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Abstract: In this paper, we study the unicity of meromorphic functions concerning differences and small
functions and mainly prove two results: 1. Let f be a transcendental entire function of finite order with a
Borel exceptional entire small function a z( ), and let η be a constant such that fΔ 0η

2
≢ . If fΔη

2 and fΔη share

aΔη CM, then a z( ) is a constant a and f z a BeAz( ) = + , where A B, are two nonzero constants; 2. Let f be
a transcendental meromorphic function with ρ f 12( ) < , let a1, a2 be two distinct small functions of f ,
let L z f,( ) be a linear difference polynomial, and let a L z a,1 2( )≢ . If δ a f, 02( ) > , and f and L z f,( ) share a1

and ∞ CM, then c,L z f a
f a
, 1

1

( )
=

−

−
for some constant c 0≠ . The results improve some results following C. X. Chen

and R. R. Zhang [Uniqueness theorems related difference operators of entire functions, Chinese Ann. Math.
Ser. A 42 (2021), no. 1, 11–22] and R. R. Zhang, C. X. Chen, and Z. B. Huang [Uniqueness on linear differ-
ence polynomials of meromorphic functions, AIMS Math. 6 (2021), no. 4, 3874–3888].
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1 Introduction and main results

In this paper, we assume that the reader is familiar with the basic notions of Nevanlinna’s value distribution
theory, see [1–4]. In the following, a meromorphic function always means meromorphic in the whole
complex plane.

By S r f,( ), we denote any quantity satisfying S r f o T r f, ,( ) ( ( ))= as r → ∞ possible outside of an ex-
ceptional set E with finite logarithmic measure r rd

E
∫ / < ∞. A meromorphic function a is said to be

a small function of f if it satisfies T r a S r f, ,( ) ( )= .
Let f be a nonconstant meromorphic function. The order and the hyper-order of f are defined by

ρ f T r f
r

lim log ,
logr

( )
( )

=
→∞

+

and

ρ f T r f
r

lim log log ,
log

.
r2( )

( )
=

→∞

+ +
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Let f be a transcendental meromorphic function, and let a be a small function of f . We define

λ f a
N r

r

δ a f
m r

T r f

N r
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,

, lim
,

,
1 lim

,

,
.

r

f a
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r

f a

1

1 1

( )

( )
( ) ( )

( )

( ) ( )

− =

= = −

→∞

+

−

→∞

−

→∞

−

It is clear that δ a f0 , 1( )≤ ≤ . If δ a f, 0( ) > , then a is called a deficient function of f and δ a f,( ) is its
deficiency. If a is a constant, then a is called a deficient value of f . In this paper, deficiency possible outside
of an exceptional set E with finite logarithmic measure.

If

N r

r
ρ flim

log ,

log
,

r

f a
1

( )
( )

<
→∞

+

−

for ρ f 0( ) > ; and N r O r, logf a
1

( )( ) =
−

for ρ f 0( ) = , then a is called a Borel exceptional function of f .

If a is a constant, then a is called a Borel exceptional value of f .
Let f and g be two meromorphic functions, and let a be a small function of both f and g . We say that

f and g share a small function a CM(IM) if f a− and g a− have the same zeros counting multiplicities
(ignoring multiplicities).

Let η be a nonzero finite complex number, and let n be a positive integer. We define the difference

operators of f as f z f z η f zΔη ( ) ( ) ( )= + − and f z f z nΔ Δ Δ , 2η
n

η η
n 1( ) ( ( ))= ≥

− .

Let η η η, , , n1 2 … be distinct complex numbers, and let b i n0 1, 2, ,i( ) ( )≢ = … be small functions of f .
We define the linear difference polynomial of f as follows:

L z f b z f z η b z f z η b z f z η, .n n1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )= + + + + ⋯+ + (1.1)

Nevanlinna [4] proved the following famous five-value theorem.

Theorem A. Let f and g be two nonconstant meromorphic functions, and let aj (j 1, 2, 3, 4, 5= ) be five
distinct values in the extended complex plane. If f and g share aj (j 1, 2, 3, 4, 5= ) IM, then f g≡ .

Li and Qiao [5] improved Theorem A as follows:

Theorem B. Let f and g be two nonconstant meromorphic functions, and let aj (j 1, 2, 3, 4, 5= ) (one of them
can be identically infinite) be five distinct small functions of both f and g . If f and g share aj (j 1, 2, 3, 4, 5= )
IM, then f g≡ .

