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Abstract: A positive definite homogeneous multivariate form plays an important role in the field of opti-
mization, and positive definiteness of the form can be identified by a special structured tensor. In this
paper, based on the equivalence between the form and the corresponding tensor, and the links of the
positive definiteness of a tensor with # -tensor, we propose an H -tensor-based criterion for identifying
the positive definiteness of multivariate homogeneous forms. Some numerical examples are provided to
illustrate the efficiency and validity of our results.

Keywords: homogeneous multivariate form, positive definiteness, H -tensors, diagonally dominant tensors,
irreducible, non-zero element chain

MSC: 15A69, 15A18, 65F15, 65H17

1 Introduction

Let R(C) be the real(complex) field, N = {1, 2,...,n}. An mth-order n-dimensional real(complex) tensor
A = (aj,j,...;,) consists of n™ real(complex) entrise:

a,-liz...,-m S R(C),
where j; =1,2,...,n, i=1,2,..., m [1-6]. Obviously, a matrix is a 2nd-order tensor. Moreover, tensor

A = (aj,j,...;,) is called symmetric [7] if

Im

ajljz...im = an(iljz...jm), vVt e Hm,

where I, is the permutation group of m indices. If a;;,..; > 0, then tensor A is called a nonnegative
tensor. Tensor I = (§},j,...;,) is called the unit tensor [8], where

N
2 Im 0, otherwise.

Denote an m-th degree multivariate homogeneous form of n variables f(x) as follows:

f(X) = Z aj1j2"'jmlexj2 ij’ (1)
Judzs e sJm€N
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where x € R". While m is even, f(t) is labeled positive definite if
ft)>0, foranyteR"t+0.

Function f(x) in (1) can be expressed as the tensor product of an mth-order n-dimensional symmetric
tensor A and x™ defined as follows:

fOO=AX™ =¥ @, XX, X, )
Jidas - s Jm€N
where x € R" and x™ is an mth-order n-dimensional rank-one tensor with entries x; --- x; [5]. The sym-
metric tensor A is positive definite if f(x) is positive definite [9].

The positive definiteness of tensor has received much attention of researchers’ in recent decade [10-12].
By the Sturm theorem, the positive definiteness of a multivariate homogeneous form can be identified for
n < 3 [13]. Ni et al. [9] presented an eigenvalue method for checking positive definiteness of a symmetric
tensor. While, all the eigenvalues should be calculated in this method, and it is not practical when tensor
order or dimension is large.

Recently, Li et al. [14] provided an H -tensor-based method for identifying the positive definiteness
of an even-order symmetric tensor. It is well known that an even-order symmetric 4 -tensor with positive
diagonal entries is positive definite. Hence, we can check the positive definiteness of a tensor via the aid
of H -tensor. Subsequently, with the help of generalized diagonal dominance, miscellaneous criterions
for H -tensors and M -tensors are provided [15-20], which depends on the entries of tensors and is efficient
to determine H -tensor (M -tensor).

Theorem 1. [20] Let A = (aj,...;, ) € C!™"L If

la..jl> Y a0 g }{r[}|aj]'2...]'m|
Jods - i €NG! oy N1 €23 s
8 jim=0
* max a5l V€N
N}m—lte{]z,h,...,]m}

J2J3+im€
and
lai..il # Y ain)s VieN @ (or Ny = @),

iz iy e N1
5ii2---im=0

then A is an H -tensor.

In this paper, we continue to present new criteria for # -tensors. These new results improve the
corresponding conclusions [20-22]. As an application, some sufficient conditions of the positive definite-
ness for an even-order real symmetric tensor are given. Several numerical experiments demonstrate its
efficiency.

Several specially definitions extended from matrices are as follows.

Definition 1. [17] Let A = (aj,,...;,) be a complex tensor of order m dimension n. A is an H -tensor if there
exists a positive vector x = (%, X%, ...,x,)T € R", such that
|a]'j...j|ij_1 > Z |Clj]‘2...]‘m|Xj2 o X Vj € N.

