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Abstract: The main theorem of this article is to evaluate and express the multinomial convolution sum of
the divisor function o}(n; N/4, N) in as a simple form as possible, where N/4 is an arbitrary odd positive
integer. This generalizes previous result in combination with Cho and Kim, which is about the case N = 4.
While obtaining our main theorem, we derive some generalizations of other identities to the case that we are
dealing with.
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1 Introduction

For a nonnegative integer r and a positive integer n, let g,(n) be the usual divisor function defined by the
equation o,(n) = ., ,d". The divisor function is an important arithmetic function playing a fundamental
role in number theory. This appears naturally as the coefficients of (quasi) modular forms, a number of
integer solutions as quadratic forms and in relation to geometry, etc. Let ri(n) be the number of representa-
tions of a nonnegative number n as the sum of k squares. Jacobi showed in 1834 that r,(n) = 801(n) —
3201(n/4). Using the result of Jacobi, to compute rz(n) it is necessary to evaluate the following convolution
sum of the divisor function:

n-1
Y om)ay(n — m),
m=1

which was presented by Besge [1]. After that, convolution sums for such divisor functions have become the
subject of interest to many mathematicians. Liouville first evaluated the binomial convolution sum of o,(n)
as follows.

Theorem 1.1. [2] For every k, n € N we have

k-1 n-1
Z( 2K )Z Oezs i (MG = m) = 23 60 i) + (g - n)ozk—l(n)

soo\2s +1).7) 4k + 2
k
1 2k +1
+ B,i0ok+1-2i(1),
2k+1;( 2}. ) 2j02k+1 2]()

where B is the jth Bernoulli number.
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A slightly different version of the binomial convolution sum of g,(n) was evaluated by Kim and Bayad.
Note that this slight change gives rise to a simpler expression on the right hand side.

Theorem 1.2. [3] For every k, n ¢ N we have

Mok ) & 1
Z( )Z Opk-2s-1(2M — 102,120 — 2m + 1) = —05,,(2n),
co\2s+ 1)~ 4

where o;(n) = Y din d" = g,(n) - 0,(n/2).
24n/d

In the same article, they also provided several results about the binomial convolution sums of g;'(n).
Here, we introduce just two of them for the sake of simplicity.

Theorem 1.3. [3] For each k, n € N we obtain

=Y ) S L . 1, n_,
@ z Z Ok-25-1(M)0%s .1 (N — m) = 502k+1(n) - EUZk—l(n),

a0 2s +1 o

k-1 2k 2n-1
(i) z( ) T (-)"105 oy (M), 120 — m) = 105 (21),
o 2s +1 o

After that, Kim and Park succeeded in evaluating the trinomial and quadrinomial convolution sums
of the same divisor function as follows.

Theorem 1.4. [4] Let n > 4 be an even integer and let k € N. Then we have

) 2k +1 . . . 2k - Dn, , .
® > a( ) Y (-)™MHoz(my)oy(my)oi(ms) = g(gzku(”) - 2noy_4(n)),
a+b+c=2k+1 \ @ b, C Jmy+niyrmz=n 32
a,b,c odd m3 even
. a+b 2k . . . .
(it) — (=D™* gz (my)op(my)o; (m3)oz(ma)
atbicrd=2k € +d + 1\ a, b, ¢, d Jm+myiF+my=n

a,b,c,d odd ms,my odd

1 * * * *
- a(naz,m(n) - 2n2035_4(n) - 64 Y. (n/2 — m)a;(m)az_s(n — 2m)).
m<n/2

Kim and Bayad [5] dealt with a similar divisor function

S(n)=Yd
dln
24d

and introduced the orders, m-gonal shape number, type, and convexity derived from S(n).
Let us consider another divisor function as follows [6]:
Gm= Y d -1 Y d,
din dln
1=1(4) =1 (4)

om= Y d-) Y d.
din din
d=1(4) d=-1(4)