In 1986, Jank et al. [6] proved.

Theorem C. Let f be a nonconstant entire function, and let a be a nonzero finite complex number. If f , f ′ and
f ″ share a CM, then f f≡ ′.

Recently, the uniqueness in difference analogs of meromorphic functions has become a subject of some
interests, see [7–18].

Chen et al. [10] and Farissi et al. [11] obtained the difference analog to Theorem C and proved

Theorem D. [11] Let f be a nonconstant entire function of finite order, let η be a nonzero constant, and let
a 0( )≢ be an entire small function of f satisfying a z η a z( ) ( )+ = , If f , fΔη and fΔη

2 share a CM, then f fΔη≡ .

In 2021, Chen and Zhang [8] proved.
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Theorem E. Let f be a transcendental entire function of finite order with λ f a ρ f( ) ( )− < , where a z( ) is an
entire small function of f z( ) satisfying ρ a 1( ) < , and let η be a nonzero constant such that fΔ 0η

2
≢ . If fΔη

2 and

fΔη share aΔη CM, where aΔη is a small function of fΔη
2 , then f z a z BeAz( ) ( )= + , where A B, are two nonzero

constants and a z( ) is reduced to a constant.

In [8], the authors pointed out that ρ a 1( ) < is reasonable. According to the aforementioned theorems,
we naturally pose the following problem.

Problem 1. Whether ρ a 1( ) < can be deleted in Theorem E?

In this paper, we give a positive answer to Problem 1 and prove the following result.

Theorem 1. Let f be a transcendental entire function of finite order with a Borel exceptional entire small
function a z( ), and let η be a constant such that fΔ 0η

2
≢ . If fΔη

2 and fΔη share aΔη CM, then a z( ) is a constant

a and f z a BeAz( ) = + , where A B, are two nonzero constants.

Remark. If λ f a ρ f( ) ( )− < , then a z( ) is a Borel exceptional function of f z( ). Hence, Theorem 1 improves
and extends Theorem E.

The following example shows that there exists a transcendental entire function f satisfying Theorem 1.

Example 1. [8] Suppose f e 1z ln2= + , then it is easy to obtain 1 is a Borel exceptional value of f . Let η 1= ,
we obtain f fΔ Δη η

2
≡ . Thus, we see fΔη

2 and fΔη share 0 CM.

In 1996, Brück [19] posed the following conjecture.

Conjecture. Let f be a nonconstant entire function such that ρ f2( ) < ∞, which is not a positive integer.
If f and f ′ share one finite value a CM, then

f a
f a

c,
′ −

−
=

for some constant c 0≠ .

In 2009, Heittokangas et al. [20] proved the following result.

Theorem F. Let f be a meromorphic function with ρ f 2( ) < , let η be a nonzero complex number, and let a be
a finite complex number. If f and f z η( )+ share a and ∞ CM, then

f z η a
f z a

c,( )

( )

+ −

−
=

for some constant c 0≠ .

In 2021, Zhang et al. [18] proved

Theorem G. Let f be a transcendental meromorphic function with ρ f 12( ) < , let a1, a2 be two distinct small
functions of f satisfying ρ a j1 1, 2j( ) ( )< = , and let L z f,( ) be a linear difference polynomial of the form (1.1)
with ρ b i n1 1, 2, ,i( ) ( )< = … and a L z a,1 2( )≢ . If δ a f, 02( ) > , and f and L z f,( ) share a1 and ∞ CM, then

L z f a
f a

c, ,1

1

( ) −

−
=

for some constant c. In particular, if the deficient function a 02 ≡ , then L z f f,( ) ≡ .
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Naturally, we pose the following problem.

Problem 2. Whether ρ a j1 1, 2j( ) ( )< = , ρ b i n1 1, 2, ,i( ) ( )< = … can be deleted or not in Theorem G?

In this paper, we give a positive answer to Problem 2 and prove the following result.

Theorem 2. Let f be a transcendental meromorphic function with ρ f 12( ) < , let a1, a2 be two distinct small
functions of f , let L z f,( ) be a linear difference polynomial of the form (1.1), and let a L z a,1 2( )≢ . If
δ a f, 02( ) > , and f and L z f,( ) share a1 and ∞ CM, then

L z f a
f a

c, ,1

1

( ) −

−
=

for some constant c 0≠ . In particular, if the deficient function a 02 ≡ , then L z f f,( ) ≡ .