Jor o im€N
8jjy ..jm=0

Definition 2. [8] A complex tensor A = (aj,j,...;, ) of order m dimension n is called reducible if there is
a nonempty subset I ¢ N, such that

ajljz"'jm = O’ le € I’ ij"”’jm ¢ I

Otherwise, A is called irreducible.
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Definition 3. [18] Let A = (aj,j,...;,) be a complex tensor of order m dimension n. Fori, j € N(i # j), if there

are indices k;, k, ..., k;, such that

> la,j,..;,| #0, s=0,1,...,1.
Jos - sim€N
Sksjp.jm=0s  Kss1€4jps v s jim}

where ko = j, ky41 = 1, and then there exists a nonzero elements chain from j to i.

The remainder of this paper is as follows. In Section 2, we gives some criteria for the identification
of H -tensors. In Section 3, some new conditions for the identification of positive definite tensors are
presented. Some numerical experiments are also provided to show the effectiveness of new methods.

2 Criteria for / -tensors

In this section, three new criteria for identifying % -tensors are presented. First, for the convenience of
description, some notation and lemmas are given. For a tensor A = (aj,;,...,) of order m dimension n,

denote
Sm_lz{j2j3”'jm:jies,i:2,3,"' ,m}y, T+ScN;
NPNST = Gy s € N and oy € 57T
N6n—1 — Nm—l\(sz—l U Ngn_l);

MNA= Y eyl = Y 1@, 1l
Jor - Jm€N Jos e sim€N
8j...jm=0

Ni={j e N:0 < |aj..j| = Ai(A)};

N, ={jeN:0 < |ay..j| < A(A}

N;={j e N: |gj..;| > A(A)};
Aj(A)

wi=———— w=max{w}, Vje Ny
TN + gl ]

> ag,..j, | + Y. laii ... |
i eNm—ll 12 Im ii eNm-UET
r = max J2 - Im€No J2 Im €N :

jeNs |a,~,-.‘.]-| - ij...jmezv;'l*1|aij2...jm|

iz ...jm=0

Pj,r(ﬂ) = z |a]~,-z...,-m| + z |a,-j2mjm| +r Z |Clj]‘2...]‘m|, ] € N3;

Ja e dmeNG! Jo - meNS! Ja - JmeNg!

6jpy ..jim=0
ij...ijN(;"*l'aiiz"'iml + ij...jmgNz""llajiz“'imI
n = max P ;
€ PR [ P - s s s —" | .
M| 1l = Y meny Y@Kty g 1D

Bjj .. im=0

p=max{w;, n}, je Ny

Pt,r(ﬂ)
Ba()= Y @Gl X @l ) max -
Jp e €NG! Jp e €N ]‘2...]‘meNgmfltE{Jz’/r---’Jm} |ag...|

5jp...jm=0

H ij...jmgNg?-llaiiz"'imI + ij”_ijsz-llajjzmjmlW

Pt r (ﬂ)
JeN: . (A) - L. RIS i) P
| Bonl ) = Xy e Mgy o r] 1%l

B ... jm=0

| .j, | T € N5;
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Throughout this paper, we assume that N; #+ @ and N, # &. Meanwhile, we also assume that tensor A
satisfies: aj...; # 0, Aj(A) + 0, Vj € N.

Lemma 1. [17] If tensor A = (aj,j,...;,) is strictly diagonally dominant, then A is an H -tensor.

Lemma 2. [14] Let A = (aj;,...;,) be an mth-order n-dimensional complex tensor. If there is a positive
diagonal matrix X such that AX™ ! is an H -tensor, then A is an H -tensor.

Lemma 3. [14] Let A = (aj,j,...;,) be an mth-order n-dimensional complex tensor. If A is irreducible,
|a,~,~...,~| > Aj(ﬂ), Vj €N,
and N3(A) + &, then A is an H -tensor.
Lemma 4. (18] Let A = ((aj,j,...;,)) be an mth-order n-dimensional complex tensor. If
i) Iaj]’...j > Aj(ﬂ), Vj € N;

(i) N5 = {] eN: |a,~,~...,~| > A](ﬂ)} + I
(iii) For Vj ¢ Ny, there exists a nonzero elements chain from j to i such thati € N,

then A is an H -tensor.
Next, we give some new criteria for 7 -tensors.

Theorem 2. Let A = (aj,;,...;,) be an mth-order n-dimensional complex tensor. If A satisfies

l’l w h B,Yl(ﬂ) .
|a,-,~.4.,<| > — z |a,-,<24..,-m| + z |a,<,<24..,-m|W + — i 1 |a | |a1-,-2...,-m|, Vj € Ny, 3)
T ds e NG ks €N R
8jiy -+ jim=0

and there exists j, j; -+ j, € N"I\N{""" for any j € Ny such that ay,,...;, # O, then A is an H -tensor.

