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Abstract: Motivated by the celebrated work of Lutwak, Yang and Zhang [1] on ( )p q, -mixed volumes and
that of Feng and He [2] on ( )p q, -mixed geominimal surface areas, we in the present paper establish and
confirm the affine isoperimetric and Brunn-Minkowski-type inequalities with respect to ( )p q, -mixed geo-
minimal surface areas.
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1 Introduction

Let � n denote the set of convex bodies (compact, convex subsets with nonempty interiors) in the Euclidean
n-space �n. For the set of convex bodies containing the origin in their interiors and the set of convex
bodies whose centroid lie at the origin, we write � o

n and � c
n, respectively. For the set of star bodies (about

the origin) in �n, we write �o
n. Let −Sn 1 denote the unit sphere in �n and ( )V K denote the n-dimensional

volume of a body K . For the standard unit ball B in �n, its volume is written by ( )=ω V Bn .
If �∈K n, then the support function of K , � �( )= ⋅ →h h K, : ,K

n is defined by [3]

�( ) { }= ⋅ ∈ ∈h K x x y y K x, max : , ,n

where ⋅x y denotes the standard inner product of x and y in �n.
Let K be a compact star shaped (about the origin) in �n, the radial function of K ,

�( ) { } [ )= ⋅ ⧹ → +∞ρ ρ K, : 0 0,K
n , is defined by [4]

�( ) { } { }= ≥ ∈ ∈ ⧹ρ K x λ λx K x, max 0 : , 0 .n

If ρK is positive and continuous, K will be called a star body (with respect to the origin). Two star bodies
K and L are dilated (of one another) if ( ) ( )/ρ u ρ uK L is independent of ∈

−u Sn 1.
For ≥p 1, the Lp mixed volume, ( )V K L,p , of �∈K L, o

n is defined by [5]

( ) ( ) ( )
∫

=

−

V K L
n

h v S K v, 1 d , ,p

S

L
p

p
n 1

(1.1)

where ( )⋅S K,p is the Lp surface area measure.
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Based on the Lp mixed volume (1.1), Lutwak [6] in 1996 introduced the notion of Lp geominimal surface
areas: For ≥p 1 and �∈K o

n, the Lp geominimal surface area, ( )G Kp , is defined by

�( ) { ( ) ( ) }= ∈

∗ω G K nV K Q V Q Qinf , : ,n
p
n p p o

np
n

where ∗Q denotes the polar of Q. When =p 1, ( )G K1 is just Petty’s classical geominimal surface area [7].
In particular, Lutwak [6] proved the following inequalities.

Theorem 1.A. If �∈K o
n and ≤ <p q1 , then

⎜ ⎟ ⎜ ⎟
⎛

⎝

( )

( )
⎞

⎠

⎛

⎝

( )

( )
⎞

⎠
≤

− −

G K
n V K

G K
n V K

,p
n

n n p
q

n

n n q

p q
1 1

with equality if and only if K is p-self-minimal.

Theorem 1.B. If �∈K o
n and ≥p 1, then

⎜ ⎟
⎛

⎝

( )

( )
⎞

⎠
( ) ( )≤

−

∗ω
G K

n V K
V K V K ,n

p
n

n n p

p
1

with equality if and only if K is p-self-minimal.

Very recently, Lutwak et al. [1] introduced the Lp dual curvature measures as follows: Suppose

�∈p q, . If �∈K o
n while �∈L o

n, then the Lp dual curvature measures, ( )͠
⋅C K L, ,p q, , on −Sn 1 are defined by

( ) ( ) ( ( )) ( ( )) ( ) ( )͠
∫ ∫

=

− −

− −

g v C K L v
n

g α u h α u ρ u ρ u ud , , 1 d ,
S

p q

S

K K K
p

K
q

L
n q

,
n n1 1

for each continuous �→

−g S: n 1 , where αK is the radial Gauss map (see [1], Section 3).
Using the Lp dual curvature measures, Lutwak et al. [1] defined the ( )p q, -mixed volumes as follows:

For �∈p q, , �∈K Q, o
n and �∈L o

n, the ( )p q, -mixed volume, ( )V͠ K Q L, ,p q, , is defined by

( ) ( ) ( )͠͠
∫

=

−

V K Q L h v C K L v, , d , , .p q

S

Q
p

p q, ,
n 1

Meanwhile, Lutwak et al. [1] gave the following formula of ( )p q, -mixed volume:

⎜ ⎟( ) ⎛

⎝

⎞

⎠
( ( )) ( ) ( )͠

∫

=

−

−

V K Q L
n

h
h

α u ρ u ρ u u, , 1 d .p q

S

Q

K
K

p
K

q
L

n q
,

n 1

(1.2)

In [1], Lutwak et al. introduced the Lp mixed volume ( )V K Q,p of �∈K Q, o
n for all �∈p by

( ) ( ) ( )
∫

=

−

V K Q
n

h v S K v, 1 d , .p

S

Q
p

p
n 1

The case ≥p 1 is just Lutwak’s Lp mixed volume (1.1). Moreover, for �∈q and �∈K Q, o
n, they in [1] also

defined the qth dual mixed volume, ( )V͠ K Q,q , by

( ) ( ) ( )͠
∫

=

−

−

V K Q
n

ρ v ρ v v, 1 d .q

S
K
q

Q
n q

n 1

By (1.2), the following special cases are showed:

( ) ( )͠
=V K Q K V K Q, , , ,p q p, (1.3)

( ) ( )͠ ͠
=V K K L V K L, , , ,p q q, (1.4)

( ) ( )͠
=V K Q L V K Q, , , .p n p, (1.5)
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The ( )p q, -mixed volumes unify the mixed volumes of convex bodies in the Lp Brunn-Minkowski theory
and the dual mixed volumes of star bodies in the Lp dual Brunn-Minkowski theory. In the last 20 years,
the Lp Brunn-Minkowski theory and its dual theory have been developed very rapidly, see e.g., [3–6,8–23].

Based on the ( )p q, -mixed volumes, Feng and He in [2] introduced the concept of ( )p q, -mixed geo-
minimal surface areas as follows:

Definition 1.1. For �∈p q, , �∈K o
n and �∈L o

n, the ( )p q, -mixed geominimal surface areas, ( )G͠ K L,p q, ,
of K and L are defined by

�( ) { ( ) ( ) }͠ ͠
= ∈

∗ω G K L nV K Q L V Q Q, inf , , : .n
p
n p q p q o

n
, ,

p
n (1.6)

If =L K or =q n in (1.6), then from (1.3) or (1.5) we see that for ≥p 1 the definition is just Lutwak’s Lp

geominimal surface area in [6]. For the studies of Lp geominimal surface areas, some results have been
obtained in these articles (see, e.g., [24–35]).

According to the definition of ( )p q, -mixed geominimal surface areas, Feng and He [2] extended
Theorem 1.A to the following result:

Theorem 1.C. Suppose �∈q . If �∈K o
n and �∈L o

n, then for < <r s0 ,

⎜ ⎟ ⎜ ⎟
⎛

⎝

( )

( )

⎞

⎠

⎛

⎝

( )

( )

⎞

⎠

͠ ͠

͠ ͠
≤

− −

G K L
n V K L

G K L
n V K L

,
,

,
,

,r q
n

n
q

n r
s q

n

n
q

n s
, ,

r s
1 1

with equality if and only if K and L are dilates.

Obviously, Theorem 1.C for =L K and ≤ <r s1 implies Theorem 1.A.
In addition, they [2] gave a Brunn-Minkowski-type inequality for the ( )p q, -mixed geominimal surface

areas as follows:

Theorem 1.D. Suppose �∈p q, such that < <

−0 1n q
q and ≠q n, and let �∈λ μ, . If �∈K o

n, and
�∈L L, o

n
1 2 , then

( ) ( ) ( )͠ ͠ ͠
⋅ + ⋅ ≥ +

∼

− − −G K λ L μ L λG K L μG K L, , , ,p q q p q p q, 1 2 , 1 , 2
q

n q
q

n q
q

n q

with equality if and only if L1 and L2 are dilates.