The following example shows that there exists a transcendental meromorphic function f with ρ f 12( ) <

satisfying Theorem 2.

Example 2. [18] Let f e 6πiz= + , and let L z f f e, Δ 2 πiz
1( ) = = − . Then, we have L z f,( ) and f share 4, ∞ CM

and δ f6, 1 0( ) = > . Thus,

L z f
f
, 4

4
2.( ) −

−
= −

2 Lemmas

In order to prove our results, we need the following lemmas.

Lemma 1. [13] Let f be a nonconstant entire function of finite order. If a is a Borel exceptional entire small
function of f , then δ a f, 1( ) = .

Lemma 2. [21–23] Let f be a nonconstant mermorphic function with ρ f 12( ) < , and let η be a nonzero finite
complex number. Then

m r f z η
f z

S r f, , .⎜ ⎟
⎛

⎝

( )

( )
⎞

⎠
( )

+
=

If f is of finite order, then for any ε 0> , we have

m r f z η
f z

O r, .ρ f ε1
⎜ ⎟
⎛

⎝

( )

( )
⎞

⎠
( )( )

+
= − +

Lemma 3. [7] Let a be a finite complex number, let f be a transcendental meromorphic function of finite order
with two Borel exceptional values a and ∞, and let η be a nonzero constant such that fΔ 0η ≢ . If f and fΔη

share a, ∞ CM, then a 0= , f z eAz B( ) = + , where A 0( )≠ and B are two constants.

Lemma 4. [21] Let f be a nonconstant meromorphic function of finite order, and let η be a nonzero finite
complex number. Then

N r f z η N r f z S r f, , , .( ( )) ( ( )) ( )+ = +
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Lemma 5. Let η be a nonzero finite complex number, let n be a positive integer, and let f be a transcendental
meromorphic function of finite order satisfying δ a f, 1( ) = , δ f, 1( )∞ = , where a is a small function of f .
If fΔ 0η

n
≢ , then

(1) T r f T r f S r f, Δ , ,η
n( ) ( ) ( )= + ;

(2) δ a f δ fΔ , Δ , Δ 1η
n

η
n

η
n( ) ( )= ∞ = .

Proof. By Lemma 2 and Nevanlinna’s first fundamental theorem, we have

m r
f a

m r
f a

f a
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(2.1)

It follows from (2.1) and Lemmas 2 and 4 that
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η
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r
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η
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Then we have T r f T r f S r f, Δ , ,η
n( ) ( ) ( )= + .

By (2.1) and lim 1r
T r f

T r f
, Δ

,
η
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( )
=→∞ , we obtain

δ a f
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It follows that δ a fΔ , Δ 1η
n

η
n( ) = .

Combining δ f, 1( )∞ = , N r f n N r f, Δ 1 ,η
n( ) ( ) ( )≤ + with lim 1r

T r f
T r f

, Δ
,

η
n( )

( )
=→∞ , we obtain δ f, Δ 1η

n( )∞ = .

□

Lemma 6. Let f be a meromorphic function of finite order, and let η, c, d be three nonzero finite complex
numbers. If f z η cf z( ) ( )+ = , then either T r f r, d( ) ≥ for sufficiently large r or f is a constant.
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Proof. In the following, we consider three cases.
Case 1. There exists z0 such that f z0( ) = ∞. Without loss of generality, we assume that z 00 = , and then

we deduce that for all positive integers j, f jη( ) = ∞. Thus, for sufficiently large r and n η r n η2 2 1∣ ∣ ( )∣ ∣≤ < + ,
we have

T r f N r f n t f n f
t

t n f r

j t
t

j
j

j
n

n
n

n
η

r

, , , 0, d 0, log

d log 1 1

log 1 1
2 1

log 1 1
2 1

log2 log2
4

.

r

j

n

j η

j η

j

n

j

n n

0

1

2 1 1

1

2 1

1

2 1 2 1
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( ) ( )
( ) ( )

( )

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣

∣ ∣

( )∣ ∣

∫

∫∑ ∑

∑

≥ =
−

+

≥ = +

≥ +
−

= +
−

≥ >

=

−
+

=

−

=

− −

It follows that T r f r, d( ) ≥ , where d η
log2

4 ∣ ∣
= .

