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Abstract: A positive definite homogeneous multivariate form plays an important role in the field of opti-
mization, and positive definiteness of the form can be identified by a special structured tensor. In this
paper, based on the equivalence between the form and the corresponding tensor, and the links of the
positive definiteness of a tensor with � -tensor, we propose an � -tensor-based criterion for identifying
the positive definiteness of multivariate homogeneous forms. Some numerical examples are provided to
illustrate the efficiency and validity of our results.
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1 Introduction

Let R C( ) be the real(complex) field, N n1, 2, ,{ }= … . An mth-order n-dimensional real(complex) tensor
aj j jm1 2� ( )=

⋯
consists of nm real(complex) entrise:

a R C ,j j jm1 2 ( )∈
⋯

where j n1, 2, ,i = … , i m1, 2, ,= … [1–6]. Obviously, a matrix is a 2nd-order tensor. Moreover, tensor
aj j jm1 2� ( )=

⋯
is called symmetric [7] if

a a π, Π ,j j j π j j j mm m1 2 1 2( )= ∀ ∈
⋯ ⋯

where Πm is the permutation group of m indices. If a 0j j jm1 2 ≥
⋯

, then tensor � is called a nonnegative
tensor. Tensor δ j j jm1 2� ( )=

⋯
is called the unit tensor [8], where

δ
j j1, if ,

0, otherwise.j j j
m1

m1 2
⎧
⎨⎩

=

= ⋯=

⋯

Denote an m-th degree multivariate homogeneous form of n variables f x( ) as follows:

f x a x x x ,
j j j N

j j j j j j
, , , m

m m

1 2

1 2 1 2( ) ∑= ⋯

… ∈

⋯ (1)
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where x Rn
∈ . While m is even, f t( ) is labeled positive definite if

f t t R t0, for any , 0.n( ) > ∈ ≠

Function f x( ) in (1) can be expressed as the tensor product of an mth-order n-dimensional symmetric
tensor � and xm defined as follows:

f x x a x x x ,m

j j j N
j j j j j j

, , , m

m m

1 2

1 2 1 2�( ) ∑≡ = ⋯

… ∈

⋯ (2)

where x Rn
∈ and xm is an mth-order n-dimensional rank-one tensor with entries x xj jm1 ⋯ [5]. The sym-

metric tensor � is positive definite if f x( ) is positive definite [9].
The positive definiteness of tensor has received much attention of researchers’ in recent decade [10–12].

By the Sturm theorem, the positive definiteness of a multivariate homogeneous form can be identified for
n 3≤ [13]. Ni et al. [9] presented an eigenvalue method for checking positive definiteness of a symmetric
tensor. While, all the eigenvalues should be calculated in this method, and it is not practical when tensor
order or dimension is large.

Recently, Li et al. [14] provided an � -tensor-based method for identifying the positive definiteness
of an even-order symmetric tensor. It is well known that an even-order symmetric � -tensor with positive
diagonal entries is positive definite. Hence, we can check the positive definiteness of a tensor via the aid
of � -tensor. Subsequently, with the help of generalized diagonal dominance, miscellaneous criterions
for � -tensors and � -tensors are provided [15–20], which depends on the entries of tensors and is efficient
to determine � -tensor (� -tensor).

Theorem 1. [20] Let a Cj j
m n,

m1� [ ]
( )= ∈

⋯
. If

a r a r a

l a j N

max

max ,

jj j j
j j j N

jj j
j j j N

δ

t j j j
t jj j

j j j N t j j j
t jj j

0

, , ,

, , ,
2

m
m

m

m
m

jj jm

m
m

m
m m

m

2 3 0
1

2

2 3 2
1

2

2 3
2

2 3 3
1 2 3

2

∣ ∣ ∣ ∣ { }∣ ∣

{ }∣ ∣

{ }

{ }

∑ ∑

∑

> +

+ ∀ ∈

⋯

⋯ ∈

⋯

⋯ ∈

=

∈ …

⋯

⋯ ∈

∈ …

⋯

− −

⋯

−

and

a a i N or N, ,ii i
i i i N

δ

ii i

0

1 1
m

m

ii im

m

2 3 0
1

2

2∣ ∣ ∣ ∣ ( )∑≠ ∀ ∈ ≠ ∅ = ∅
⋯

⋯ ∈

=

⋯

−

⋯

then � is an � -tensor.