Note that if r is even, then

a¥(n) = Z(%)w and () = Z(%)d’,

dln d|n
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where

4 1, ifd=1 (mod 4)
(%J: -1, ifd=-1 (mod 4)
0, otherwise,

is a Kronecker symbol.
These divisor functions are related to the coefficients of (quasi) modular forms. In fact, it is well known
that they appear as coefficients of Fourier series of modular forms for [,(16) (see Section 4.5 in [7]). Recently,

Aygin and Hong obtained the results for convolution sums of o}(n) and o’(n) twisted by Dirichlet characters
[8]. Also, 6f(n) = o;(n) ifr is 0dd, so all the above results about ¢;(n) can be interpreted as the results about
o}(n) with “odd” indices. Kim, Bayad, and Park also gave the following result about the binomial convolu-
tion sum of divisor function ¢f(n) as follows.

Theorem 1.5. [6] For each k, n € N we obtain

k n-1
Zk) Y o 1 1, 1,
Z O3c_2s(M)03(N — M) = =03 ,,(n) — —05(n).
s=0( 2s e 2 2

Inspired by this work, the author together with Cho and Kim could evaluate the following “multi-
nomial” convolution sum of ¢}(n) with “even” indices.

Theorem 1.6. [9] For every t, k, n € N we have

2k
> r(ZSl 25y, -+ zst)Z(—l)aaﬁgl(m)a{gz(mz)...gz"s[(mt) = (-1)-12@DEDgh (),
(51,82, ..., S)€Ng s s N I

S1+S2+ -+ +5¢=k
where
M={m,...,m) eNlmy +--+m; =2Tn, my +--+m; = 0 (mod2i-Y) for all i}

and

ms my
a=m+ —+--+ —-—.
2 2t—2

Ramanujan [10] computed the following convolution sum:

n

Z o/(m)os(n — m),

m=0
wherer and s areodd andr + s = 2, 4, 6, 8, 12. Note that the summation begins atm = 0 and ends atm = n.
For m = 0 or n, 0,(0) is defined to be %( (-r), where {(s) is the Riemann zeta function. Recently, Bayad and
Hajli [11] studied about the multidimensional zeta function and proved that the multidimensional Appell
polynomials are special values at the nonpositive integers of these zeta functions.

In the present article, we generalize some of the above results including Theorem 1.6. For this purpose,
we define the generalized divisor function o}(n) as for positive integers N > 3, a nonnegative integer r,
and1<i<N-1
oin; i,N)= Y d-(-1y ) d.
dln din

LEN —i ()

If there does not exist a positive divisor d of n such that % =i (mod N), then ) an d" is assumed to be 0.
%Ei(N}

It is obvious that ¢f(n; 1, 4) = ¢¥(n) and cf(n; —i, N) = (-1)"*16}(n; i, N). Now we state our main theorem.
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Theorem 1.7. For every t, k, N € N such that t > 2, 4|N, and N/4 is odd, we have

> (25 2% )Z(—D“G&l(ml; N/4, N)--- ok (mg; NJ4, N) = (-1)12@-DEDgk (n; N/4, N),
1s

(S1, ---,5) NG e 525 M
Syt +Sp=k
where
M={my, ...,m;) e N{|my +--+m; = 2"In, my +---+m; = 0 (mod2i-Y) for all i < t}
and
ns me
A=Mmy + — +-+ ——.
2 2t—2

Theorem 1.6 was proved by the use of Theorem 1.5. So, in order to prove Theorem 1.7, we need to
generalize Theorem 1.5 to the case of g}(n;N/4, N) and it will be done in Corollary 2.4(i). To obtain this
corollary, we derive a new result (Theorem 2.2) about the binomial convolution sum of a,”(n ;1, N) and then
generalize Theorems 1.3(i) and 1.5 as its corollary (see Corollary 2.4). We comment that the technique used
in the proof of Corollary 2.4(i) is different from the one used in the proof of Theorem 1.5 given in [6].
Using Corollary 2.4(i) we can obtain Proposition 2.6, which can be thought of as an even-indexed version
of Theorem 1.3(ii). It can also be viewed as a special case of our main theorem for ¢t = 2. In Section 3,
we evaluate three trinomial convolution sums of 6}(n; N/4, N) and finally present the proof of Theorem 1.7.