2 Main results

Here, ⋅ + ⋅

∼λ L μ Lq1 2 is the Lq-radial combination of L1 and L2 (see (2.1)).
In this article, associated with the ( )p q, -mixed geominimal surface areas, we first establish two

monotonic inequalities as follows:

Theorem 1.1. Suppose �∈p q, . If �∈K o
n and �∈L o

n, then for ≤ < ≤ −p q n1 1,

⎜ ⎟ ⎜ ⎟
⎛

⎝

( )

( )

⎞

⎠

⎛

⎝

( )

( )

⎞

⎠

͠ ͠
≤

−

−

−

−

G K L
n V K

G K L
n V K

, ,
,p n p

n

n n p
q n q

n

n n q
, ,

p q
1 1

(1.7)

with equality if and only if K and L are dilates.

Theorem 1.2. Suppose �∈p q, such that ≤ <p q1 . If �∈K o
n and �∈L o

n, then

⎜ ⎟ ⎜ ⎟
⎛

⎝

( )

( )

⎞

⎠

⎛

⎝

( )

( )

⎞

⎠

͠ ͠
≤

− −

G K L
n V L

G K L
n V L

, ,
,p p

n

n n p
q q

n

n n q
, ,

p q
1 1

(1.8)

with equality if and only if K and L are dilates.
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Remark 1.1. When =L K and K is p-self-minimal, Theorems 1.1 and 1.2 both become Theorem 1.A.

Next, we obtain an affine isoperimetric inequality for the ( )p q, -mixed geominimal surface areas.

Theorem 1.3. Suppose �∈p q, such that >p 0 and < ≤q n0 . If �∈K o
n and �∈L o

n, then

⎜ ⎟
⎛

⎝

( )

( ) ( )

⎞

⎠

( ) ( )
͠

≤

− −

∗ω
G K L

n V K V L
V K V K

,
,n

p q
n

n q p n q
,

p
1

(1.9)

for < <q n0 equality holds when K and L are dilates.

Remark 1.2. If =q n and ≥p 1, Theorem 1.3 only contains Lutwak’s inequality.

Finally, together with the Lq harmonic Blaschke combination, we give the following Brunn-Minkowski-
type inequality for the ( )p q, -mixed geominimal surface areas.

Theorem 1.4. Suppose �∈p q, such that < <q n0 , and let ≥λ μ, 0 (not both zero). If �∈K o
n and

�∈L L, o
n

1 2 , then




( )

( )

( )

( )

( )

( )

͠ ͠ ͠
∗ + ∗

∗ + ∗

≥ +

+

−

+

−

+

−G K λ L μ L
V λ L μ L

λ
G K L

V L
μ

G K L
V L

, , ,
,p q q

q

p q p q, 1 2

1 2

, 1

1

, 2

2

n q
n q

n q
n q

n q
n q

(1.10)

with equality if and only if L1 and L2 are dilates.

Here, 
∗ + ∗λ L μ Lq1 2 is the Lq harmonic Blaschke combination of �∈L L, o

n
1 2 (see (2.2)).

3 Background

In order to complete the proofs of Theorems 1.1–1.4, we collect some basic facts about convex bodies and
star bodies.

If E is a nonempty subset in �n, then the polar set, ∗E , of E is defined by [1,2]

�{ }= ∈ ⋅ ≤ ∈

∗E x x y y E: 1, .n

Meanwhile, it is easy to get that ( ) =

∗ ∗K K for all �∈K o
n.

