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Abstract: In this paper, we study the initial boundary problem of fifth-order Korteweg-de Vries equation
with nonlinear boundary values. First, we establish a so-called sharp boundary trace regularity associated
with the linearized fifth-order Korteweg-de Vries equation. Then, aided by the sharp boundary trace
regularity, we verify that initial-boundary value problem of fifth-order Korteweg-de Vries equation with
nonlinear boundary conditions is locally well-posed when initial and boundary values are properly chosen.
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1 Introduction

Korteweg-de Vries equation
Ot + U+ udu=0

origins from shallow water waves that are weakly and nonlinearly interacting, and nowadays is extensively
applied in ion acoustic waves in plasma, long internal waves in a density-stratified ocean, and acoustic
waves on a crystal lattice, etc. However, under certain conditions, the third-order dispersive term is too
weak to describe the physical facts, then fifth-order dispersive term is introduced to strength it (if the angle
between the propagation direction and the magnetic-acoustic wave in a cold collision-free plasma and the
external magnetic field become critical value, then the third-order dispersive term vanishes and is replaced
by the fifth-order dispersive term [1]; a fifth-order term was necessary to model capillary-gravity waves for
Bond number near % 2D

Ot + 02U + udeu = 0.

The Cauchy problem for the fifth-order KdV equation has been extensively studied after Kato smoothing
effect discovered in the early 1980s, see for example [3-8]. Compared with pure initial value problems,
initial boundary value problems posed on part of entire line with boundaries are more applicable to the
reality and can provide more accurate data to physical experiments or practical problems. Although there is
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less research on initial boundary value problems than that on pure initial value problems, nowadays, more
and more attention has been paid for initial boundary value problems [9-13].

Different from the former works (say, for example, [9-13]) which deal with the linear boundary values,
we investigate the well-posedness in the sense of Hadamard of the initial-boundary value problem

Ol + Ou =udu, x>0, t>0,
ux, 0) = p(x), x>0, (1.1)
3u(0, t) = Iy(t), du(0, t) = u(0, t)* + hy(t), (0, t) = u(0, t)* + hs(t), t >0,

with nonlinear boundary feedback (This often happens in application [14,15], or theory, i.e., feedback

stabilization [16]). Due to the presence of the nonlinear boundary condition, the Kato smoothing effect is

not strong enough to deal with (1.1). Instead, a so-called sharp boundary trace regularity is needed. More
s+1 s-2

s+l s s-2
precisely, for any h; € H,> , h, € Hy, hs € H,> the corresponding solution u of

du+u=0, x>0, t>0,
u(x,0)=0, x>0, (1.2)
A,u(0, t) = hy(t), du(0, t) = hy(t), du(0,t) = hs(t), t >0,

satisfies:
oku € L°(R*; H5'(0,T)), k=0,1,2,3,4.

Taking account of sharp boundary trace regularity, we define the solution space as

Yi= {u € C(0, T; HS(R"))

4
_ < )
Z "u”Lw([R*; ot k(O,T)) OO}
k=0

For the vector consists of initial and boundary values (¢, ﬁ)) = (¢, (hy, hy, h3)), we defined the corre-
sponding function space as

X§ = HS(RY) x H¥0, T),

with

s+1 S

s+1 s 5=2
H0, T) = Hy5 (0, T) x H3(0, T) x Hy5 (0, T).

The main results can be stated as:

Theorem 1.1. Let s € [0, 5], T > O be given. For any s-compatible (¢, ﬁ)) € X3, f e L\(0, T; H5(RY)), there
exists T* € (0, T] such that the initial-boundary value problem

Ju+du=f, x>0, t>0,
u(x, 0) = p(x), x>0, (1.3)
(0, t) = hy(t), qu(0, t) = u(0, t)? + hy(t), u(0,t) = u(0,t)? + h(t), t >0,

N
admits a unique solution u € Y$.. Moreover, the solution depends Lipschitz continuously on (¢, h) and f in
the corresponding space.