2 Binomial convolution sums of o/

In combination with Cho and Kim, the author obtained a result about the binomial convolution sum
of a}(n; i, N).

Proposition 2.1. [9] Suppose N >3 and1 <i< N - 1. For all k, n € N we have

= (2% 2 n
Z( )Z o (m; i, N)ak(n - m; i, N) = o}, (n; i, N) - (1 - N)ogk(n; i, N) - Wogk_l(n; i, N).

s=0 m=1

To prove our main theorem we need the following result.
Theorem 2.2. Let N > 4 be an even integer. For any k,n,i € N with 0 < i < N/2, we have
2k 2k n-1
Z( ) Y ok_(m; i, N)ok(n - m; N/2 + i, N)
s=0 m=1
__ny i N n i N2 +i N
= —NOZH(H, i, N) - Nozk,l(n, f2+1,N)
+ #oz’ik(n; i, N) + (ﬁ - %)ogk(n; N2 +1,N).

We recall the identity of Huard, Ou, Spearman, and Williams to prove Theorem 2.2.

Theorem 2.3. ([12], Theorem 1) Let f : Z* — C be a function such that
f(a’ b,X,}’) _f(X’y’ a, b) :f(_aa —b,X,}’) _f(X’y’ —-a, _b)
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foralla, b,x,y € Z. Let n € N. Then

Y. (fla,b,x,-y) - f(a,~b,x,y) + f(a,a - b,x +y,y) - f(a,a+ b,y - x,¥)
(a,b,x,y)eN*
ax+by=n

+f(b_a:byx,x+)’)_f(a+b,b,X,X_Y))

= Y Y (f(0,n/d,x,d) + f(n/d, 0,d,x) + f(n/d,n/d,d - x,-X) - f(x,x — d,n/d, n/d)

d|nXxeN
x<d

-f(x,d,0,n/d) - f(d, x, n/d, 0)).

Proof of Theorem 2.2. Let

B @) e
Fy(n) = Fo,n(n).
Wetake f(a, b, x,y) = (Fn(a) + F_LN(a))Fzzv,N(a - b)(x — ¥)*(k € N)in Theorem 2.3. Since E n(a) = Fin(—a)
and Fg,N(a) = Fg,N(—a) fora € Z and even N > 2, we obtain
f@a, b, x,y) - f(x,y, a, b) = (F,n(a) + Ein(@)Fy n(a - b)(x - y)*
= (EnCO + EynOO))Fy v(x - y)a - b
= (Ein(-a) + En(-a)Fy y(-a + b)(x - y)*
- (En() + E;nOO))Fy N(xX — y)(=a + b)*
= f(-a,-b,x,y) - f(x,y, -a, -b).

Then the left hand side is equal to

Y, ((Fn(@ + Ein(@)Fy y(a - b)(x + y)* - (Fn(a) + Fin(@)Fy y(a + b)(x - y)*)
(a,b,x,y)eN*
ax+by=n

2k
2k
y [(F,-,N(a) + Ein(@)Fy x(a - b) Z( )xzk*ys
(a,b,x,y)eN* s=o\ S
ax+by=n

2k 2k
- (En(a) + F,i,N(a))F%N(a +b) Z( s )(_1)sxzksys)

s=0

z yS + Z x2k=s Z yS
n-m x|m y|ln-m

|
m=i(N) nem =N i) Y =-iN) nom=N_i(N)

Il
M
—
N
=~
M7T
™M
=
R
0

x|m yln-m x|m yln-m
=i(N) nom=N_i(N) R=-i(N) nom =N i)