In this paper, we continue to present new criteria for � -tensors. These new results improve the
corresponding conclusions [20–22]. As an application, some sufficient conditions of the positive definite-
ness for an even-order real symmetric tensor are given. Several numerical experiments demonstrate its
efficiency.

Several specially definitions extended from matrices are as follows.

Definition 1. [17] Let aj j jm1 2� ( )=
⋯

be a complex tensor of order m dimension n. � is an � -tensor if there
exists a positive vector x x x x R, , , n

T n
1 2( )= … ∈ , such that

a x a x x j N, .jj j j
m

j j N
δ

jj j j j
1

, ,
0

m
jj jm

m m
2

2

2 2∣ ∣ ∣ ∣∑> ⋯ ∀ ∈
⋯

−

… ∈

=

⋯

…

Definition 2. [8] A complex tensor aj j jm1 2� ( )=
⋯

of order m dimension n is called reducible if there is
a nonempty subset I N⊂ , such that

a j I j j I0, , , , .j j j m1 2m1 2 = ∀ ∈ ∀ … ∉
⋯

Otherwise, � is called irreducible.
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Definition 3. [18] Let aj j jm1 2� ( )=
⋯

be a complex tensor of order m dimension n. For i j N i j, ( )∈ ≠ , if there
are indices k k k, , , r1 2 … , such that

a s r0, 0, 1, , .
j j N

δ k j j

k j j
, ,

0, , ,
m

ks j jm s m

s m
2

2 1 2

2∣ ∣

{ }

∑ ≠ = …

… ∈

= ∈ …

⋯

… +

where k j k i, r0 1= =
+

, and then there exists a nonzero elements chain from j to i.

The remainder of this paper is as follows. In Section 2, we gives some criteria for the identification
of � -tensors. In Section 3, some new conditions for the identification of positive definite tensors are
presented. Some numerical experiments are also provided to show the effectiveness of new methods.

2 Criteria for � -tensors
In this section, three new criteria for identifying � -tensors are presented. First, for the convenience of
description, some notation and lemmas are given. For a tensor aj j jm1 2� ( )=

⋯
of order m dimension n,

denote

S j j j j S i m S N
N S j j j j j j N j j j S

N N N N
a a a

N j N a
N j N a
N j N a

w
a

w w j N

r
a a

a a

: , 2, 3, , , ;
: and ;

;
Λ ;

: 0 Λ ;
: 0 Λ ;
: Λ ;

Λ
Λ

, max , ;

max ;

m
m i

m m
m m

m
m

m

m m m m

j
j j N
δ

jj j
j j N

jj j jj j

jj j j

jj j j

jj j j

j
j

j jj j
j

j N

j j N jj j j j N jj j

jj j jj j

1
2 3

1 1
2 3 2 3

1
2 3

1

0
1 1

2
1

3
1

, ,
0

, ,

1

2

3

2

m
jj jm

m

m

m

m
m m m

m m

j jm Nm

δjj jm
m

2

2

2

2

2

3

2 0
1 2 2 2

1 2

2 3
1

2 0
2

�

�

�

�

�

�

{ }

{ }

( )

( ) ∣ ∣ ∣ ∣ ∣ ∣

{ ∣ ∣ ( )}

{ ∣ ∣ ( )}

{ ∣ ∣ ( )}

( )