Remark 1.2. However, initial boundary value problem (1.1) includes both nonlinear damping and nonlinear
feedback, Kato smoothing effect, and sharp boundary trace regularity are not enough to deal with both
nonlinearities, and Bourgain’s regularity is needed. Thus, the solution space should be taken as:

4
S _ . HS(R+ s,b
Y§= {u € C(0, T; SR N X gonu”L“”(fR*; Hhéfk(o,n) < oo},

where X5? is the Bourgain space.
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The paper is organized as follows. In Section 2, we will first derive an explicit integral representation of
(1.2), then established sharp boundary trace regularity. The proof of our main result in this paper (Theorem
1.1) will be presented in Section 3. Section 4 includes remarks which show the readers all the possible cases

can be proved similarly.

2 Linear estimates

In this part, we will establish linear estimate as follows:

N
Proposition 2.1. Let T > 0 and 0 < s < 5 be given. For any ¢ € HS(R*), h € H3R"), f € L0, T; HS(R")),

the initial boundary value problem

du + u=f(x,t), x>0, t>0,
u(x,0) = ¢pxx), x>0,
ouu(0, t) = hy(t), u(0, t) = hy(t), du(0,t) = hy(t), t >0

admits a solution u € C(0, T; HS(R*)) n L%(0, T; H*S(R")) satisfying

5
lullys < C(I(@, M)lxs + Ifllzo,7; H5®R™))-

2.1 Representation of the solution
Applying Laplace transformation to (2.1) we obtain
N d®u
su(x, s) + @(x, s)=0,

4 50,8 = huls) Ol—za(o s) = hy(s) d—l‘a(o s) = hs(s)
dX ’ 1 ’ dX2 ’ 2 ’ dX4 ’ 3 .
Then, the solution #(x, s) of (2.2) can be written in the form
3
a(x, s) = Y c(s)ehex,
j=1
where Ai(s), j =1, 2, 3, are the solutions of the characteristic equation:
s =A% with Res >0
and ¢(s), j =1, 2, 3, solve the linear system
A1C1 + /lzCz + /13C3 = ﬁl,
A + Ao + Ae = hy,
/114C1 + /124C2 + /\34(,'3 = Hg.
Then, Cramer’s rule implies that

A;
) 51,3,

G(s) = A6 j

2.1)

(2.2)

(2.3)
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where A(s) is the determinant of the coefficient matrix

A b A3
A=A B A
AN
and Ai(s) (j =1, 2,3) are determinants of the matrices that are obtained by replacing the ith-column

(j =1, 2, 3) of A(s) by the column vector (le(s), ﬁz(s), ﬁ3(s)).
Inverse Laplace transform of ii(x, s) yields

r+ico A( )
u(x, t) = — j estii(x, s)ds = Z '[ st e"(s)"ds
Y—l
In order to find the smoothing effect associated with each boundary value function, we divide the
solution u of (2.1) into

3
ux, t) = (X, £) + WX, t) + u3(x, 1) = ) un(x, 1),

m=1
where up(x, t) solves (2.1) with b; = 0 when j # m (m, j = 1, 2, 3). Thus, each u,(x, t) has the representation:

r+ico

Upn(x, t) = Z J esti(x, s)ds = Z _[ est 2 ’m( ) MR, (s), ds,

Zm

where Aj(s) is obtained from A;(s) by letting hm(s) =1and hk(s) =0fork+m(k,m=1,2,3).
In the last formulas, the right-hand sides are continuous with respect to r for r > 0. As the left-hand
sides do not depend on r, we may take r = 0 in these formulas. Hence,

3 ico
Un(x, t) Z I est ’rz())e"(s)"h (s)ds + z I est 'm())e”‘(s)"h (s)ds

—ico

3 (o) + 3 (o)
L i Bim®) it 1 Ajm(p)
— ip’t _J A (p)xpy 50%d, '[ —ip°t IMT) LA (p)xh 50%dp,
,-leirje wp O+ Yo | ey e neptdp
0 0

where i* (p) = h(+lp5) and A;,(p), A%(p), Ai(p) are defined the same way. Thus, l?—(p) = ff(p), A (p) = X(p),
A () = A (p).

When taking s = ip°, the roots (characteristic roots) of (2.3) are as follows:

. Om . . 9m 131 131
A =ip, A =p|l cos*=— +isin=—|, A cOS— + isin—
®)=ip. 1) = p( cos 7 +isin% ). (o) = p( cos ).