(1)5[ Z sz—s Z ys+ Z sz—s Z ys

m=1 x|m
m_
x=

|
i) mo_j(N) n-

2k 2k n-1
— ( ) Z sz—s_(_l)s Z x2k=s ys — (-1 z ys
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The right hand side is —(U; + U;), where

d-1
U= Y (En(O + Fin())Fy n(x - d)(njd)*,

dlnx=1
d-1

Uy= ) Y (Fn(d) + Ein(d)Fy n(d - x)(njd)*.

dlnx=1
Replacing x by d — x, U is equal to

d-1

Y Y (Fn(d - %) + Ein(d - x)Fy N (O(n/d)>

d|nx=1

dln

dln

Z(n/d)Zk( S+, N(d) + FN—l N(d)>([2(d —

Y. (ydy*(Fy () + Fy_in(d) ZFN N

> (Y (Fyyin(d) + Fy_in(d) Z (Fyx) - Ry()

1)] - [dl\_ll])= U1 - Ui,

d|n N
where
U= Y (n/d)ﬂ[%] - (n/d)Zk[$],
dln d|n
d=Y+i() d=5-i(v)
-1 -1
Uo,= Y (n /d)Zk[ ] + Y o /d)Zk[ ]
dln dln
——H(N) dsi—z(N)
Then Ul,l is
Z dzk[ z(n/d ) ] + z dzk[ z(n/d ) ]
am N am N
n=N4i(N) 7=
z d2k2rl/d 2i z d2k2n/d -N+2i
am N am N
1N Li(N) n=N-iv)
_ 2_n Z d2-1 4 Z dz-1| _ ﬂ z d Z dzk
Nl &m am N &= am
LB 1N _i(N) 1N i) 1=N_i(N)
= 2"02,( (s N2 +i,N) - —azk(n NR+i,N)- ) d*
din
1=N_i(N)

Also, Uy,; equals

Z d2k[ n/d - 1] + Z de[ n/d - 1]
am N am N
n=N+i(v) n=N-i(v)
d-N/2-1i n/d-N/2+i
— dzkn/ + d2k
2 N 2 N
1N 4iN) n=8-iav)
_ /d—-NJ2-i o n/d+N/2+i
B R D M G
dln d|n
1N i) 2=8-iv)

Nz Q,

—i(N)

s

DE GRUYTER
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n 1 i
- = d2k—1 + d2k—1 _ (_ + _) dzk _ dzk _
N 2 2 2t 2 2
1=N4i(N) n=8-itv) n=N4i(N) n=N-i(\)
= Mo n, N2+i,N)-|=+ —=|ol(n; N2 +i,N) - d,
R I R - (UL LRI
n=N-i(N)

Hence, we obtain

1

U1 U11— U12— NUZk l(n N/2+l N)—(— - E)O'Zk(n N/2+l N)

N

Next, replacing x by d — x, we compute U, as follows:

The multinomial convolution sum of a generalized divisor function

dzk

d
E%—I.(N)

d-1
> Y (Fn(d) + En(d)Fs yO)njd)*
dlnx=1
d-1
= Y Y End + Ei,N(d))(n/d)zk([ 2(‘11\; 1) ] _ [ dA—I 1 D
dlnx=1
g N b R (s B
d|n &
dEil(N ) dz—li(N)

We define U,; and U, as

Upr= ) (n/d)Zk[M]+ Y (n/d)z"[M],
din N o N
4= d=-i(N)

Uyo = z (/d)Zk[ N ] Z (/d)Zk[ 1]
din dln
dEil(N) ——ll(N)

and we evaluate U, ; as follows:

y de[zm/jiv - 1)]+ y dzk[Z(n/jiv - 1)]

dln dln
(N = _i(N)
5 deZ(n/d D,y de(Z(n/d+l) ) 1)
m am N
=i(N) 1= _i(N)
2n 2%K-1 2%k-1 2 2 2% 2%
=Y ey el [ I S Y- S Y
N d|n d|n N d|n d|n d|n
() 55_1 N) n=i(N) = _i(N) LB )
2n
= ok (n;1,N) - —ozk(n i, N) - az.
N N %z
=-i(N)