( ) ∣ ∣
{ }

⎛

⎝

⎜

⎜

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

⎞

⎠

⎟

⎟

∑ ∑

∑ ∑

∑

= ⋯ ∈ = ⋯ ∅ ≠ ⊂

⧹ = ⋯ ⋯ ∈ ⋯ ∉

= ⧹ ∪

= = −

= ∈ < =

= ∈ < <

= ∈ >

=

+

= ∀ ∈

=

+

−

−

− − − −

− − − −

… ∈

=

⋯

… ∈

⋯ ⋯

⋯

⋯

⋯

⋯

∈

⋯ ∈

⋯

⋯ ∈

⋯

⋯ ⋯

…

− −

… ∈
−

…
=

P a a r a j N

r
a a

a a

μ w r j N

, ;

max
max

;

max , , ;

j r
j j N

jj j
j j N

jj j
j j N

δ

jj j

j N

j j N jj j j j N jj j

jj j t j j j
P
a jj j

j

,

0

3

1
, , ,

1 2

m
m

m

m
m

m

m
m

jj jm

m

m
m m m

m m

j jm Nm

δjj im
m

t r

tt t m

2 0
1

2

2 2
1

2

2 3
1

2

2

3

2 0
1 2 2 2

1 2

2 3
1

2 0
2 3

,
2

�

�

( ) ∣ ∣ ∣ ∣ ∣ ∣

⎛

⎝

⎜

⎜

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

⎞

⎠

⎟

⎟

{ }

{ }
( )

∣ ∣

∑ ∑ ∑

∑ ∑

∑

= + + ∈

=

+

−

= ∈

⋯ ∈

⋯

⋯ ∈

⋯

⋯ ∈

=

⋯

∈

⋯ ∈

⋯

⋯ ∈

⋯

⋯ ∈ … ⋯

− − −

…

− −

… ∈
−

…
=

⋯

P a a r
P
a

a j N

h
μ a a w

P a

max , ;

max
max

.

j r
j j N

jj j
j j N

jj j
j j N

δ

t j j j

t r

tt t
jj j

j N

j j N jj j j j N jj j

j r t j j j
P

a jj j

, 1

0

, , ,

,
3

, , , ,

m
m

m

m
m

m

m
m

jj jm

m
m

m
m m m

m m

j jm Nm

δjj jm
m

t r

tt t m

1

2 0
1

2

2 2
1
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1
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2 3
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2 0
1 2 2 2
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= + + ∈
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⋯
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⋯

⋯ ∈

=

∈ …
⋯

⋯

∈
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⋯

⋯ ∈

⋯

∈ …
⋯

− − −

…

− −

… ∈
−

…
=

⋯
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Throughout this paper, we assume that N1 ≠ ∅ and N2 ≠ ∅. Meanwhile, we also assume that tensor �

satisfies: a 0jj j ≠
⋯

, Λ 0j �( ) ≠ , j N .∀ ∈

Lemma 1. [17] If tensor aj j jm1 2� ( )=
⋯

is strictly diagonally dominant, then � is an � -tensor.

Lemma 2. [14] Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional complex tensor. If there is a positive
diagonal matrix X such that Xm 1� − is an � -tensor, then � is an � -tensor.

Lemma 3. [14] Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional complex tensor. If � is irreducible,

a j NΛ , ,jj j j �∣ ∣ ( )≥ ∀ ∈
⋯

and N3 �( ) ≠ ∅, then � is an � -tensor.

Lemma 4. [18] Let aj j jm1 2� (( ))=
⋯

be an mth-order n-dimensional complex tensor. If
(i) a j NΛ ,jj j j �∣ ∣ ( )≥ ∀ ∈

⋯
;

(ii) N j N a: Λjj j j3 �{ ∣ ∣ ( )}= ∈ > ≠ ∅
⋯

;
(iii) For j N1∀ ∉ , there exists a nonzero elements chain from j to i such that i N1∈ ,

then � is an � -tensor.

Next, we give some new criteria for � -tensors.