2.2 Boundary smoothing effect
We introduce the following technical lemma

Lemma 2.2. For any f € [*(a, co), let Kf be the function defined by

[ee]

Kf(x) = jey“‘)"f (wdy,

a

where a € R, y(u) is a continuous complex-valued function defined on (a, co) satisfying the following two
conditions



DE GRUYTER Initial-boundary value problem of fifth-order Korteweg-de Vries equation

(i) Rey(u) <O, for u > a;
(ii) There exist § > 0 and b > O such that

[ReyGol b:

= >

a<p<a+é M — A

(iii) There exists a complex number a + i such that

limM:owiB.

p—oo  J

Then there exists a constant C such that for all f € L*(0, 00),

IKf 2wy < Clifll2a,00) -
Proof. See Lemma 2.5 in [17].

N
Proposition 2.3. Let s > 0. There exists a constant C such that Vh € HS5R™), the solution
—
u(x, t) = Wygr(h)
of initial boundary value problem

du+du=0, x>0, t>0,
ux,0)=0, x>0,
3u(0, t) = my(t), d3u(0,t) = hy(t), du(0,t) = hs(t), t >0,

satisfying

4 —
sup uC,H)lasry + z ||a’,§u||Lm([R+_ e T)) < Clh sy
0o<t<T k=0 ’ ’

Proof. We have for p — o,

M) ol M) ol 51(P) - p

> )

A (p) A(p) A (p)

ATZ(p) ~p_z AEz(P) A2 A;Z(p) )

A (p) T M(p) T M) ’
and

AIB(p) 4 A§3(p) P A§3(p) P

vp) P we P e 7P

— 533

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(the tedious proof of the aforementioned estimates (2.6)—(2.8) will be postponed to the appendix).

The solution of (2.4) can be divided into

u=u +u + us,
where u; is the solution with respect to h; (i = 1, 2, 3). For example, u is the solution of

du—-du=0, x>0, t>0,
u(x,0)=0, x>0,
0,u(0, t) = hy(t), o%u(0,t) = d%u(0,t) =0, t> 0.

(2.9)
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It is enough to verify the estimate (2.5) for u;

4

sup JuCOlwwy + 2108l o w30 < Clllyestge - (2.10)
0<t<T k=0

The other cases are similar, so we omit the details here.
When s = 0. Observing that

—ip5t ]m(p)

o) I e Ry (p)5ptdp = un(x, t) + up(x, ).

w(x, t) = 2:1.[ it ,1(p) e’V(P)"h (p)5p*dp + Z I
By (2.6), it follows from Lemma 2.2 that for any ¢t > O,

2T M) [ .
IM&ﬁ@wFCZI SOV (Rt 1 112 o) (50" o
=%

& (p)

CIM@W6® CIM@%PMP
<C ||hl||2 I
H5(RY)
The same argument applied to u;, to obtain the same estimate. Thus,
luiliceo, r; 2wy < C||h1||H%([R+)- (2.11)

Noting that for O < k < 4, we have

dun(x, t) = z j e 11(13) [/1 @)lke A’(p)xhl(P)SPl‘dp

Zm

i O
th[“mm»“w@”e R(6G0)dp,

where (i) is the real solution of u = p°> for p > 0. By using the Plancherel theorem (with respect to t),
it yields that for any x > 0,

3 2
upl? ,. <C I1+ 2)%¢ hy(i)Pdy.
0% 11||H%(0’T) j;o( 1 1) |y (i)*dp

Aji(p)
A:(0(10)) Tk eMBGx I
[A(6G)]*e )

Thus, one finds there is a constant C such that

k
sup [[9xunl? Lk

x€(0,00) R"
R 2 k l(p)
s Zj + [P IOGO)P sup [eMCOMR| ) [y P (212)
fut x€(0,00) & (p)
< Clhully -

The following estimates were used in obtaining the last inequality:

< p—l , sup |e/13(p)x|2

x€(0,00)

As(p) [
< p*l’ sup |eA2(P)X|2 20N

.
sup |eMex2| L= >
x€(0,00) A (P)

x€(0,00) N(P)