For �∈K L, o
n, ≠q 0 and ≥λ μ, 0 (not both zero), the Lq radial combination, �⋅ + ⋅ ∈λ K μ L˜q o

n,
of K and L is defined by [1]

( ) ( ) ( )⋅ + ⋅ ⋅ = ⋅ + ⋅ρ λ K μ L λρ K μρ L˜ , , , ,q
q q q (2.1)

where the operation “+̃q” is called Lq radial addition, ⋅λ K denotes Lq radial scalar multiplication
and ⋅ =λ K λ Kq

1
.

For �∈K L, o
n, >q 0 and ≥λ μ, 0 (not both zero), the Lq harmonic Blaschke combination,

 �∗ + ∗ ∈λ K μ Lq o
n, of K and L is defined by [36]




( )

( )

( )

( )

( )

( )

∗ + ∗ ⋅

∗ + ∗

=

⋅

+

⋅

+

+ +ρ λ K μ L
V λ K μ L

λ ρ K
V K

μ ρ L
V L

, , , ,q
n q

q

n q n q
(2.2)

where the operation “+q” is called Lq harmonic Blaschke addition, ∗λ K denotes Lq harmonic Blaschke

scalar multiplication and ∗ =λ K λ Kq
1

. When = =λ μ 1, 
+K Lq is called Lq harmonic Blaschke sum.

120  Juan Zhang et al.



4 Proofs of main theorems

In this section, we will prove Theorems 1.1–1.4. To complete the proof of Theorem 1.1, we require the
following lemma.

Lemma 3.1. [37] Suppose �∈p q, . If �∈K Q, o
n and �∈L o

n, then for < < ≤ −p q n0 1,

⎡

⎣
⎢

( )

( )

⎤

⎦
⎥

⎡

⎣
⎢

( )

( )

⎤

⎦
⎥

͠ ͠
≤

− −

V K Q L
V K

V K Q L
V K

, , , ,
,p n p q n q, ,

p q
1 1

(3.1)

with equality if and only if K and L are dilates.

Proof of Theorem 1.1. Together (1.6) with inequality (3.1), we obtain that for ≤ < ≤ −p q n1 1,

�

�

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

( )

( )

⎞

⎠

⎧

⎨
⎩

⎛

⎝

( )

( )

⎞

⎠

( ) ( )
⎫

⎬
⎭

⎧

⎨
⎩

⎛

⎝

( )

( )

⎞

⎠

( ) ( )
⎫

⎬
⎭

⎛

⎝

( )

( )

⎞

⎠

͠

͠

͠

͠

= ∈

≤ ∈

=

−

−

−

∗

−

∗

−

−

ω
G K L

n V K
V K Q L

V K
V K V Q Q

V K Q L
V K

V K V Q Q

ω
G K L

n V K

,
inf

, ,
:

inf
, ,

:

,
.

n
p n p

n

n n p
p n p

o
n

q n q
o
n

n
q n q

n

n n q

, ,

,

,

p
n
p

n
q

q

1

1

This is

⎜ ⎟ ⎜ ⎟
⎛

⎝

( )

( )

⎞

⎠

⎛

⎝

( )

( )

⎞

⎠

͠ ͠
≤

−

−

−

−

G K L
n V K

G K L
n V K

, ,
.p n p

n

n n p
q n q

n

n n q
, ,

p q
1 1

This yields inequality (1.7). According to the equality condition of inequality (3.1), we see that the equality
of the above inequality holds if and only if K and L are dilates. □

Lemma 3.2. [37] Suppose �∈p q, satisfy ≤ <p q1 . If �∈K Q, o
n and �∈L o

n, then

⎡

⎣
⎢

( )

( )

⎤

⎦
⎥

⎡

⎣
⎢

( )

( )

⎤

⎦
⎥

͠ ͠
≤

V K Q L
V L

V K Q L
V L

, , , ,
,p p q q, ,

p q
1 1

(3.2)

with equality if and only if K and L are dilates.