Theorem 2. Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional complex tensor. If � satisfies

a μ
w

a a w
w

h
w

P
a

a j Nmax , ,jj j
j j j j N

jj j
j j j N

δ

jj j
j j j j j N t j j j

t r

tt t
jj j

0

, , ,

,
2

m
m

m

m
m

jj jm

m

m
m m

m

2 3 0
1

2

2 3 2
1

2

2

2 3 3
1 2 3

1
2

�
∣ ∣ ∣ ∣ ∣ ∣

( )

∣ ∣
∣ ∣

{ }
∑ ∑ ∑> + + ∀ ∈

⋯

⋯ ∈

⋯

⋯ ∈

=

⋯

⋯ ∈

∈ …
⋯

⋯

− −

⋯

−
(3)

and there exists j j j N Nm
m m

2 3
1

1
1

⋯ ∈ ⧹

− − for any j N1∈ such that a 0jj j jm2 3 ≠
⋯

, then � is an � -tensor.

Proof. By r r0 11≤ ≤ < , according to the definition of r, Pi r, �( ), r1 and Pi r, 1 �( ), for any i N3∈ ,

r a a a r
P
a

amax ,ii i
i i N

ii i
i i N

ii i
i i N

δ

j i i i

j r

jj j
ii i1 1

0

, , ,

,

m
m

m

m
m

m

m
m

ii im

m
m

2 0
1

2

2 2
1

2

2 3
1

2

2 3
2

�
∣ ∣ ∣ ∣ ∣ ∣

( )

∣ ∣
∣ ∣

{ }
∑ ∑ ∑≥ + +

⋯

⋯ ∈

⋯

⋯ ∈

⋯

… ∈

=

∈ …
⋯

⋯

− − −

…

that is, P r a i N ,i r ii i, 1 31 �( ) ∣ ∣( )≤ ∀ ∈
⋯

so

P
a

r r i N0 1, .i r

ii i

,
1 3

1 �( )

∣ ∣
< ≤ ≤ < ∀ ∈

⋯

By the definitions of wi and μ, for any i N3∈ ,

μ a a w

P a

μ P r a

P a

max

max

max

1.

i i N ii i i i N ii i

i r j i i i
P

a ii i

i r j i i i
P
a ii i

i r j i i i
P

a ii i

, , , ,

, 1 , , ,

, , , ,

m
m m m

m m

i im Nm

δii im
m

j r

jj j m

i im Nm

δii im
m

j r

jj j m

i im Nm

δii im
m

j r

jj j m

2 0
1 2 2 2

1 2

1 2 3
1

2 0
2 3

, 1
2
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1

2 0
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,
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, 1
2
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�

�

�

�

�

⎜ ⎟

∣ ∣ ∣ ∣

( ) ∣ ∣

⎛

⎝
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⎠
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{ }
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∣ ∣

{ }
( )

∣ ∣

{ }
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∑ ∑

∑

∑

∑

+

−

≤

−

−

<

⋯ ∈

⋯

⋯ ∈

⋯

∈ … ⋯

∈ … ⋯

∈ … ⋯

− −

… ∈
−

…
=

⋯

⋯ ∈
−

…
=

⋯

… ∈
−

…
=

⋯

For i N3∀ ∈ , from the definition of h, we have h0 1,< < and

hP μ a a w h
P

a
amax .i r

i i N
ii i

i i N
ii i

i i N
δ

j i i i

j r

jj j
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2 0
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… ∈

=

∈ …
⋯

⋯

− − −

…

(4)
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By inequality (3), for all i N2∈ , we have

w a μ a a w h
P

a
amax .i ii i

i i i N
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i i i N
δ
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i i i N j i i i
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−
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If a 0j j j N jj jm
m m2 3 3

1 2∣ ∣∑ =

⋯ ∈
⋯

− , we denote Rj = +∞. By Equality (5), we have

R j N
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a
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For j N2∀ ∈ , by equality (5), we have
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Finally, for j N3∈ , by inequality (4), we have
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Therefore, b i NΛjj j j �∣ ∣ ( )( )> ∀ ∈
⋯