&(p)
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4
k
21058 ) = Wiy (213)
k=0
Collecting (2.11) and (2.13) to obtain (2.10) for w;.
When s = 5. For the solution u of (2.9), let v = d;u. Then v is a solution of
ov-3yv=0, x>0, t>0,
v(x,0)=0, x>0, (2.14)
9,v(0, t) = hi(t), 3v(0,t) = d*v(0,t) =0, t>O0.
Applying (2.13) to (2.14) yields that
4
Vo, 2wy + kz Mo, 2oy < Mgt (2.15)
=0
Define
t
w(x, t) = J.v(x, T)dr,
0
then we have
t t
30,114(0, t) = Iaxv(o, Ddr = Jh{(r)d‘r ~ (o).
0 0
Furthermore, it is easy to verify that
t t t
Oty + 03Uy = J-atv(x, 1)d7 - J-af(v(x, T)dr = I(atv - dv)dr = 0.
0 0 0
Thus, u; solves the initial-boundary value problem (2.9). Since
Oy = a)s(ul,
it follows that
4
lllcco, ; mowy) + kgonulanm Wy S Clhullys o
which is the result of Proposition 2.5 for s = 5.
When 0 < s < 5. Interpolation leads to the desired result.
Fors € [5n,5(n + 1)] (n = 1, 2,...), it is enough to repeat the procedure of the case s € [0, 5]. O

2.3 Extension strategy

For the solution

t
u(x, t) = We(t)p(x) + IWR(t - s)f (s)ds
0
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of the initial value problem

5, _
{atu +u=f(xt), xeR, t>0, (2.16)

u(x, 0) = p(x), x €R,
we have the Kato smoothing effects and hidden regularity as follows:
Lemma 2.4. Let T > 0 be given, Vs € [0, 5]. Then Y¢ € H5(R), Vf € L}(0, T; H5(R)), the solution u of Cauchy
problem (2.16) satisfying

lullzo,7; w25y + sup uG,Olasw) < ClPlrsw) + Ifliws B5®))-
0<t<oo

Proof. See [11]. O

Lemma 2.5. Let T > O be given, Vs € [0, 5]. Then V¢ € H5(R), Vf € LY(0, T; H5(R)), the solution u of Cauchy
problem (2.16) satisfying

4
k
,(Z;))S(Eu? ”axu"H“ﬁ’k(o,T) < Cllpleswy + Wfllzio, m,m5w)))-

Proof. See [11]. O

The solution of the initial-boundary value problem

du + Bu=f(x,t), x>0, t>0,
u(x, 0) = p(x), x>0, (2.17)
o,u(0, t) = 92u(0, t) = Au(0,t) =0, t>0

can be represented by

t
u(x, 0) = WO + '[WR(t COFC, AT - Woa B - WoaD
0

where ¢* = E¢p and f* = Ef are bounded extension of ¢p and f fromR* toR respectively, and ¢ = (g1, ¢ @),
P = (p1, p2, p3) With

qi(t) = Wr(®p*_x =0, qx(t) = {(Wr(O)P*lx=0, g5(t) = IzWr(t)P*llx=0

and

t
pi(t) = ij(t - Of*C, dr ,
0

x=0

t
Pa(t) =3, j Wa(t - DFC, Dde |
0

t
py©) =22 j Wi (€ - T)f*C, T)dr
0
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Then, establish the estimates on Wbdrﬁ’, Wbd,_p):

Lemma 2.6. Let T > O be given, Vs € [0, 5]. Then V¢ € H5(R*), we have

4
— —

sup [Wearq C,Olswy + z sup |[Wyarq ||Hs+§;k(0 n s Clpllaswr -

0<t<T k=0 X€R ’

Proof. By Proposition 2.3 and Lemmas 2.4-2.5, we have

4

— —
sup [Wharq CoOw) + Y, SUP I Wharq o241
0<t<T k=0X€R* ’

* * 2 *
< MWl gy + IOl 1) + 102 WR Nz o 1)

< P lesw)
< Clopluswy- O

Lemma 2.7. Let T > O be given, Vs € [0, 5]. Then VYf € LY((0, T), HS(R")), we have

4

— —
sup [Wpar p C,Olasw™ + Z sup ||Wbdrp||Hs+§*k(0 n S If o, 7, Bs@R™) -
0<t<T k=0 X€R ’

Proof. By Proposition 2.3 and Lemmas 2.4-2.5, we have

4

— —
sup [[Wyar pC>0lasw) + Z sup ||Wbdrp||HS+§;k(0 -
0<t<oo k=0 X€R ’