Proof. By O < r, < r < 1, according to the definition of r, P, ,(A), n and P, ,(A), for any i € N3,

B, (A)
Jor
nlai...i| = Z |, ... 1,0 + Z |, .5, + 11 . max | @iy .15
iy ime NG iy ime NJT1 b...ipe Nyl 5 o T la...;|
Biiy...in=0
that is, P, ,(A) < nla;...;|(Vi € N3), so
P, . (A .
O<L)srlsr<1, Vi € N;.
|@ii...|
By the definitions of w; and p, for any i € Nj,
K Ziz»»-imeNg"’llaiiZ""'ml + ZizwimeNz’"’llaﬁz”'i'"lw
P ry(A)
Pon(A) = Y bimeny MAKjegiy iy, i o | iy iy
iy i =0 laj.jl
ii)...im~
B r(A)
| Pi(A) = 1Y cimeng MK, i1 | ity |
Siiy...im=0 1
<
- Py ry(A)
Pi,rl(ﬂ) - Ziz...imeNg'H manE{iz,ig,“.,im}l]ar_,l 7 Iaiiz...l-ml
Siiy...im=0 Bl
< 1.
For Vi € N3, from the definition of h, we have 0 < h < 1, and
By n(A)
Jor
WP (A)zp Y lageil + Y @i w+h ) max —— @ity i,|-

iy -+ ime N1 ip -+ imeNJ1 b ige Nyl B} |a... ;| (4)
Biiy...in=0
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By inequality (3), for all i € N,, we have

B n(A)
}’r
Wilag..il >p Y @i, + Y l@hepw+h Y max T ag,.).
b3 -+ ime NI by -+ ime NI 1 by eI €l tnd (@]
5ii2‘--im=0
Let
_ 1
Rj= S (@] wilag.l = (1 Y @l Y 1@ lW
2 Im Jadse+ jm NG Jodse - imeNS!
Jobs+ jmeNg! 83 jm=0
(5)
B . (A .
+h Mmﬁz---l}n , VjeN.
izjg...]‘meNgﬂ-ltE{jz’iy---’l'm} |a...el

If ijjs"'j eNsmfllaj]‘Z...]‘ml = 0, we denote R; = +c0. By Equality (5), we have

hP y(A)
< _—

Ri>0(jeN,), O < 1(Vt € N3).

[ag ...l
Hence, there exists a positive number € such that
hP, (A)
O<£<m1nR,~s+oo, max{——- +e; < 1.
jeN, teNs |att.“t|

Let the matrix D = diag(d,, d, ...,dn), denote B8 = AD™! = (by,...;,), Where

(H)ﬁ, ie Nl,
d - Wy, | i€y,
hP m-1
(s + 7”“(30) , ieNs.
|as..ql

For Vj € Ny, there exists j, j; -+ j,, € N™'\N{""" such that aj,;,...;, # 0, and for V¢ € N5, let &€ > 0 satisfy
P (A)

O<e+
[ag...t |

< u < 1, we obtain

1
hP;, . (A) ™
ANBY=p Y lay,gl+ Y @ lw+ Y |aﬁz~~jm|(€+L)

o+ Jm NG o+ m €N Ja oo €NE'! Qs
8j..im=0
1
(8 + _hmeJl(ﬂ))ml
|ajmjm"'jm|
hP,n(A)
ST Y R N D M SRS |aﬁz---jm|(€+ max = ————
Joe - jmeNG! jo o jm €N Jp - Jm€NT! teliplyodmt st ..l
8j..jm=0

<HU Z |a,-,-2...,~m| + Z Ia]'j2444jm| + Z |Clj]'2...]'m| = }lAj(ﬂ) = }1|a]‘]‘m1'| = |b111|

Jor i eNEY Jp NI Jo oo NI

8y ...jm=0
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For Vj € N,, by equality (5), we have