. So � is an � -tensor by Lemma 1. From Lemma 2, � is an � -
tensor. □

Remark 1. It is hard to theoretically give the comparison between our result and the known ones in [20].
The following numerical example illustrates that our proposed criteria is more effective to theirs in some
cases. Moreover, we provide an example that satisfies our conditions in Theorem 2 but not those in Theorem 1
of [20].
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Theorem 3. Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional complex tensor. If � is irreducible,
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and K �( ) ≠ ∅, then � is an � -tensor.
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a i N0, .
i i i N N

ii i 3
m m m

m

2 3 1
3

1
2∣ ∣∑ > ∀ ∈

⋯ ∈ ⧹

⋯

− −

By inequality (6), we obtain

a w μ a a w h
P

a
a i Nmax , .ii i i

i i i N
ii i

i i i N
δ

ii i
i i i N j i i i

j r

jj j
ii i

0

, , ,

,
2

m
m

m

m
m

ii im

m

m
m m

m

2 3 0
1

2

2 3 2
1

2

2

2 3 3
1 2 3

1
2

�
∣ ∣ ∣ ∣ ∣ ∣

( )

∣ ∣
∣ ∣

{ }
∑ ∑ ∑≥ + + ∀ ∈

⋯

⋯ ∈

⋯

⋯ ∈

=

⋯

⋯ ∈

∈ …
⋯

⋯

− −

⋯

−

(7)

and at least one strict inequality in (7) holds.
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For i N2∀ ∈ , by inequality (7), we obtain
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Next, we consider i N3∈ , by inequality (4), we obtain
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Therefore, b Λii i i �∣ ∣ ( )≥
⋯

for all i N∈ , and at least one strict inequality in (6) holds, that is, there exists
an i N0 2∈ such that b Λi i i i0 0 0 0 �∣ ∣ ( )>

⋯
.

Notice that � is irreducible and so is � . Hence, we obtain that � is an � -tensor by Lemma 3 and � is
an � -tensor by Lemma 2. □

Theorem 4. Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional complex tensor. If � satisfies
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and if any j N K �( )∈ ⧹ ≠ ∅, there is a nonzero elements chain from j to i such that i K �( )∈ ≠ ∅, then � is
an � -tensor.
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By a similar proof to that of Theorem 3, we obtain that b j NΛjj j j �∣ ∣ ( )( )≥ ∀ ∈
⋯

, and there exists at least
an i N0 2∈ such that b Λi i i i0 0 0 0 �∣ ∣ ( )>

⋯
.

On the other hand, if b Λjj j j �∣ ∣ ( )=
⋯

, then j N K �( )∈ ⧹ , so there is a nonzero elements chain of � from j
to i satisfying i K �( )∈ . Hence, there is a nonzero elements chain of � from j to i satisfying b Λii i i �∣ ∣ ( )>

⋯
.

Therefore, we obtain that � is an � -tensor by Lemma 4 and � is an � -tensor by Lemma 2. □

Below, we present a numerical example to show that the criteria for � -tensor is obtained by only using
the conditions of Theorem 2 but not the ones in [20].

Example 1. Given a 3rd-order three-dimensional tensor aijk� ( )= as follows:
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A A A

A A A
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Hence, the conditions of Theorem 2 are satisfied, then � is an � -tensor. However,

p s M F t26
25

, 13
200

, 1, 26
25

, 13
200

.3 3 3 3 3= = = = =

a r a t a a rmax max 2 13
25

8 13
200

15 1427
200

156
25

.
i i N

i i
i i N
δ

j i i
j i i

i i N j i i
j i i1

0

,
1

,
1 111 1

i i
2 3 0

2
2 3

2 3 2
2

1 2 3

2 3
2 3

2 3 3
2 2 3

2 3∣ ∣ { }∣ ∣ { }∣ ∣ ∣ ∣
{ } { }

∑ ∑ ∑+ + = + × + × = =

∈ ∈

=

∈

∈

∈

So, � does not satisfy the conditions of Theorem 1.

3 An application

In this section, we provide some � -tensor-based criteria for identifying the positive definite tensor.
First, we recall the following lemma.