Case 2. There exists z0 such that f z 00( ) = and f 0≢ . Set g f
1

= . Then by f z η cf z( ) ( )+ = , we obtain that

g z η g zc
1

( ) ( )+ = and g z0( ) = ∞. Thus, by the proof of Case 1, we deduce that T r f r, d( ) ≥ .

Case 3. f 0,≠ ∞. Since f is of finite order, then f ep= , where p is a polynomial. If pdeg 1≥ , then
T r f r, d( ) ≥ ; if pdeg 0= , then f is a nonzero constant. □

3 Proof of Theorem 1

Firstly, we prove ρ f 0( ) > . Suppose on the contrary that ρ f 0( ) = .
Set F z f z a z( ) ( ) ( )= − . Since a z( ) is a Borel exceptional entire small function of f z( ), we obtain

N r
F

N r
f a

O r, 1 , 1 log .⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
( )=

−
=

Hence, F has finitely many zeros. Thus, we assume that z z z, , , n1 2 … are zeros of F , where n is a positive
integer.

Hence, by ρ f 0( ) = , we deduce that e ,F
z z z z z z

p
n1 2( )( ) ( )

=
− − ⋯ −

where p is a constant.

It follows that F z c z z z z z zn1 2( ) ( )( ) ( )= − − ⋯ − , where c is a nonzero constant. Thus, we have

T r F n r O, log 1 .( ) ( )= +

Since T r a S r F, ,( ) ( )= , we obtain that a z( ) is a constant and f z( ) is a nonconstant polynomial, which
contradicts with fΔη

2 and fΔη share aΔη CM. It follows ρ f 0( ) > .

Obviously, δ f, 1( )∞ = . Since a z( ) is a Borel exceptional entire small function of f z( ), then by Lemma 1,
we obtain δ a f, 1( ) = .

By Lemma 5, we obtain

δ a f δ a fΔ , Δ 1, Δ , Δ 1,η η η η
2 2( ) ( )= = (3.1)

δ f δ f, Δ 1, , Δ 1.η η
2( ) ( )∞ = ∞ = (3.2)

We claim that a aΔ Δη η
2

≡ . Otherwise, since fΔη
2 and fΔη share aΔη CM, then by Nevanlinna’s second

fundamental theorem and Lemma 5 and (3.1), we have
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T r f T r f S r f

N r f N r
f a
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f a
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, , Δ ,
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+
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+ ≤

a contradiction.
Obviously, δ F δ a f0, , 1( ) ( )= = , δ F, 1( )∞ = . Since f is a transcendental entire function and fΔη

2 and

fΔη share aΔη CM , we have FΔη
2 and FΔη share 0, ∞ CM.

It follows from (3.1) and (3.2) that

δ F δ F0, Δ 1, 0, Δ 1,η η
2( ) ( )= = (3.3)

δ F δ F, Δ 1, , Δ 1.η η
2( ) ( )∞ = ∞ = (3.4)

Set

G FΔ .η=

Since FΔη
2 and FΔη share 0, ∞ CM, we obtain GΔη and G share 0, ∞ CM. By (3.3), (3.4), we obtain

δ G δ G0, 1, 0, Δ 1,η( ) ( )= = (3.5)

δ G δ G, 1, , Δ 1.η( ) ( )∞ = ∞ = (3.6)

By Lemma 5, we have

T r G T r f S r f, , , .( ) ( ) ( )= + (3.7)

Since a z( ) is a Borel exceptional entire small function of f z( ), we obtain λ f a ρ f( ) ( )− < . It follows that
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ρ flim
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log
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+
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+

− (3.8)

By Nevanlinna’s first fundamental theorem, we have

m r
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η
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⎛
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⎞
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⎞
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⎛
⎝

⎞
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− ≤ − +

≤ + − +

≤ + + − +

≤ +

(3.9)

By Lemma 2, set ε 1
2= , we obtain

S r F Mr, ,ρ f 1
2( ) ( )≤ − (3.10)

where M is a positive constant.
It follows from (3.8) that

N r
F

r, 1 .
ρ f λ F

2⎛
⎝

⎞
⎠

( ) ( )

<
+ (3.11)
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By (3.10) and (3.11), we obtain

N r
F

S r F M r, 1 , 1 ,M1⎛
⎝

⎞
⎠

( ) ( )+ < + (3.12)

where M ρ fmax , ρ f λ F
1

1
2 2( )

( ) ( )

{ }= −
+ .