Finally, in the same way we can obtain that

Upo= Y de[L‘;" 1] £y dzk[in/‘iv‘ 1]
din d|n
n=i(N) n=—i(N)

N

n . i .
= _0§k71(n; L N) - ﬁaznk(n; 1, N) -

])-

Y,
dln
= —i(N)

— 425
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Hence, we see that
UL=U,-Uy= 2(Tzuk 1(n; i, N) - L‘ng(n; i, N).
’ N 7T N
Finally, we conclude that —(U; + U,) is equal to

n . n . i . i 1 .
—Nogk_l(n; i, N) - ﬁogk_l(n, N2 +1i,N) + Nagk(n; i, N) + (ﬁ - E)o;‘k(n; Nf2 +1,N). O

Corollary 2.4. For any k, n, N € N with 4|N, we have

Q) Z(Zk) Zozk ,(m; N4, N)as(n — m; N/4,N) = 02k+1(n N/4, N) - —UZk(n N/4, N),

502S m=1

n-1
.. 2k 1 2n
(i) Z(ZS .\ 1) Z 0l s (m; N/4, N)ok,(n — m; N/4,N) = 50§k+1(n; N/4, N) - Foﬁ,ﬂ(n; N/4, N).
s=0 m=1

Proof. By Proposition 2.1 and Theorem 2.2, we obtain that

Z(zk)ZOZk J(m; N/4, N)ak(n — m; N/4, N) = o},,(n; N/4,N) - —UZk(n N/4,N) - W%k \(n; N/4, N),

s=0 m=1

and

2k
Z(Zk )Z( 150}, _(m; N/4, N)ok(n - m; N/4,N) = 02k (n; N/4,N) - —O‘Zk(n N/4,N).

s=0 m=1

Adding these identities we obtain the identity (i) because o}(n; i, N) = —(-1)"c}(n;—i, N). Similarly,
we easily deduce (ii). (|

Lemma 2.5. Let k, n, N € N and assume that N /4 is an odd integer. Then
ol(2n; N/4, N) = 2%al(n; N/4, N).

Proof. If d|2n and %” = %(modN) (resp.,%n = —%(modN)), then d must be even. Putd’ = g. Then d'|n and

% = %(modN) (resp.,% = —%(modN)). Hence,
of@n; N/a,N)y= Y di— (-1 Y di= ) QdF-(-Dk Y (Qd) =2 oi(n; N/4, N). O
d|2n d|2n din din
=l P 100 =i i=im

Moreover, we can obtain another result about the binomial convolution sum, which turns out to be
a special case of our main theorem.

Proposition 2.6. Let k, n, N be positive integers with N/4 odd. Then

2n-1
@ Z(i’;) Z( gk, ,.(m; N/4, N)os(2n — m; N/4, N) = =2%-1g}, (n; N/4, N),
s=0 m=1

k-1 2n-1
2k n
() Z( ) > (-1)maY_,,_(m; N/4, N)ok,,(2n — m; N/4,N) = 22"+2N0§k_1(n; N/4,N).
m=1
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Proof. (i) We have

k 2k 2n-1
Z( ) Y (-D™moy,_,(m; N/4, N)ok(2n — m; N/4, N)

0 2s m=1
k 2k 2n-1
=2 ) Y 05 »(m; N/4, N)os(2n — m; N/4, N)
o0\ 25/ m=1
m even
n-1

2 —
(3’3‘) Z ob_,(m; N/4, N)ok(2n — m; N/4, N)

|
M~

=0
2k
2s

2

202k ,<2m; N/4, N)ak(2n - 2m; N/4, N)

1M~

k 2k &
- z( ) Y 04 o(m; N/4, N)ok(2n - m; N/4, N).

m=1

From (i) of Corollary 2.4 and Lemma 2.5, we easily deduce that this is equal to

k n-1 k 2n-1
2% Z(Z:) Y. 05 _oi(m; N/4, N)ok(n — m; N/4, N) - Z(ik) Y 0% o(m; Nj4, N)ok(2n - m; N/4, N)
s=0 m=1 s=0 m=1

1
= 2%(0k.,(n; N/4,N) - ok (n; N/4, N)) - 5(o§k+1<2n; N/4,N) - a4 (2n; N/4, N))
= - 2%} (n; N/4, N).