1
hP;, (A) )™
MBY=p Y Gt Y @ w Y |aﬁz~~jm|(€+L]

e N o e e e 1@y 1|
8j..in=0
1
(8 + _hmeJl(ﬂ) )MI
|a}mlm]m|
hPt,rl(ﬂ)
<u Z |aj,~2...,~m| + Z |a]-,~z.“,~m|w + Z |aj,~2...,~m| €+ 1m s
Jp e mENE Jp -+ €NE Jy o g €N telinfss-oim} @t ..t
8j..in=0
=e Y g lrr Y @l Y lagw
fzjs"'imENiér’l_l jzi3"'jm€N31_1 j2j3---jmeN2'"’1
8jj3 ++jm=0
P 1 (A)
+h Xl : | |, ..,
j2j3~~~jmeN3’"’1t€{]2’l3’""]’"} Ait ...t
<R Y gl tr Y gl Y @, w
JadzerjmeNE! Jad3 e jmeNG! Jodze jmeNg !
8y +jim=0
P 1 (A)
+ h n ) —| | |a,-,~z...,~m|
P R L

=wja;_jl = byl
Finally, for j € N5, by inequality (4), we have

Aj(B)=].l Z Iaj,-z..4,-m| + Z |ajiz"'fmlw

jz...jmeN{)"*I ]'z"']'mENzr'H
1 1
hP; ,(A) Y"1 hP; .(A) "'
+ z |a]]2]m|(£ + L . le+ L
iy e N laj,j,--jl [T
Gjjy ..jm=0
hP, (A)
spo Y gl Y g lws ) |aszwim|(€+ e P
Joe - imeNG! Jo o+ jmeNT! Jy oo jmENTY teljplz-simy 1ttt
8ji..im=0
=& z |a]-,-2..<,-m| + U Z Ia,-jzu.jml + Z |a,-,-2...,-m|w
Jadze jmeNE! b+ jn NG Jodz e jmeNS!
8y ...jm=0
P 1 (A)
+h max ————|ay,..j,

jzjs.'_ijNsmfﬂe{]‘z,i;,...,jm} |attmt|
8jiy -+ jm=0
<e Y @y, + hB(A) < elag. | + AP, (A) = |by._ 4.
Jodze jmeNS!

8jjy ..jin=0

Therefore, |bj...;| > A(B)(Vi € N). So B is an H -tensor by Lemma 1. From Lemma 2, A is an H -
tensor. O

Remark 1. It is hard to theoretically give the comparison between our result and the known ones in [20].
The following numerical example illustrates that our proposed criteria is more effective to theirs in some
cases. Moreover, we provide an example that satisfies our conditions in Theorem 2 but not those in Theorem 1
of [20].
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Let

w

K(A) = 1@, sl

jeNytlag. > Y

J jads im NG

)

izjs"'jmeszil
8jjpjm=0

1@ 5]+

h Pn(A)
+ — - -

1, .,
VV]'j2j3.4.jm€N§"’1t€{j2rj3:---rjm} |a“...t| 2 m

Theorem 3. Let A = (aj,;,...;,) be an mth-order n-dimensional complex tensor. If A is irreducible,

U w
|ajj...i|2—. z |a,-,~2...,~m| + Z |a,~,-2m,-m|W
T jobs e+ jmeNG! Jo3 - jm NS
Sjjp - jm=0
h Pn(A) )
+ — max  ——la .|, V€N,
ij j2j3~~~jmeN3m’1te{}2’]3"“’]'“} Iatt---tl
and K(A) + 3, then A is an H -tensor.
Proof. Since A is irreducible, so
z |ai1~2...1~m| >0, Vie Ns.
i3+ e N1\ NJ* 1
By inequality (6), we obtain
By n(A)
Jsn .
ag.idwizp Y @il Y @gew+h ) max 2 lag,.i |, Vie

iy -+ ime NI~ by ime NI~ o mjeliniyind @
i3+ ime NG igi3 -+ i€ NJ ! i -+ e NJt1 fizsis, .. im} ..

6ii2-~~im=0

and at least one strict inequality in (7) holds.
Let the matrix D = diag(d;, d,...,dy), denote B = AD™ ! = (b;y,...;, ), where

(H)ﬁ5 l € Nl,
Wy, ieN,,
a0 1
P, (A) .
(71,&( )) , LE N3.
|@ii...|
, Py () o e
For Vi € Nj, by p > |:z'rl(» l)(\ﬂ € N;), we have
i
1
hP;, (A) )™ hP;,, (A)
AB)=p Y agei + Y Gegw Y |aii2»--im|(# Rl
iy iy N1 iy ipeNJL iy...ipeNT1 |ai2i2"'12| |aimirn"‘im|
Biiy...in=0
hP, .(A)
S Z | @i, .., + Z | @iy .1, |l W+ S omax  ————|aj,...,
iy i NG b e N b... e i it @]
Siiy....im=0
<l Y e+ Y @i Y @il | = M@l = bl

iy l.méNgl’l
Siiy....im=0

iy ipeNJ! iy...ime NI

— 511
(6)
N oy

1
)ml
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For Vi € N,, by inequality (7), we obtain