By (3.9) and (3.12), we obtain

N r

r
M r
r

M M
r

log ,

log
log 1

log
log 1

log
.

F M
1

Δ
1

η 1( ) ( )( )
≤

+
≤ +

+

+

Thus, we have

N r

r

N r

r
M ρ flim

log ,

log
lim

log ,

log
.

r

G

r

F
1 1

Δ
1

η
( )

( )( )
= ≤ <

→∞

+

→∞

+

(3.13)

It follows from (3.7) and (3.13), we deduce that 0 is a Borel exceptional value of G.
By Lemma 3, we obtain G z eA z B1 1( ) = + , where A 01( )≠ , B1 are two constants. That is,

F z η F z e .A z B1 1( ) ( )+ − = + (3.14)

By Hadamard’s factorization theorem, we have

F z α z e ,p z1( ) ( ) ( )= (3.15)

where α is an entire function such that ρ α λ α ρ F( ) ( ) ( )= < , and p1 is a nonconstant polynomial with
p ρ Fdeg 1 ( )= .
Hence, we obtain

T r α S r e, , .p1( ) ( )= (3.16)

It follows from (3.14) and (3.15) that

α z η e α z e e .p z η p z A z B1 1 1 1( ) ( )( ) ( )+ − =+ + (3.17)

Next, we consider two cases.
Case 1. pdeg 21 ≥ . By (3.17), we have

α z η
e

e α z
e

e 1.A z B
p z η

A z B
p z

1 1
1

1 1
1

( ) ( )( ) ( )
+

− ≡
+

+

+
(3.18)

Obviously, T r e S r e, , .A z B p1 1 1( ) ( )=+ It follows from (3.16), (3.18), and Nevanlinna’s second fundamental
theorem that

T r e T r α
e

e S r e

N r α
e

e N r
e

N r
e

S r α
e

e

S r e

, , ,

, , 1 , 1
1

,

, ,

p
A z B

p p

A z B
p

α
e

p α
e

p A z B
p

p

A z B A z B

1
1 1

1 1

1 1
1

1 1
1

1 1
1 1 1

1

1

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
⎠

( ) ( )

( )

≤ +

≤ + +
+

+

≤

+

+ +
+ +

a contradiction.
Case 2. pdeg 11 = . Let p z mz n1( ) = + , where m 0( )≠ and n are two complex numbers.
Now, we consider two subcases.
Case 2.1. A m1 ≠ . Thus, by (3.17), we obtain

c α z η e c α z e 1,m A z m A z
1 21 1( ) ( )( ) ( )+ + ≡− − (3.19)

where c emη n B
1 1= + − and c en B

2 1= − − .
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Obviously, T r α S r e, , m A z1( ) ( )( )= − . It follows from (3.19) and Nevanlinna’s second fundamental the-
orem that

T r e T r c αe S r e

N r c αe N r
c αe

N r
c αe

S r c αe

S r e

, , ,

, , 1 , 1
1

,

, ,

m A z m A z m A z

m A z
m A z m A z

m A z

m A z

2

2
2 2

2

1 1 1

1
1 1

1

1

⎜ ⎟ ⎜ ⎟

( ) ( )

( ) ⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
( )

( )

( ) ( ) ( )

( )
( ) ( )

( )

( )

( )≤ +

≤ + +
−

+

≤

− − −

−

− −

−

−

a contradiction.
Case 2.2. A m1 = . Thus, by (3.17), we obtain

c α z η c α z 1,1 2( ) ( )+ + ≡ (3.20)

where c emη n B
1 1= + − , c en B

2 1= − − .
Next, we consider two subcases.
Case 2.2.1. c c 01 2+ = . Hence,

e e e e 1 0.mη n B n B n B mη1 1 1( )− = − =+ − − −

It follows e 1.mη =

By Lemma 6 and ρ α ρ F 1( ) ( )< = , we deduce

α z
ηc

c ,
1

3= +

where c3 is a constant.

