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Abstract: In this paper, we establish several kinds of integral inequalities in two independent variables,
which improve well-known versions of Gronwall-Bellman inequalities and extend them to fractional inte-
gral form. By using these inequalities, we can provide explicit bounds on unknown functions. The integral
inequalities play an important role in the qualitative theory of differential and integral equations and partial
differential equations.
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1 Introduction

It is well known that Gronwall’s inequality is an important tool in the quantitative and qualitative analysis
of solutions to differential and integral equations. For example, it has been used to study the boundedness,
existence, uniqueness, and stability of solutions of differential-integral equations (cf. [1-6]). Gronwall’s
original result [7] appeared in 1919, and Bellman [2] proved the integral version of Gronwall’s inequality in
1943. Since then, many researchers have spent a lot of effort studying more general Gronwall-type integral
inequalities with a single variable and discussed their applications to ordinary differential equations.

Let us recall the standard Gronwall inequality, which can be found in [5,8].

Theorem 1.1. Let u(t) € L[0, T] satisfy

t
u(t) < uglt) + If(s)u(s)ds, ae. tel0,T], (1.1)
0
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where uy is nonnegative and nondecreasing, and f € L}[0, T]. Then,
u(t) < up(t)exp If(s)ds , a.e.tel0,T]. 1.2)

Some Gronwall inequalities for fractional order are proved in [9,10]. Alzabut-Abdeljawad [11] proved
a discrete fractional version of the generalized Gronwall inequality. For convenience, we state the following
version of a fractional Gronwall inequality:

Theorem 1.2. [10] Suppose B > 0, a(t) is a nonnegative function locally integrable on 0 <t< T
(some T < +00) and g(t) is a nonnegative, nondecreasing continuous function defined on 0 <t < T,
g(t) < M (constant), and suppose u(t) is nonnegative and locally integrable on 0 < t < T with

u(t) < a(t) + g(t)J(t - s)Flu(s)ds, ae. te[0,T). 1.3)
Then,
u(t) < a(t) + j[nzl(g (;zrg;)) s)"ﬁ-la(s)]ds, ae. t ¢ [0, T). (1.4)

We may also find various applications of integer and fractional Gronwall-Bellman type of inequalities
to study the qualitative properties of solutions to differential and integral equations of fractional order
in [12-18].

Furthermore, many authors extended one variable Gronwall-Bellman type integral inequalities to two
or more independent variables (cf. [19-30]). Especially papers [20—-24] proved some results about integral
inequalities of Gronwall-Bellman type with two independent variables and presented some definite appli-
cations of their results to the boundedness, uniqueness, and continuous dependence of the solutions of
some nonlinear hyperbolic partial integrodifferential equations. Recently, Boudeliou [31] considered Gron-
wall-type inequalities with two independent variables and applied his new theoretic results to obtain the
boundedness of solutions of some integral equations successfully. For more recent developments of Gron-
wall-type inequalities with two independent variables, we refer the readers to [32-38] and the references
therein. For example, Khan discussed several new integral inequalities of two independent variables, and
one of the interesting inequalities is:

Theorem 1.3. [33] Let ¢(x,y), A(x,y), B(x,y), and H(x,y) be real-valued nonnegative, nondecreasing
continuous functions, defined x,y € R,, ¢ > 0. If

X y Xy
B, y) < c + jA(s,y)¢(s,y>ds + j B(x, Op(x, )t + ”H(s, (s, t)deds, (15)
0 0 00
for all x,y € R,. Then,

d(x,y) < cQ(x, y)E(x, y)exp I H(s, t)Q(s, t)E(s, t)dtds |, (1.6)
0

O C—

where

y
Q(x,y) = exp IB(X, t)E(x, t)dt
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and
E(x,y) = exp jA(s, y)ds |.

In this paper, we extend and generalize the main results in [10,33] and show several new types
of Gronwall-Bellman inequalities, which arises from a class of integral equations with a mixture of
integer-order and fractional-order integrals. The results can be used to study the boundedness of solutions
of several special kinds of integral equations.

2 Main results

In this section, we shall show several new inequalities, which are more general than (1.5)—(1.6).
For conveniences, we set

MO,y)=c+ h(s, t)ud(s, t)dtds,

O C— =
O — <

X

Ay =1 [o- s ie g jb( I

0

Our first result is the following.