1 1
WPy (A (BB, () )
AN(B)=p Z i, .. i, + Z s, .. i, | W + Z Iaii2~~~im|(¢) (L())

iy e NG i ime Ny iy...ige Ny |aiziz---i2| |aimim---im|
Siiy....in=0
hB, ,(A)
<Hu Z |al~izm,-m| + z |a,~i2mim|w + o n ) 4|ai,-2...im|
iy imeNG iy ime Ny b ige Ny €l oo laj...jl

Siiy...im=0
<swilai il = [bii_il.

Next, we consider i € N3, by inequality (4), we obtain

1 1
WPy () )™ [ APy () )
ABY=p Y i+ Y @i wr Y |aiiz---im|(L) (L

iy imeNG! iy ime Ny iy...imeNJ1 |y .| | @iy -]
Bity...ip=0
RB,(A)
<u Z Iaiiz...iml + Z Iaiiz...imw + R . 7|aii2---im|
by imeNG! by ime N1 by .. imeNprU €tz ik [
Bity...im=0

< hP, (A) = |by_4l.

Therefore, |b;...;| > A(B) for alli € N, and at least one strict inequality in (6) holds, that is, there exists
an iy € N, such that |bjg,...;)| > Ai(B).

Notice that A is irreducible and so is 8. Hence, we obtain that B is an H -tensor by Lemma 3 and A is
an H -tensor by Lemma 2. O

Theorem 4. Let A = (a; j,...;,) be an mth-order n-dimensional complex tensor. If A satisfies

2 w h Pt,rl(ﬂ) .
laj.il == X aegl Y @l — R il ¥ €N g
b jods i eNg! oy e Wi Wy e €Ul e Gt
8y jm=0

and if any j € N\K(A) # O, there is a nonzero elements chain from j to i such thati € K(A) # &, then A is
an H -tensor.

Proof. Let matrix D = diag(d,, d, ...,d,), denote 8 = AD™! = (bj ,...; ), where

G, j €N,
(ij)ﬁ’ ] € NZ’
hB, 1 (A) )™
}’rl( ) , ] € N3.
|Clj]‘mj|

By a similar proof to that of Theorem 3, we obtain that |b;...;| > A{(B)(Vj € N), and there exists at least
an ip € N, such that |bjg,...;,| > Ai(B).

On the other hand, if|bj...;| = A(B), then j € N\K(A), so there is a nonzero elements chain of A from j
toi satisfying i € K(A). Hence, there is a nonzero elements chain of 8 from j to i satisfying |b;...;| > A(B).

Therefore, we obtain that B is an H -tensor by Lemma 4 and A is an H -tensor by Lemma 2. O

Below, we present a numerical example to show that the criteria for H -tensor is obtained by only using
the conditions of Theorem 2 but not the ones in [20].

Example 1. Given a 3rd-order three-dimensional tensor A = (aj) as follows:
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=[A(1, :,2), A2, :,:), AG3, :,0)],
1210 110 1 00
A1, :5)=l1 6 0|, AQR,:5$)=]0 4 0], AG,:5:)=]01 0|
1115 006 00 16

Obviously,
lam| =12, MN(A) =25, |am| =4, M(A)=8, |ass| =16, A (A)=2

so N1 = @, N, = {1, 2}, N; = {3}. By calculations, we have

w x5 5 8 2 5 0+2 1
'"Twi12 37 7 8+4 3 37’ 6-0 8
P3,r(\7{)20+2+%><022, T1:60+2:%’ y:%’
-=-x0
2 25
=x0+=x2
P3,,1(ﬂ):0+2+%><%><0:2, h:Mzi—g.
2—§><O

When i = 1, we obtain

B (A)
I’l z |a11213| + Z |allzl3lw + h Z max i | lizi;l
irize N2 iizeN3 i3 eNZIe{lz i3} |ajij|
81i5i3=0
=§><2+2—5 8+2—5 l><15=23j <@=12x2—5=|am|xwl.
37 37 37 8 296 37 37
When i = 2, we obtain
B (A)
B il + Y lasglw + h Y max 2 ay
biye NG bise N phenielinitl | al
82iyi3=0
= 25 O + E 2 + 2_5 l X = zﬁ
37 37 37 8 148
< m—4><2—5—|a | x w
37 37 111 1.