Lemma 5. [14] Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional even-order real symmetric tensor with
a 0jj j >

⋯
for j N∀ ∈ . If � is an � -tensor, then � is positive definite.
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By Theorems 2–4 and Lemma 5, we can prove easily the following result.

Theorem 5. Let aj j jm1 2� ( )=
⋯

be an mth-order n-dimensional even-order real symmetric tensor a 0jj j >
⋯

for j N∀ ∈ . If one of the following conditions is satisfied:
(i) All the conditions of Theorem 2;
(ii) All the conditions of Theorem 3;
(iii) All the conditions of Theorem 4,

then � is a positive definite tensor.

Example 2. Consider an 4th-degree homogeneous polynomial:

f x x x x x x x x x x x x x x x x x x24 36 25 10 8 12 12 24 .4
1
4

2
4

3
4

4
4

2
3

4 1
2

2 3 2 3
2

4 1 2 3 4�( ) = = + + + − + − −

We can obtain an 4th-order four-dimensional real symmetric tensor aj j j j1 2 3 4� ( )= with entries

a a a a
a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a
a a a a a a

24, 36, 25, 10,
2,

1,
1,

1,
1,

1,
1,
1,
1,

1111 2222 3333 4444

2224 2242 2422 4222

1123 1132 1213 1312 1231 1321

2113 2131 2311 3112 3121 3211

2334 2343 2433 4233 4323 4332

3234 3243 3324 3342 3423 3432

1234 1243 1324 1342 1423 1432

2134 2143 2314 2341 2413 2431

3124 3142 3214 3241 3412 3421

4123 4132 4213 4231 4312 4321

= = = =

= = = = −

= = = = = =

= = = = = =

= = = = = = −

= = = = = = −

= = = = = = −

= = = = = = −

= = = = = = −

= = = = = = −

and other a 0i i i i1 2 3 4 = . By calculations, we have

a 10 11 Λ4444 4 �( )= < =

and

a a a aΛ 24 0 Λ .1111 4444 4 4111 4 4111� �( ( ) ∣ ∣) ( )∣ ∣− + = − < =

Therefore, tensor � is not strictly diagonally dominate as defined in [21], or quasidoubly strictly diagonally
dominant as defined in [22]. However, all the conditions of Theorem 2 can be satisfied.

Λ 12, Λ 18, Λ 15, Λ 11,1 2 3 4� � � �( ) ( ) ( ) ( )= = = =

so N N N, 4 , 1, 2, 31 2 3{ } { }= ∅ = = . By calculations, we have

w w r P

P P r μ

P P P h

11
21

, 6
11

, 102
11

,

183
11

, 150
11

, 132
257

, 11
21

,

1974
257

, 4071
257

, 3300
257

, 2827
4137

.

r

r r

r r r

4 1,

2, 3, 1

1, 2, 3,1 1 1

�

� �

� � �

( )

( ) ( )

( ) ( ) ( )

= = = =

= = = =

= = = =

When i 4= , we obtain

μ a a w h
P

a
a

a w

max

11
21

0 11
21

0 2827
4137

132
257

11 5324
1379

121
21

11 11
21

.

i i i N
i i i

i i i N
δ

i i i
i i i N j i i i

j r

jjjj
i i i4

0

4
, ,

,
4

4444 4

i i i
2 3 4 0

3
2 3 4

2 3 4 2
3

4 2 3 4

2 3 4

2 3 4 3
3 2 3 4

1
2 3 4

�
∣ ∣ ∣ ∣

( )

∣ ∣
∣ ∣

∣ ∣

{ }
∑ ∑ ∑+ +

= × + × + × × =

< = × = ×

∈ ∈

=

∈

∈

So, � is positive definite by Theorem 5, that is, f x( ) is positive definite.
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4 Conclusions

In this paper, we introduced some new criterions for identifying � -tensors, which only depended on the
elements of tensor. They were well used to check the positive definiteness of an even-order homogeneous
polynomial form f x xm�( ) ≡ . We also verified the effectiveness of new criteria by several numerical
examples.
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