Theorem 2.1. Let u(x, y), b(x, y), h(x, y), and A(x, y) be real-valued nonnegative, nondecreasing continuous
functions, andc > 0,0 < g < 1,a > 0. If

uGn y) < ¢ + I(x ~ )% Tu(s, y)ds + '[b(x Oulx, Hdt + _[Ih(s tud(s, £)dtds 1)

00

for all x,y € R,. Then,

1
1-q

u(x,y) < W, y)E,T(a)x®)| cl-9+ (1 - q)j '[h(s, (W (s, ) Ey(T(a)s*))dtds | ,
where

y
W(x,y) = exp Ib(x, OE,(T(@)x®)dt |,

and E,(Z) = Z;‘ioﬁkﬂ) stands for the Mittag-Leffler Function (cf. [39]).
Proof. Let us set

M, y)=c+ h(s, t)ud(s, t)dtds, (2.2)

O C— <
O C— <

and then, the inequality (2.1) becomes

y
u(x,y) < M(x,y) + I(x - 8)*lu(s, y)ds + Ib(x, u(x, t)dt.
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Since M(x, y) is positive, nondecreasing continuous function, it is easy to show that

ulx,y) a1 UGS, y) u(x t)

el <1 J-(x syt s ¢ Ib( Mo pa
Set

a1 UGS, y) u(x t)

AGGy) =1+ J.(x syt + Ib( ol
So, one has

u(x,y)

My <A, y),

X y

A, y) <1 + j(x — S)E1As, y)ds + Ib(x, DA, tdt.

Define

Therefore, we have

y
Bi,y) =1+ Ib(x, DA, t)dt.

A, ) < B(t, y) + -[(x _ $)e1A(s, y)ds.

DE GRUYTER

(2.3)

(2.4)

(2.5)

Since b(x, y), A(x, y) are nonnegative and nondecreasing by the assumptions, B(x, y) is positive, non-
decreasing continuous function. We infer

Set

Then, we obtain

Define an integral operator:

Then, formula (2.7) implies that

Cx,y) <1+BC(x,y), C(x,y)< Y B +B'Clx,y).

A Y) _ J‘ (x - s)© 1AGS, ) ds
B(x, y) B(s, y)

X

Cx,y) =1+ I(X —s)at

0

A(s,y) ds
B(s,y)

Alx,y)

B(x, y) < Cx,y),

Cx,y) <1+ I(x - 8)*71C(s, y)ds.

B (x, ) = j (x = )8 1i(s, y)ds.
0

n-1

k=0

(2.6)

(2.7)
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In the following, we prove that

B"C(x,y) < %!(}( - s)"-1C(s, y)ds, (2.8)

B"C(x,y) - 0 asn — +oo foreach x,y € R,.

By the use of induction, we easily obtain that relation (2.8) is true for n = 1. Next, assume that it is also true
forn = k. If n = k + 1, one has from inductive hypothesis

BIC(x, y) = BBKC(x, y) < I(x s)e-1 (11:3:))) I(s - )k-1C(1, y)dr |ds.

By exchanging integration order, we have

(T(a))* J' l J‘ (x - 5)* (s — Dk1ds [C(r, y)dr.

Bk+1C , <
*x, ) I(ka)
0

In virtue of the properties of the beta functions (see [39, p. 6]) and the variable substitutions = 7 + u(x — 1),
we easily obtain

X 1
BIC(x, y) < (11:8:0)(); J(l — W wkedy |(x - T)*kDea-1¢(T, y)dr

_ @) [ T@I(ka)

- _ (k+1)a-1
k@) J T+ Da) Oc = DDIC(T, y)de

" T((k + Da) ! x -7 C(r, y)dr,

which proves that the inequality (2.8) holds for n = k + 1. And

X
n
T(a)) I(X _ 5)"“‘1C(S, y)ds - 0 asn — +oo for all x,y € R,.

0 < B"C(x,y) <
) T(nat)
0

Therefore, we readily obtain
Clx,y) < Z B < Z ([T(@)* J(x - s)ka-11ds
k=0 k=0 r(k )

\ Tk x* M ) .
= Z T(ka) ka k;)l"(ka A Ey(T(a)x®).