A

t t t
< J Wi (t — T)FC, T)dr N aXIW[R(t _DfC, T)dr + aiIWR(t _DfC, T)dr
(0] 0

s+2 s+l s
H's (0,T) 0 H's (0,T) H5(0,T)

IN

If* N0, 1, m5RY)
< Clflio, 7; m5@w™) - i

2.4 Proof of Proposition 2.1.

Proof. Collecting all of the results of Proposition 2.3, Lemma 2.6, Lemma 2.7 together, we obtain

4

R
lullceo, 5 H5®Y) + kZ f:ulﬁ "u”H”?k(o,T) < Cllgplaswy + 1h lleswyy + I, mswy)s
20

which is

—
||u||YTS < C(I(¢, h )||XT5 + ||f||L1(o,T; Hs(uz*)))- O

3 Well-posedness
For the nonlinear boundary feedback u(0, t)?, we need the following nonlinear estimates:

Lemma 3.1. Let T > O be given. Then Vs € [0, 5], we have

3
< TS =

20,n Vg0, 1) (3.1)

luvligso,r)
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5 (1-8
vl gy < CTR0 2l sz I

S+2
Hs (0,T)°
and

7
vl 2 o, < CTO SNl s VI

o, = 2o,n e 0,

Proof. We apply the interpolation skill to prove the inequalities (3.1)-(3.3).
Proof of (3.1). When s = 0. Since H < L1 then Holder’s inequality leads to

3 7
luvllzo,ry < Tollullpoe, rylIvipee,ry < T1°||u||H§(0,T) ||V||H§(0,T)-
When s = 5. Since H'(0, T) is Banach algebra, we have
luvllmo,ry < Iullpio,my IVIE©, 1) < "u”H%(o,T)”V”H%(O,T)'

Taking 8 =1 - %, interpolation leads to

s+2

[L2(0, T), H'(0, T)]p = H5, [H%(o, T), HX(0, T)]o - HY¥

and

< cro(=S )l o2

vilyso,r) o001

Proof of (3.2), (3.3) is similar, we omit the details.

Proof of Theorem 1.1.

Proof. Let r > 0 and O < 7 < max{l, T} be constant to be determined. Take a ball from Y;:
B, ={veY <r}
which is bounded closed convex subset of Y;. Define a map I' on B;, by
u="r)
being the unique solution of

du+dnu=f, x>0, t>0,
u(x,0)=¢, x>0,
0,u(0, t) = hy(t), 9%u(0,t) = v(0, £)? + hy(t), dtu(0, t) = v(0, t)> + h(t) t > 0,

forve B;,.
Applying Proposition 2.1, Lemma 3.1, we have

.
Il < C(1liwiy + I e + VO, 020,520, D) + Wliqory sy
o l(l,§) 2
< ClUPlEswny + 1A llgs + T10V75)Iv(0, t)||H%(0, ) + Ifliqo, 11; SR

- 7 s
<C sy + Il + Wlicort meen) + CToll=)vi? .
(pllaswny + 1 llees + Wfllo, 1, m5@™)) I ”L‘X’([R"; 2 20.m)

7 7(1_s
<CUPlwy + 1 s + Wi, miny) + Crol-DIvEE..

7 s
Taker = 2C(Iplluswsy + A s + Wfllzqo,1; m3w*)))> Choose O < T < 1so small that cri(-)y
any v € B;,, we have
r 5

r 1 r
TW|ys € — + GTort < — + — = =1,
Ty 5t G > 37 &

which implies thatT : 8;, — B,,.

<

1
3

DE GRUYTER

(3.2)

(3.3)

. Then for
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Foranyu, v € B;,, I'(w) — I'(v) satisfies

U -RU=0, x>0, t>0,

Ux,0)=0, x>0,

9,U(0, t) = 0, 32U(0, t) = u(0, t)2 — v(0, t)2, 3*U(0, t) = u(0, t)2 — v(0, t)2, t> 0.
Thus, by Lemma 3.2, then Lemma 3.1, we obtain

IT@) ~ TW)llys < Clu(0, £ - v(0, £)?1l,,52(0, T)

< Cri(=Iu0, 6) + V{0, )l 520, DIUCO, ) - V{0, Dl,1+(0, T)

7(1-5
< Cob0 ) o, 50 +

LR H¥(0,T)))”u = Vg, #8200
7 (1_s
< Cro(=8)ulys + Ivilys)llu - iy
<Zu-v
- - Y3,
3 T
which implies that T : 8;, — 8., is the contraction mapping.