Hence, f z a z c ez
ηc

mz n
3

1
( ) ( ) ( )= + + + . It follows

T r f T r a z
ηc

c e T r e S r f m
π

r S r f, , , , , .mz n mz n

1
3⎜ ⎟⎜ ⎟( ) ⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠

( ) ( ) ( )= + + ≤ + ≤ ++ + (3.21)

Since a aΔ Δη η
2

≡ , then b bΔη≡ , where b aΔη= . It follows b z η b z2( ) ( )+ ≡ . By Lemma 6, we deduce that

eitherT r b r, d( ) ≥ or b z( ) is a constant. IfT r b r, d( ) ≥ , by (3.21), we know that b z( ) is not a small function of
f z( ), a contradiction. Then b z( ) is a constant, obviously b z 0( ) ≡ . It follows a z η a z( ) ( )+ ≡ . By Lemma 6
and (3.21), we deduce that a z( ) is a constant.

Thus, we have

f z η
ηc

c e z
ηc

c e

z
ηc

c
c

e e z
ηc

c e

c
e

Δ

1

1 ,

η
m z η n mz n

mz n mη mz n

mz n

1
3

1
3

1
3

1 1
3

1

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

( )=
+

+ − +

= + + − +

=

+ + +

+ +

+

and

f f
c

e
c

e
c

e e
c

eΔ Δ Δ 1 1 1 1 0.η η η
m z η n mz n mz n mη mz n2

1 1 1 1
( ) ( )= = − = − =+ + + + +

This contradicts with fΔ 0η
2

≢ . Hence, this case cannot occur.
Case 2.2.2. c c 01 2+ ≠ .
By Lemma 6 and ρ α ρ F 1( ) ( )< = , we deduce

α c,=

where c is a constant.
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It follows that f z a z cemz n( ) ( )= + + . Obviously, c 0≠ , we obtain

T r f T r a ce T r e S r f m
π

r S r f, , , , , .mz n mz n( ) ( ) ( ) ( ) ( )= + ≤ + ≤ ++ + (3.22)

Since a aΔ Δη η
2

≡ , by (3.22) and using the same argument as used in case 2.2.1, we can prove that a z( ) is

a constant a. Therefore, we have f z a BeAz( ) = + , where A B, are nonzero constants.
This completes the proof of Theorem 1.

4 Proof of Theorem 2

Since f and L z f,( ) share a1 and ∞ CM, we obtain

L z f a z
f z a z

h z, ,1

1

( ) ( )

( ) ( )
( )

−

−
= (4.1)

where h is a meromorphic function satisfying N r h S r f, ,( ) ( )= , N r S r f, ,h
1

( )( ) = .
It follows from (4.1) that

a L z a a a h
L z f a

f a
h

f a
1

,
, 1 .

1 2 1 2

2

2 2
⎜ ⎟

( ) ( )
⎛

⎝

( ) ⎞

⎠− − −

−

−
− =

−
(4.2)

By Lemma 2 and Nevanlinna’s first fundamental theorem, we have

T r h m r h S r f

m r L z f a
f a

S r f

m r L z f a
f a

m r L z a a
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S r f

m r
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, , ,

, , ,

, , , , ,

, 1 , , , .
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≤
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−
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≤
−

+ ≤ +

It follows

S r h S r f, , .( ) ( )= (4.3)

Since δ a f, 02( ) > , we deduce thatm r c T r f, ,f a
1

1
2

( )( ) ≥
−

for sufficiently large r, where c1 is some positive

constant. Then, by (4.2), we have

T r f
c

m r
f a

c
m r

a L z a a a h
L z f a

f a
h

c
m r

a L z a a a h c
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≤
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≤
− − −
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It follows

S r f S r h, , .( ) ( )= (4.4)
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Since a z a z1 2( ) ( )≢ , we have
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Thus, we have
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(4.5)

It follows from (4.3), (4.4), a L z a,1 2( )≢ , and Nevanlinna’s second fundamental theorem that
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(4.6)

By (4.5) and (4.6), we obtain
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It follows
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By (4.7), we have
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It follows from (4.2), (4.7), (4.8), and Lemma 2 that
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which contradicts with δ a f, 02( ) > . Hence, h is a constant c. That is,
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1
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obviously c 0≠ .
Next, we consider the case: a 02 ≡ . Then, by (4.2) and h c= , we have

a c
L z f

f
c

f
1

1
, 1 .

1
⎜ ⎟

( )
⎛

⎝

( ) ⎞

⎠−
− =

We claim that c 1= . Suppose on the contrary that c 1≠ , then we obtain
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which contradicts with δ f0, 0( ) > . Hence, c 1= . That is, L z f f, .( ) ≡

Thus, Theorem 2 is proved.
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