From the relation (2.6), one has
A(x,y) < B(x, y)C(x, y) < B(x, y)Ea(T(a)x®). (2.9)
Taking the partial derivative with respect to y on both sides of (2.4), we obtain
B,(x,y) = b(x, y)A(X, ). (2.10)
By substituting (2.9) in (2.10), we have

By(X’ y)

B(x.y) < b(x, y)E(I'(a)x®).
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Integrating both sides of aforementioned inequality with respect to y from O to y, we obtain
y
BOx,y) < exp| [ bx, OET(@xde | = Wx,y).
0

Hence, we obtain from (2.9)
A(x,y) < WX, y)Ea(T(@)x®).
Furthermore, we have from (2.3)
u(x, y) < A(x, y)M(x, y) < W(x, y)Ea(T()x*)M(x, y). (211)
Taking the partial derivatives with respect to x and y on both sides of (2.2), respectively, we obtain
My,(x, y) = h(x, y)u?(x, y). (212)
From (2.11) and (2.12), we have

MX)’(X’ }/) ]
W y) < h(x, y)(W(x, y)E4T(a)x*))4

My (X, y)M(X, y)  qM(X, y)My(x, y)

< h(x, y)(W(x, y)E(T(a)x%))4

Wy M)
9| M(x,y) a
E[Ww] < hCx, Y)W (x, y)EaT(@x ).

Then, integrating both sides of aforementioned inequality, first, integrating y from O to y, and then inte-
grating x from O to x, we obtain

1
1-q

Xy
Mouy) < |9+ - q)f_[h(s, (W (s, DEL(T(@)s®)ddtds | . (2.13)
00

By substituting (2.13) in (2.11), we obtain

1
1-q

Xy
u(x, y) < Wex, y)ET@x9| =1 + (1 - ) j jh(s, W (s, OE(T(@s®)ideds |
00

which completes our proof. O

Theorem 2.2. Under the assumptions in Theorem 2.1, but q = 1, if the following inequality holds
b'e y Xy
UG, y) < c + I(x — §)a (s, y)ds + Ib(x, Hux, Hdr + J Ih(s, Hu(s, t)dtds
0 0 00
for all x,y € R,. Then,
Xy
0, y) < W VET@xexp| [ [hs, oW, OEC@sdeds |
00

where W(x, y) is defined in Theorem 2.1.
Proof. Similar to the proof of Theorem 2.1, we set

Mx,y)=c+ h(s, t)u(s, t)dtds.

O e, %
O C— <
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By using the same steps as in (2.2)-(2.11), we easily have
ux, y) < Wex, y)ET(a)x*)M(x, y). (2.14)
Due to My, (x, y) = h(x, y)u(x, y) and the inequality (2.14), we obtain
Myy(x, y)
M(x,y)
My(X, Y)M(X,y) — Mi(X, y)M,(X, y)
M(x, y) M(x,y)

) [ M(x, y)
ay| Mx,y)

< h(x, y)W(x, y)Eo(T(a)x*)

< h(x, y)W(x, y)E(T'(a)x*)
< h(x, Y)W (x, y)Eo(T(a)x®).

Integrating y from O to y, and then integrating x from 0 to x on both sides of the aforementioned inequality,
we obtain

Xy
M(x, y) < cexp Ijh(s, OW(s, DE(T(@)s%)dtds |. (2.15)
00

Then, substituting (2.15) into (2.14), we obtain

Xy
u(x, y) < W (x, y)ELT(@)x®) exp ”h(s, OW(s, DE(T(@)s®)deds |. O
00

Theorem 2.3. Under the assumptions in Theorem 2.1 and O < p < 1, if the following inequality holds

X y Xy
u(x,y)<c+ I(x - 8)*lu(s, y)ds + Ib(x, tuP(x, t)dt + Ijh(s, tui(s, t)dtds, (2.16)
0 0 00

for all x,y € R,. Then,

1
1-q

Xy
u(x, y) < ET@xOWiCx, y)| ¢ + (1 - q)j j h(s, YEoT(@sOWi(s, )edtds |
00

where

1

1-p

y
Wi, y) = |1+ (1 - p)cp-ljb(x, O ELL(@xD)Pdt
0

Proof. Define

M, y)=c+ h(s, t)ud(s, t)dtds. (2.17)

O C—
O C—

By substituting (2.17) into (2.16), we obtain
X y
u(s, y) < M(x, y) + I(x — )ely(s, y)ds + Ib(x, OuP(x, £)dt.
0 0

Since M(x, y) is positive and nondecreasing, one has

u(s

x y
<1+ [om o e s [oo 03l
0 ’ 0

M(x, t)

ux, y)

dt.
M, y)

M(
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Set
B X a1 U y) u(xt)
A(x,y)_1+!(x D ds+Ib( g
So, we obtain
ux,y)
M, ) A(x, y). (2.18)

Hence,

y
A y) <1+ I(x — ) 1AGs, y)ds + f bix, HAP(x, HMP-1(x, t)dt.