(ii) From (ii) of Corollary 2.4 and Lemma 2.5, we obtain

k1o o 2l
Z(Zs+1) Z( "oy, y(m; N/4, N)ok,,(2n — m; N/4, N)

k-1 Zk 2n-1
=2 2(25 .\ 1) Z ng—ZS—l(m; N/4, N)0§S+l(2n —m; N/4,N)
s=0

m=1
m even
k onh 2t
B Z(ZS + 1) Zazk 25-1(m; NJ4, N)og,,(2n — m; N/4, N)

k-1 n-1
2 Z( " ) Y. Oh_os-1(2m; N4, N)ok,,(2n — 2m; N/4, N)
o\ + 1.5

2n-1

- Z(ZS + 1) Z O3 _ss_1(m; N/4, N)ok,,(2n — m; N/4, N)
= %+l Z(ZS " 1) ZUZk 25— 1(m N/4, N)025+1(n m; N/4, N)

SYRPTERN R
) Z(Zs ; 1) Zazk 2515 N4, N)O,((2n = m; N/4, N)

_ 22k+1(;a2k+1(n N/4, N) - ozk (n; N/4, n)) (;ozm(zn N/4, N) - —ozk @n; N/4, N))

22"+2ﬁ02k_1(n; N/4, N). O

3 Applications of Theorem 2.2 to trinomial and multinomial
convolution sums of o/

We present three identities Proposition 3.1(i) - (iii) about trinomial convolution sums of ¢f(n; N/4, N) and
Part (ii) will be generalized to the case of multinomial convolution sum.
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Proposition 3.1. Let k, n, N be positive integers with N /4 odd. Then we have

. 2k
o Y ( ) > (-D™od(my; N/4, N)o3,(my; N/4, N)ok(ms; N/4, N)
(a,b,c)eNg 2a, 2b, 2c (1, mp, m3)eN3

a+b+c=k mj+mp+m3=2n
m3 even

= - 2%Xg} .(n; N/4, N) - ok (n; N/4, N)),

.. 2k m
@ ( ) Y (~)mr P al(mi N4, N)ak,(my; N4, N)ob(ms; NJ4, N)
(a,b,c)eN} 2a, 2b, 2c (my, my, m3)eN?

a+b+c=k m1+mp+m3=4n
m3 even

= 2%} (n; N/4, N),

i) Y ( 2K ) Y (-Dmol(my; N/4, N)ob,(my; N/4, N)aj.(ms; N/4, N)

(a,b,c)eNg 2a, 2b, 2c (my,my, m3)eN3
a+b+c=k mp+mp+m3=4n
m3=2(4)

= - 242} (n; N/4,N).
Proof of (i). Note that

2k
> ( ) Y (-1ymol,(my; N/4, N)os,(my; N/4, N)od.(ms; N/4, N)
a+b+c=k 2a, 2b, 2c (my,mp,m3)eN?

mip+mp+m3=2n
m3 even

3 2k)! (2a + 2b)!
Z (2a + 2b)!'(2c)! 2a)!(2b)! Z

(-1)™MoS (my; N/4, N)ok,(my; N/4, N)a(ms; N/4, N).

(my,my,m3)eN3
mp+mp+m3=2n
m3 even

a+b+c=k

We setl =a + b and 2t = m; + m,. Then we have

k 2k n-1 1 21 2t-1
Z( )Z( Z( ) Y (~Dmad,(my; Nj4, N)og_,(2t - my; N/4, N)]og,(_ﬂ(zn - 2t; N/4, N).