Hence, the conditions of Theorem 2 are satisfied, then A is an H -tensor. However,

26 13 26 13
S M;=1 F=—, =
=55 B350 7257 P 200"
13 13 1427 156
a + max irjsla + maxifis|la = X8+ — x15=———"— = |aq|n
IZIENol 11213| ,2,§Nzle i {)}l 11213| lzlgNzle{lz 13{}}| 11213' 25 200 200 25 | 111|1

511213— 0

So, A does not satisfy the conditions of Theorem 1.

3 An application

In this section, we provide some ‘H -tensor-based criteria for identifying the positive definite tensor.
First, we recall the following lemma.

Lemma 5. [14] Let A = (aj,;,..;,) be an mth-order n-dimensional even-order real symmetric tensor with
ajj...; > 0 for Vj € N. If A is an H -tensor, then A is positive definite.
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By Theorems 2-4 and Lemma 5, we can prove easily the following result.

Theorem 5. Let A = (aj,j,...;,) be an mth-order n-dimensional even-order real symmetric tensor aj...; > 0
for Vj € N. If one of the following conditions is satisfied:

(i) All the conditions of Theorem 2;

(ii) All the conditions of Theorem 3;
(iii) All the conditions of Theorem 4,

then A is a positive definite tensor.

Example 2. Consider an 4th-degree homogeneous polynomial:
FXO) = Ax* = 24x" + 365 + 25x5 + 10X, — 836x, + 126506 — 126X3X, — 24X06X5X4.
We can obtain an 4th-order four-dimensional real symmetric tensor A = (aj,j,;,;,) with entries

ann =24, app =36, a3y =25 iy =10,
Ao = Ay = Ay = Aup = —2,

a3 = Auz = Qi3 = App = 31 = Ai3n = 1,

@13 = G131 = Apn = 3112 = A3121 = A311 = 1,

W34 = A343 = A3z = Agn3 = Ay33 = Agz = —1,
W34 = Q343 = 3324 = A3342 = A343 = A3y32 = —1,
A3y = Qi3 = A3 = Q342 = A3 = Az = —1,
W34 = (o3 = Ap1y = G341 = Qo413 = Q31 = —1,
314 = (3142 = A3214 = (341 = A3412 = G321 = —1,
Au123 = Ay132 = Aun13 = Aup31 = Ag312 = Auzn = —1,

and other a;,i;, = 0. By calculations, we have
Auauy = 10 < 11 = Ay(A)
and
ann(@asss — Ag(A) + |agml) = -24 < 0 = Ay(A)|amnl.

Therefore, tensor A is not strictly diagonally dominate as defined in [21], or quasidoubly strictly diagonally
dominant as defined in [22]. However, all the conditions of Theorem 2 can be satisfied.

MA) =12, MA(A) =18, NMA(A)=15, Ay (A)=11,

so Ny = @, N, = {4}, N3 = {1, 2, 3}. By calculations, we have

1 6 102
W=—=w, r=—, P,(A=—,
T e =
183 150 132 1
P (A) = —, Py (A) = 2, p=—=, u=—,
), (A) I 3,/ (A) I 1= e M o1
1974 4071 3300 2827
P (A) =22 p(A) = 2L Py (A) = 222, h= 2L
1A= 25 2l ) = =57 il ) = = 4137

When i = 4, we obtain

By (A)
oY gl + ) |uw+h Y max —Lag,,|
bisiae NG bisigeN3 bieend el |l
Buiyiziy =0

= E><0+£><0+—2827 ><E><11:—5324

21 21 4137 257 1379
< E—11><£—|a | x w,

o1 > o o

So, A is positive definite by Theorem 5, that is, f(x) is positive definite.
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4 Conclusions

In this paper, we introduced some new criterions for identifying # -tensors, which only depended on the
elements of tensor. They were well used to check the positive definiteness of an even-order homogeneous
polynomial form f(x) = Ax™. We also verified the effectiveness of new criteria by several numerical
examples.
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