By the definition of the function M(x, y) (see (2.17)) and O < p < 1, it is easy to know that
cP 1> MP-(x, y).

Therefore, one has

X y
AGGy) <1+ _[ (x - $)%1A(s, y)ds + cp-lfb(x, AP (x, D)dt.

Set

Y
B(x,y) =1+ cP-ljb(x, HAP(x, t)dt. (2.19)

Then, we obtain
AGx,y) < BOGLY) + j(x ~ 5)s1A(s, y)ds.

Similarly, using the same steps from (2.5)—(2.9), we obtain
A(x, y) < B(x, y)E,(T(a)x%). (2.20)
Now by taking the partial derivative with respect to y both sides of (2.19), we obtain
By(x,y) = c?7b(x, y)AP(x, y).
From (2.20), we have

By(x,y) < c?'b(x, y)(B(X, y)E«T(a)x*))P.

Hence,
By(x, )’) 1 «
—BP(x ) cP=b(x, y ) ET(a)x*))?P,
which implies that
Bx,y) < |1+ (1 - p)cP- 1J-b(x O(ELT(@x®))P dt | = Wilx, y).

Therefore, we have from (2.20)

A(x, y) < Es(T(@)x)Wi(x, y).
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Thanks to (2.18), we also have
u(x, y) < M(x, y)E«(T()x*)Wi(x, y). (2.21)
Taking the partial derivatives with respect to x and y on both sides of (2.17), respectively, we obtain
Myy(x, y) = h(x, yui(x, y).
By using (2.21), we have

My(x,y)

Mi(x, y) < h(x, y)(EL(T(@)x0)Wi(x, y))4.

Then using the similar steps from (2.12) to (2.13) in Theorem 2.1, we obtain

1
1-q

Xy
MOoy) < |+ 0 - q)”h(s, OELT(@)sOWi(s, £)ideds |
00

which implies from (2.21)

Xy 11q
u(x, ) < EaM@x)WiCx, y)| - + (1 - q)j jh(s, EELT(@)s)Wi(s, £))dtds

00

This completes the proof. O

Theorem 2.4. Under the same assumptions in Theorem 2.3, but q = 1, if the following inequality holds,

b'e y Xy
u(x,y)<c+ J(x - 8)*lu(s, y)ds + Ib(x, HuP(x, t)dt + '[jh(s, t)u(s, t)dtds
0 0

00

for all x,y € R,. Then,

u(x, y) < cE,(T(a)x)Wi(x, y) exp h(s, t)E,(T(a)s*)Wi(s, t)dtds |,

O C— <
O —

where Wi(x, y) is defined in Theorem 2.3.

Proof. Define

M(x,y)=c+ h(s, tu(s, t)dtds. (2.22)

O C— X
O C—

Taking the partial derivatives with respect to x and y on both sides of (2.22), respectively, we obtain
My (x,y) = h(x, y)u(x, y).
By using the similar steps of (2.17)—(2.21), we have
u(x, y) < Wilx, y)E(T(@)x)M(x, y). (2.23)
Therefore, one easily obtain

Mxy(X, )’)

M(x,y) < h(x, y)Wi(x, y)E,(T(a)x%).
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By using the similar discuss of the proof in Theorem 2.2, we easily obtain
Xy
M(x, y) < cexp ”h(s, WIS, DEL(T(@)s®)dtds |.
00
Then, the inequality (2.23) reduces to
u(x,y) < Wi ET@xexp| [ [ hes, Wi, OEI@sdeds .