=0 2 t=1\a=0 2a m=1

By (i) of Corollary 2.4 and Lemma 2.5, we obtain that

1 k 2%k n-1 k 2k n-1
- Z( 21) Y 03(2t; N/4, N)ak_,(2n — 2t; N/4, N) = =221 Z( ) Y ak(t; Nj4, N)oh_y(n - t; N/4, N)
1= t=1 1=0 t=1

=-2%%g} . ,(n; N/4, N) - 05, (n; N/4, N)). O
Proof of (ii). Putting [ = a + b and 2t = m; + m,, we have

Y ( 2k ) Y ()™ P ol (my; N4, N)od,(my; Nj4, N)os(ms; N/4, N)
a+b+c=k 2a, 2b, 2c (my,my,m3)eN3

mi+mp+m3=4n
m3even

k 2]( 2n-1 1 21 2t-1
= Z( ) Y (—1){2( ) Y ()™l (my; N/4, N)aj_,, 2t — my; N/4,N)]o§k_2,(4n - 2t; N/4, N).

2l t=1 a=0 2a m=1

From Lemma 2.5 and Proposition 2.6, we immediately infer

1 k 2k 2n-1
-5 Z( 21) Y (-1oj2t; N/4, N)ok_,(4n - 2t; N/4, N)
1=0 t=1
k 2k 2n-1
= - Q%1 Z( 21) Y (-1ol(t; N/4, N)a§_y(2n - t; Nj4, N)
1= t=1

= 2%2g} (n; N/4, N). O
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Proof of (iii). Replace 2n by 4n in (i) of Proposition 3.1. Then we have

D ( 2% ) Y (~DMak(my; NJ4, N)ab,(my; N/a, N)as.(ms; Nj4, N)
(a,b,c)eNd 2a, 2b’ 2c (my,my, m3)eN3

a+b+c=k mp+mp+m3=4n
m3 even

= -2%-2g} (2n; N/4, N) - o}, (2n; N/4, N)).

The (iii) in Proposition 3.1 is correct if subtract (ii) in Proposition 3.1 from the above term. O
We now generalize Proposition 3.1(ii) to the case of multinomial convolution sum as follows.

Proof of Theorem 1.7. We proceed by induction on t. The assertion for the case t = 2 is immediate due to
Proposition 2.6. Suppose that the assertion is true for some t — 1 > 2. Namely, we assume that for all
I, m, N € N with N/4 odd, we have

21 r
> (25 ) x Y (1% 0k (my; N/4, N)--- 0% (m_1; NJ4, N) = (-1)2@-DE2gh (m),
1y« M

Syt +Sp-1=1 "zst‘l

where & =m, + 22 +---+ 75 and

M ={my,...,m1) e N my + - +meq = 28 'm, my +---+m; = O(mod2i-Y) for all 2 <i < £ — 1}

+eoe 4+ Mg

Fixl=s; +---+ s qand m = M523

. Applying Lemma 2.5 and Proposition 2.6, we obtain

> ( * )Z(—l)“oz”sl(ml; N/4,N)--- o5 (me; N/4, N)
M

S+ +5e=k 251""’25t
(Zk)' (251 + “'+2St—1)! , ’

- (-1)%0% (my; N/4, N)--- ok (mg; N/4, N)
51+--Z+:st:k (251 + -+ 25 )!(251)! (2s)!---(25¢-1)! AZJ: 25 25\
K (oK) 2! # 2 21 o 1

= Mg 2t-2on — m); N/4, N -D)%05.(my; N/4,N)---
IZO( . ) X (1raj @ e - mi NJi ) Y _l( 231’“.,25“)% o4, (mys N/, N)
N - 14+ S 1=

x ok, (me_y; N/4, N)

k 2n-1
2(22’1‘) Y (-)ym(=22"Y20}(m; N/4, N)o_,(2'n - 2-2m; N/4, N)
=0

k 2n-1
(_zzk—l)t—ZZ(zzll() Z (_1)mo'§l(m; N/4, N)a§k721(2n - m; N/4, N)
=0

(-22-Nt-1g8 (n; N/4, N). O

m=1

m=1
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