2

0

0

F F( )( ) ( )( ) ( ) ( ( ) ( ) ) ( ( ) )

( ) ( ( ) ( ) ) ( ( ) )

∫

∫

‖ − ‖ ≤ ‖ − ‖⋅‖ − ‖

≤ − ‖ − ‖

→ → ∞

−
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Hence,

u u n0 as ,n C2 2 a
αF F‖ − ‖ → → ∞

which means that the operator D C D C: R a
α

R a
α

2F ( ) ( )→ is continuous.
Below we demonstrate that u u D C: R a

α
2F{ ( )}∈ is a family of equi-continuous functions. For any

u D CR a
α( )∈ and t t a0 ≤ ′ < ″ ≤ , by the formulation of the operator 2F , we obtain that

u t u t

T t s F s u s u s s T t s T t s F s u s u s

J J

, , d d , , d

.

α

t

t

s α

t

s α

2 2

0

1 2

F F( )( ) ( )( )

( ) ( ( ) ) [ ( ) ( )] ( ( ) )∫ ∫

‖ ″ − ′ ‖

≤ ‖ ″ − ‖ + ‖ ″ − − ′ − ‖

≔ +

′

″ ′

(3.13)

Therefore, we only need to check Ji tend to 0 independently of u D CR a
α( )∈ when t t 0″ − ′ → for i 1, 2= .

For J1, taking (3.13), the assumption (P1), Lemma 2.1 and Hölder inequality into account, we obtain

J A T t s F s u s u s

M
t s

φ s s

M q
α q

t t φ

t t

, , d

d

1
1

0 as 0.

t

t

α
s

t

t
α

α R

α

q
α q
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1

1
1

0,q
1⎜ ⎟
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( )
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⎛
⎝

⎞
⎠

( )
([ ])

∫

∫

≤ ‖ ″ − ‖

≤

″ −

≤

−

− −

″ − ′ ‖ ‖

→ ″ − ′ →

−

− −

′

″

′

″

For t 0′ = , t a0 < ″ ≤ , it is easy to see that J 02 = . For t 0′ > and ε t0 < < ′ small enough, by (3.13),
the condition (P1), Lemma 2.1, Hölder inequality and the equi-continuity of T t( ), we know that

J T t t s T s A T s F t s u t s u s

T t t s T s A T s F t s u t s u s
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2 2 2
, , d
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α
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α
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α

q α q

R L a

2

0

0

,

1 1

0, ,
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∈
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As a result, u t u t 0α2 2F F( )( ) ( )( )‖ ″ − ′ ‖ → independently of u D CR a
α( )∈ as t t 0″ − ′ → , which means that 2F

maps D CR a
α( ) into a family of equi-continuous functions. Here, we consider only the case t t a0 ≤ ′ < ″ ≤ ,

since the other cases h t t 0− ≤ ′ < ″ ≤ and h t t a0− ≤ ′ ≤ < ″ ≤ are very simple.
For any bounded set D D CR a

α( )⊂ , by Lemma 2.4, there exists a countable subset D un n 1{ }=
∗

=

∞ , such that

μ D μ D2 .C C2 2a
α

a
αF F( ( )) ( ( ))≤

∗ (3.14)

Since D D CR a
α

2 2F F( ) ( ( ))⊂
∗ is equi-continuous, by Lemma 2.2 and the definition of the operator 2F , we arrive

at

μ D μ D t μ D tmax max .C t h a α t a α2
,

2
0,

2a
α F F F( ( )) (( )( )) (( )( ))

[ ] [ ]
= =

∗

∈ −

∗

∈

∗ (3.15)

From the formulation of the operator 2F , using the condition (P5), we obtain that for any t a0,[ ]∈

μ D t μ T t s f s u s u s

η s μ D s μ D s τ s

μ D η s s η μ D

2 , , d

2 sup d

4 d 4 .

α

t

α n n s

t

α
h τ

α

C

t

L C

2

0

0
0

0
a
α

a
α1

F(( )( )) ({ ( ) ( ( ) ( ) )})

( )( ( ( )) ( ( )))

( ) ( ) ( )

∫

∫

∫

≤ −

≤ + +

≤ ≤ ‖ ‖

∗

∗

− ≤ ≤

∗ (3.16)

By (3.13)–(3.15), one has

μ D η μ D8 .C L C2a
α

a
α1F( ( )) ( )≤ ‖ ‖ (3.17)

Therefore, by (3.10), (3.17), the properties of the Kuratowski measure of noncompactness and the condition
(P5), we arrive at