By Banach’s contraction mapping principle, there exists a unique fixed point of I' in B;, which is
the desired solution to be found. O

4 Concluding remarks

For differential operator Au = —d3 associated with d;u + d;u = 0, we have

(Au, u) = (Au, uy = —Iuaiu = —udt| + oudduly — %(a,%u)z =0
o
0 o

provided that

a. 0,u(0, t) = du(0, t) = dtu(0, t) = 0;
b. u(0, t) = 3%u(0, t) = du(0, t) = 0;
c. 32u(0, t) = Au(0, t) = d%u(0, t) = 0;
d. u(0,t) = d,u(0, t) = 3u(0, t) = 0.

Phillips-Lumper theorem implies that the operator A generates an operator group under any one of the
boundary values: a, b, c, d. Based on this observation, we point out that

Remark 4.1. The analysis in this paper is applicable with the initial boundary value problem

Ot + Oou = udu, x>0, t>0,
u(x, 0) = p(x), x>0, (4.4)
aorborcord, t>O0,

where
a. 0,u(0,t) = l(t), 02u(0, t) = u(0, £)? + hy(t), %u(0,t) = u(0, t)? + h(t);
b. u(0,t) = h(t), 02u(0, t) = u(0, t)? + hy(t), u(0,t) = u(0, t)? + hs(t);
€. 9%u(0,t) = u(0, t)2 + hy(t), 3u(0,t) = u(0, t)% + hy(t), (0, t) = u(0, t)? + hy(t);
d. u,t)=n(d), (0, t) = hy(t), 92u(0, t) = u(0, t)? + hy(t).
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For differential operator Bu = 3> associated with d;u — d2u = 0, we have

(Bu,wp = (B, w) = - [udfu = udl| - ddly + J@w? | = 2@, 0 <0,
0
0 0

provided that

e. du(0, t) = d%u(0,t) = 0;
f. u(0,t) = du(0, t) = 0;
g. u(o, t) = o%u(o, t) = 0;
h. u(0,t) = o,u(0, t) = 0.

Phillips-Lumper theorem implies that the operator B generates an operator group under any one of the
boundary values: e, f, g, h. Based on this observation, we point out that

Remark 4.2. The analysis in this paper is applicable to initial boundary value problem

Ot — U = udu, x>0, t>0,

u(x, 0) = p(x), x>0, (4.5)
éorforg, t>0,
where
é. 0,u(0,t) = h(t), otu(0, t) = u(0, t)? + hy(t);
f. w0, t) = h(o), 2u(0, t) = u(0, t)? + hs(t);

g. u(0,t) = u(0, t)? + hy(t), (0, t) = u(0, t)? + hs(t).

Acknowledgements: The authors would like to thank the anonymous referees for their careful reading and
useful comments.

Funding information: This work was financially supported by the Natural Science Foundation of Zhejiang
Province (No. LY18A010024) and National Natural Science Foundation of China (No. 12075208).

Author contributions: Xaingqing Zhao conceived and designed the study. Xiangqing Zhao and Chenggiang
Wang wrote the manuscript. Jifeng Bao helped to prepare the revision. All authors have accepted respon-
sibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or
analyzed during the current study.

References

[1] T. Kakutani and H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, ). Phys. Soc. Japan 26
(1969), 1305-1318.

[2] H. Hasimoto, Water waves (in Japanese), Kagaku 40 (1970), 401-408.

[3] S. Cuiand S. Tao, Strichartz estimates for dispersive equations and solvability of the Kawahara equation, ). Math. Anal.
Appl. 304 (2005), 683-702.



DE GRUYTER Initial-boundary value problem of fifth-order Korteweg-de Vries equation = 541

(4]

(5]

(14]

(15]
(16]

(17]

(18]

(19]

S. Cui, D. Deng, and S. Tao, Global existence of solutions for the Cauchy problem of the Kawahara equation with L? initial
data, Acta Math. Sin. 22 (2006), 1457-1466.