Proof of Theorem 1.2. From Definition 1.1 and (3.2) we see that for ≤ <p q1 ,

�

�

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛

⎝

( )

( )

⎞

⎠

⎧

⎨
⎩

⎛

⎝

( )

( )

⎞

⎠

( ) ( )
⎫

⎬
⎭

⎧

⎨
⎩

⎛

⎝

( )

( )

⎞

⎠

( ) ( )
⎫

⎬
⎭

⎛

⎝

( )

( )

⎞

⎠

͠

͠

͠

͠

= ∈

≤ ∈

=

−

∗

∗

−

ω
G K L
n V L

V K Q L
V L

V L V Q Q

V K Q L
V L

V L V Q Q

ω
G K L
n V L

,
inf

, ,
:

inf
, ,

:

,
.

n
p p

n

n n p
p p

o
n

q q
o
n

n
q q

n

n n q

, ,

,

,

p
n
p

n
q

q

1

1

This is, for ≤ <p q1 ,

⎜ ⎟ ⎜ ⎟
⎛

⎝

( )

( )

⎞

⎠

⎛

⎝

( )

( )

⎞

⎠

͠ ͠
≤

− −

G K L
n V L

G K L
n V L

, ,
.p p

n

n n p
q q

n

n n q
, ,

p q
1 1
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This gives inequality (1.8). From the equality condition of inequality (3.2), we see that the equality holds
in (1.8) if and only if K L, are dilates. □

Lemma 3.3. [2] If �∈K L, o
n, < ≤q n0 , then

( ) ( ) ( )͠
≤

−

V K L V K V L, .q
q
n

n q
n (3.3)

For < <q n0 , equality holds in (3.3) if and only if K and L are dilates; for =q n, (3.3) becomes an equality.

Proof of Theorem 1.3. Since >p 0, it follows from (1.6) that

�( ) { ( ) ( ) }͠ ͠
= ∈

∗ω G K L n V K Q L V Q Q, inf , , : .n p q p q o
n

, ,
n
p

n
p

n
p (3.4)

Taking =Q K in (3.4), it follows from (1.4) and (3.3) that for < ≤q n0 ,

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )͠ ͠ ͠
≤ = ≤

∗ ∗ ∗

−

ω G K L n V K K L V K n V K L V K n V K V L V K, , , , ,n p q p q q, ,
n
p

n
p

n
p

n
p

n
p

n
p

q
p

n q
p

i.e.,

⎜ ⎟
⎛

⎝

( )

( ) ( )

⎞

⎠

( ) ( )
͠

≤

− −

∗ω
G K L

n V K V L
V K V K

,
.n

p q
n

n q p n q
,

p
1

By the equality condition of inequality (3.3) and Definition 1.1, for < <q n0 equality holds in (1.9)when
K and L are dilates. □

Lemma 3.4. Suppose �∈p q, such that < <q n0 , and let >λ μ, 0. If �∈K Q, o
n and �∈L L, o

n
1 2 , then




( )

( )

( )

( )

( )

( )

͠ ͠ ͠
∗ + ∗

∗ + ∗

≥ +

+

−

+

−

+

−V K Q λ L μ L
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λ
V K Q L

V L
μ

V K Q L
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, , , , , ,
,p q q

q

p q p q, 1 2

1 2

, 1

1

, 2

2

n q
n q

n q
n q

n q
n q

(3.5)

with equality if and only if L1 and L2 are dilates.

Proof. Since < <q n0 , thus < <

−

+

0 1n q
n q . From (1.2), (2.2) and Minkowski’s integral inequality [38], we get
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This yields inequality (3.5).
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By the equality condition of Minkowski’s integral inequality, we see that equality holds in (3.5) if and
only if L1 and L2 are dilates. □

Proof of Theorem 1.4. Because of < <q n0 , thus >

+
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0n q
n q . Hence, by (1.6) and (3.5) we have
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This gives inequality (1.10).
According to the equality condition of inequality (3.5), we see that the equality holds in (1.10) if and

only if L1 and L2 are dilates. □
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