μ D μ D μ D η μ D μ D8 ,C C C L C C1 2a
α

a
α

a
α

a
α

a
α1F F F �( ( )) ( ( )) ( ( )) ( ) ( )( )≤ + ≤ + ‖ ‖ <

which means that D C D C: R a
α

R a
αF ( ) ( )→ is a condensing operator. According to the famous Sadovskii’s

fixed-point theorem, we know that the operator F has at least one fixed-point u D CR a
α( )∈ , and this fixed-

point is just the mild solution of problem (1.1) in Ca
α. □

In the second half of this section, we discuss the uniqueness of mild solutions to problem (1.1) in
α-norm. To do this, we need the following hypothesis:

(P6) There exist positive constants LF
1 and LF

2 such that

F t u v F t u v L u u L v v, , , , ,F α F C1 1 2 2
1

1 2
2

1 2 α
0( ) ( )‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖

where t a0,[ ]∈ , u u X, α1 2 ∈ and v v C, α
1 2 0∈ .

Theorem 3.4. Assume that conditions (P2), (P3) and (P6) are satisfied. Then for every ϕ C α
0∈ , the problem (1.1)

has a unique mild solution in Ca
α if

a M L L
α1

1,
α

α F F
1 1 2

�
( )

+

+

−

<

−

(3.18)

where M L N L N L2 2g β G β G
L M a

β
2 G β β1

� ( )= + + +
− .

Proof. From the proof of Theorem 3.3, we can see that there exists a positive constant R such that the
operatorF defined by (3.3) is well defined and has values inCa

α. In accordance with Definition 3.2, it is easy
to see that the mild solution of problem (1.1) is equivalent to the fixed-point of the operatorF defined by (3.3).
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In the following, we will prove the operator F has a unique fixed-point in Ca
α. For any u v D C, R a

α( )∈ , by
the proof of Theorem 3.3, one has

u v u v .C C1 1 a
α

a
αF F �‖ − ‖ ≤ ‖ − ‖ (3.19)

Furthermore, by the formulation of the operator 2� , Lemma 2.1 and the hypothesis (P7), we obtain that

u t v t A T t s F s u s u F s v s v s
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M L L u v t s s

a M L L
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α
s s
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t

α
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α

0

F F( )( ) ( )( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( )

( ) ( )

( )
[ ]

∫

∫ ( )

∫

‖ − ‖ ≤ ‖ − ‖⋅‖ − ‖

≤ − ‖ − ‖ + ‖ − ‖

≤ + ‖ − ‖ −

≤

+

−

‖ − ‖ ∈

−

−

−

Therefore,

u v a M L L
α

u v
1

.C
α

α F F
C2 2

1 1 2

a
α

a
αF F

( )
‖ − ‖ ≤

+

−

‖ − ‖

−

(3.20)

Combining with (3.19) and (3.20), we arrive at

u v u v u v a M L L
α

u v
1

.C C C
α

α F F
C1 1 2 2

1 1 2

a
α

a
α

a
α

a
αF F F F F F �

⎧
⎨⎩

( ) ⎫
⎬⎭

‖ − ‖ ≤ ‖ − ‖ + ‖ − ‖ ≤ +

+

−

‖ − ‖

−

From the aforementioned inequality and (3.18), we obtain that

u v u v .C Ca
α

a
αF F‖ − ‖ < ‖ − ‖

This illustrates D C C: R a
α

a
αF ( ) → a contractive mapping. By using Banach contraction mapping principle,

we know that the operator F has a unique fixed-point u∗ in Ca
α, and this fixed-point is the unique mild

solution of problem (1.1) in Ca
α. □

4 An example

By using the abstract results obtained in Section 3, we can solve the following neutral partial differential
system

t
w t x b s t y x w s y

y
w s y y s

x
w t x

l w t x
y

w t x b s t w s x
y

w s x s t x a π

w t w t π t a

w s x β w t s x
x

w t s x ϕ x s s x h π

, , , , , d d ,

, , , , d , , 0, 0, ,

, 0 , 0, 0, ,

, , , , , , , 0 0, ,

t h

t π

t h

t

i

p

i i i

0

2

2

0

1

⎜ ⎟ ⎜ ⎟

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎡

⎣
⎢
⎢

( ) ( )( ( ) ( ))
⎤

⎦
⎥
⎥

( )

⎛
⎝

( ) ( )⎞
⎠

( )⎛
⎝

( ) ( )⎞
⎠

( ) [ ] [ ]

( ) ( ) [ ]

( ) ⎛
⎝

( ) ( )⎞
⎠

( ) ( ) [ ] [ ]