The proof is complete. O

Theorem 2.5. Let u(x,y) and h(x,y) be real-valued nonnegative, nondecreasing continuous functions,
andc>0,0<g<1,a>0,8>0.If

u(x,y) < c+ I(X - 8)*lu(s, y)ds + I(y — )P lu(x, t)dt + IIh(s tHud(s, t)dtds, (2.24)
00

for all x,y € R,. Then,

1
1-q

u(, y) < Wo0x, y)| -9 + (1 - q)I Ih(s, OWGs, Odeds |

where
Ws(x, y) = ExT(a)x®)Eg(Eo(T(a)x )L (B)yP).
Proof. Define

Mx,y)=c+ h(s, t)ud(s, t)dtds. (2.25)

O C— =
O C—

Then, (2.24) reduces to
X y
u(x,y) < M(x,y) + I(x - 5)* y(s, y)ds + I(y — )B-ly(x, t)dt.

Obviously, M(x, y) is positive, nondecreasing continuous function. So one has

ux,y) 1+J(X )alu(sy)ds+j(y t)ﬁlu(Xt)

M(x,y) M( M(x, t)
Set
_ h Mu(sy) ﬁlu(xt)
A(x,y>—1+£( 5) j( -t
We have
u(x,y)
Mx,y) < Alx, y),

y
A, y) <1 + I(x — ) AGs, y)ds + J.(y — P A, Dt



DE GRUYTER Extensions of Gronwall-Bellman type integral inequalities

Let
y
B, y) =1+ I(y ~ OFAG, Bt
0
which implies
X
A(x,y) < B(x,y) + I(x - S)*1A(s, y)ds.
0

Recalling B(x, y) is positive, nondecreasing continuous function, we obtain

AY) g, I(x _ g1 AV g
B(x,y) ) B(s,y)

Set

Cx,y)=1+ j(x - s)“‘l—gg’igds.
! ,

Therefore, we obtain

A(x,y)

B(x, y) <Clx,y),

Clx,y) <1+ I(x - 5)*71C(s, y)ds.
0

By using to the same steps from (2.7) to (2.9), we have
Ax, y) < B(x, y)E(I(a)x®).

By combining (2.26) and (2.27), we obtain

y
A, ) < Ex(Tax®)| 1+ I(y _ OF1AGx, £)dt
0

v
< E(T(a)x®) + Ea(l"(a)x“)'[(y — t)F1A(x, t)dt.
0

Let Bo(x, y) = E(T (a)x“)_[;/(y - t)B-1¢(x, t)dt. Then, formula (2.28) implies that
A(x,y) < E(T()x®) + BA(x, y),

n-1
A(x,y) < ) BE((T(a)x®) + B"A(x, y).
k=0

By using the similar steps in (2.8) and (2.9), we obtain
(Eo(T(a)x)T(B)"
I'(nB)

B"A(x,y) - 0 as n — +oo foreach x,y € R,.

y
B'A(x, y) < f(y —EAG, 0t
(0]

— 441

(2.26)

(2.27)

(2.28)
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Then,
A(X,y) £ Y BE(T(@)x?) < Ef(T(@)x)Eg(ExT(a)xOT(B)yF) = Walx, ).
k=0
Therefore, we have
u(x,y) < Alx, y)M(x, y) < Wa(x, y)M(x, y). (2.29)
Taking the partial derivatives with respect to x and y on both sides of (2.25), respectively, we also have
My(x,y) = h(x, y)ui(x, y),
which implies from (2.29)

Mxy(X’ y)

q
Mq(X, y) < h(X9 y)WZ (X’ Y)

By using the similar steps of (2.12)-(2.13), one has

Xy 1Eq
MO, y) < |ca+ (- q)f _[h(s, HWGs, Odeds |
00

and hence,

1
1-q

Xy
u(x, y) < Wy, y)| =0 + (1 - q)j j h(s, HW(s, tydtds
00

The proof is complete. O

Corollary 2.1. Under the assumptions in Theorem 2.5, but q = 1, if the following inequality holds

X y Xy
UG, y) < c + j(x _ s)*lus, y)ds + I(y — OB u(x, £)dt + jjh(s, Bus, Hdtds,
0 0

00

for all x,y € R,. Then,

u(x, y) < ch(x, y) exp h(s, t)Wy(s, t)dtds |, (2.30)

O C—, X
O C— <

where Wy(x, y) is defined in Theorem 2.5.

By using the proof of Theorem 2.5, we can easily obtain the conclusion (2.30), and we omit the
details here.

3 Applications

In this section, two applications are presented to demonstrate the applicability of the main results.