H. Wang, S. Cui, and D. Deng, Global existence of solutions for the Kawahara equation in Sobolev spaces of negative
indices, Acta. Math. Sin. 23 (2007), 1435-1446.

W. Chen, J. Li, C. Miao, and ). Wu, Low regularity solutions of two fifth-order KdV type equations, ). Anal. Math. 107 (2009),
221-238.

W. Chen and Z. Guo, Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation, ). Anal. Math. 114
(2011), 121-156.

T. Kato, Local well-posedness for Kawahara equation, Adv. Differ. Equ. 16 (2011), 257-287.

N. Larkin and G. Doronin, Kawahara equation in a quarter-plane and in a finite domain, Bol. Soc. Parana. Mat. 25
(2007), 9-16.

N. Larkin and M. Simdes, The Kawahara equation on bounded intervals and on a half-line, Nonlinear Analysis 127 (2015),
397-412.

X. Q. Zhao and B.-Y. Zhang, Non-homogeneous boundary value problems of the fifth-order KdV equations on a bounded
interval, ]. Math. Anal. Appl. 470 (2018), 251-278.

M. Cavalcante and C. Kwak, Local well-posedness of the fifth-order KdV-type equations on the half-line, Commun. Pure
Appl. Anal. 18 (2019), 2607-2661.

M. Cavalcante and C. Kwak, The initial-boundary value problem for the Kawahara equation on the half-line, Nonlinear
Differ. Equ. Appl. 27 (2020), 1-50.

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wave makers in nonlinear dispersive
systems, Proc. Cambridge Philos. Soc. 73 (1973), 391-405.

L. Rosier, Control of the surface of a fluid by a wavemaker, ESAIM Control Optim. Calc. Var. 10 (2004), 346-380.

C. H. Jia and B.-Y. Zhang, Boundary stabilization of the Korteweg-de Vries equation and the Korteweg-de Vries-Burgers
equation, Acta. Appl. Math. 118 (2012), 25-47.

J. L. Bona, S. M. Sun, and B.-Y. Zhang, A non-homogeneous boundary value problem for the Korteweg-de Vries equation in
a quarter plane, Trans. Amer. Math. Soc. 354 (2001), 427-490.

M. A. Caicedo and B.-Y. Zhang, Well-posedness of a nonlinear boundary value problem for the Korteweg-de Vries equation
on a bounded domain, ). Math. Anal. Appl. 448 (2017), 797-814.

Y. Benia and A. Scapellato, Existence of solution to Korteweg-de Vries equation in a non-parabolic domain, Nonlinear Anal.
195 (2020), 111758.



542 — Xiangging Zhao et al. DE GRUYTER

Appendix
Proof. In this appendix, we give the proof of (2.8)—(2.10).
Ai~p, A ~p? At ~p4,

where j =1, 2, 3. We have

A L A
A=A A AD.
AL A A
Firstly, we consider h;, we have
1 A4 A
A= 10 & K| =KA -84 ~pb (p— oo).
0 A A
Similarly, we have
A1 A3
5= /112 0 ABZ ~p®,  (p — o0)
Ao A
and
A A1
;l: Alz A22 O "’P6, (p—>00).
AV A0

We deduce that when p — oo,
N(p) ~ Auljy + Aphsy + Ashy; ~ o7

Thus, we have

lim
p—00

< 00

‘ PAL(P)
X (p)

We obtain that when p — oo,

1

M ~ pfl ) - p—l 51(p) _

, , pt.
A(p) A(p) A(p)
Secondly, we consider h,, we have
0 A A
=1 A2 /132 =BA) - LA ~p®,  (p — oo).
0 A A
Similarly, we obtain that for p — oo,
Ay(p) ~ p*,  AL(p) ~ p°.
We obtain for p — oo,
Mip) o BB, M)

N (p) N (p) Np)
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Thirdly, we consider h;.

0 AL A
: 0 A& A| =MA2 - A7 ~p3, (p — oo).

13 =
1A A

Similarly, we obtain that for p — oo,
As(p) ~ p*, A%(p) ~ p.
We obtain for p — oo,
B0 B0 . M), o

s

A (p) () N (p)
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