∫ ∫

∫

∑

∂

∂

+ − +

∂

∂

−

∂

∂

= +

∂

∂

+ − +

∂

∂

∈ ×

= = ∈

= + +

∂

∂

+ + ∈ − ×

−

−

=

(4.1)

where p is a positive integer, t a0 i< < , βi, i p1, 2, ,= … , are fixed numbers, the functions b and b0 will
be described later.
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Let X L π0, ,2 �([ ] )= be a Banach space with L2-norm 2‖⋅‖ . Define an operator A on X by

Af f= − ″

with the domain

D A f X f f X f f π, , 0 0 .( ) { ∣ ( ) ( ) }= ∈ ′ ″ ∈ = =

Then A− generates a strong continuous semigroup T t( ) t 0( )≥ , which is analytic. Furthermore, A− has

a discrete spectrum, the eigenvalues are n n,2 �− ∈ , with the corresponding normalized eigenvectors

e x nxsinn π
2( ) ( )= . Then, the following properties hold:

(a) If f D A( )∈ , then

Af n f e e, .
n

n n
1

2
∑= ⟨ ⟩

=

∞

(b) For every f X∈ ,

T t f e f e e t A f
n

f e e, , 0, 1 , .
n

n t
n n

n
n n

1 1

2 1
2( ) ∑ ∑= ⟨ ⟩ ≥ = ⟨ ⟩

=

∞

− −

=

∞

In particular, T t 1( )‖ ‖ ≤ , A 11
2‖ ‖ =

− .

(c) The operator A1
2 is given by

A f n f e e,
n

n n
1

1
2 ∑= ⟨ ⟩

=

∞

on the space D A f X n f e e X, ,n n n1
1
2( ) { ( ) }= ⋅ ∈ ∑ ⟨ ⟩ ∈

=

∞ .
(d) For every f X∈ ,

A T t f ne f e e t, , 0.
n

n t
n n

1

1
2

2
( ) ∑= ⟨ ⟩ ≥

=

∞

−

In particular, A T t t tΓ , 01
2

1
2

1
2( ) ( )‖ ‖ ≤ >

− .

The following lemma is also needed in order to prove our main result of this section.

Lemma 4.1. [10] If u X 1
2

∈ , then u is absolutely continuous with u X′ ∈ and u A u u2 2
1
2 1

2
‖ ′‖ = ‖ ‖ = ‖ ‖ .

For solving the neutral partial differential system (4.1), the following assumptions are needed.

(i) The functions b θ y x, ,( ), b θ y x, ,x ( )∂

∂

are measurable, b θ y b θ y π, , 0 , ,( ) ( )= for all θ y,( ) and

c b θ y x
x

y θ x˜ , , d d d .
π

h

π

0

0

0

2

2

2
1
2

⎜ ⎟

⎧
⎨
⎩

⎛
⎝

( ) ⎞
⎠

⎫
⎬
⎭

∫∫∫=

∂

∂

< ∞

−

(ii) The function b :0 � �→ is continuous and c b θ θd
h

0

0
2

1
2

⎛

⎝
⎜ ( ( )) ⎞

⎠
⎟∫≔ < ∞

−

.

Now define the abstract functions

u t x w t x t h a

t ϕ x b θ y x ϕ θ y ϕ θ y y θ t ϕ a C

, , , ,

, , , d d , , 0, ,
h

π0

0

0

1
2

( )( ) ( ) [ ]

( )( ) ( )( ( )( ) ( ) ( )) ( ) [ ]∫∫

= ∈ −

= + ′ ∈ ×

−
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F t φ ϕ x l φ x φ x b θ ϕ θ x ϕ θ x θ t φ ϕ a X C

g u s x β u t s x u t s x s h u C

, , d , , , 0, ,

, , 0 , .

h

i

p

i i i a

0

0 0

1
2

1

1
2

1
2

( )( ) ( ( ) ( )) ( )( ( )( ) ( ) ( )) ( ) [ ]

( )( )( ) ( ( )( ) ( ) ( )) [ ]

∫

∑

= + ′ + + ′ ∈ × ×

= + + + ′ ∈ − ∈

−

=

Then system (4.1) can be rewritten as the abstract from (1.1). Here, we will verify that G, g and F satisfy
the condition P2( ), P3( ) and P6( ), respectively.

For any t t a, 0,1 2 [ ]∈ , ϕ ϕ C,1 2 0

1
2

∈ , by the definition of G and assumption (i), we see that G D A,( ) ( )⋅ ⋅ ∈

and
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For any t a0,[ ]∈ , φ φ X,1 2 1
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∈ , by the definition of F and assumption (ii), we obtain that
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Suppose further that
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Then system (4.1) exists a unique mild solution follows from Theorem 3.2.
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