DE GRUYTER Extensions of Gronwall-Bellman type integral inequalities =— 443

For conveniences, we denote by C(R, x R, x R, R) the set of all continuous functions fromR, x R, x R
into R. We first apply our Theorem 2.5 to study the boundedness of solutions for the following integral
equation:

X y Xy
U(xX, y) = to(, y) + jA(x, s, u(s, y))ds + jB(y, £, u(x, O)dt + HC(s, tous, )dtds, Vx,y cR..  (3.)
0 0

00

where ug € C(R. x R,), A, B, C € C(R, x R, x R, R). We will show the following:

Theorem 3.1. Assume that the functions uq, A, B, and C in (3.1) satisfy the following conditions,

lug| < c, (3.2
|A(x, s, u)| < (x — $)* Mul, (3.3)
IB(y, t, Wl < (v = )F"ul, (3.4)
|C(s, t, w)| < h(s, )|ul?, (3.5)

where ¢ > 0, q, a, B, and h satisfy the same conditions as those in Theorem 2.5. If u(x, y) is a solution
of equation (3.1), then

1
1-q

Xy
juCx, ) < Woe )| -+ (1 - @) | [ hes, owss, odeds | (3.6)
00

for all x,y € R,, where W, is defined as in Theorem 2.5.

Proof. By using the conditions (3.2)—(3.5) into (3.1), we obtain

X y
uCe, y)l < + j(x ~ s u(s, y)lds + j(y ~ By, O)dt
0 0

Xy (3.7)
' I j h(s, Olu(s, Hldeds  Vx, y € R,
00
By applying Theorem 2.5 to (3.7), we can obtain the desired result (3.6). O

In the sequel, we shall illustrate that our Theorem 2.1 can be applied to study the boundedness
of solutions of a class of partial differential equations in two independent variables.
Consider the problem of the form

Uy(X,y) = fWux,y) + F(x,y, u(x,y)), Vx,yeR,, (3.8)
u(x,0) = m(x), u(0,y)=a(y), a&(0)=ay0)=0, Vx,yeR,, (3.9)

where fe C(R,,R)and F € C(R, x R, x R, R).
We use our result to study the boundedness of the solution of the aforementioned initial boundary
value problem.

Theorem 3.2. Assume that f ¢ C(R,,R) n LR, R), F ¢ C(R, x R, x R, R), @y, @, € L°(R,, R) and
|F(s, t, w)| < h(s, t)|u 9. (3.10)

If f and h are nonnegative, nondecreasing continuous functions and 0 < g <1, a > 0, 8 > 0, then

Xy iy
u(x, y) < W, y)E(T@x®)| -7 + (1 - q)j _[h(s, (W (s, DE,(T(a)s®))dtds | (3.11)
00

for all x,y € R,, where W is defined as in Theorem 2.1.
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Proof. If the boundary value problem (3.8) with (3.9) has a solution u(x, y), then u satisfies the following
integral equation:

X

y y y
u(x, y) = @) + ayy) - If(t)az(t)dt N Jf(t)u(x, £t + ”F<s, t, u(s, O))dtds, forall x, y € R,.
0 0 00

By using the assumptions and (3.10), we have

y Xy
u(x, y)l < c + If(t)lu(x, B)lde + I h(s, Olu(s, H)9dtds
0 00

X

X y y
<c+ I(x - 5)* u(s, y)|ds + If(t)lu(x, t)|dt + Ijh(s, tluls, t)|2dtds, Vx,y € R,,
0 0

00

where ¢ = |aq;(x)| + |ax(y)| + .[(:O If(t)ax(t)|dt. Then, Theorem 2.1 implies the desired result (3.11). O

4 Conclusion

In this paper, we establish several kinds of integral inequalities in two independent variables, which
improve well-known versions of Gronwall-Bellman inequalities and extend them to fractional integral
form. Although, we only give two simple examples in the article as applications, our theoretical results
can be widely used, cf. [11,33] and the references therein.

There are many issues worthy of further study in the article. On the one hand, the exponent power g of
the unknown function u(s, t) in our theorems, we only discuss two cases, 0 < g < 1and g = 1. The proofs of
the theorems for the two cases are not mutually included. We do not know what will happen if the exponent
g > 1. On the other hand, apart from studying the fractional integral inequality for two independent vari-
ables, we can extend our results with two independent variables to those of n independent variables.
Studying those problems will be useful for us to further study the theory of fractional calculus equations
in the future.
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