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Abstract: Let S a a b b, , ; , ,m n1 1( )= … … , where a a, , m1 … and b b, , n1 … are two nonincreasing sequences of
nonnegative integers. The pair S a a b b, , ; , ,m n1 1( )= … … is said to be a bigraphic pair if there is a simple
bipartite graph G X Y E,( )= ∪ such that a a, , m1 … and b b, , n1 … are the degrees of the vertices in X and Y ,
respectively. In this case, G is referred to as a realization of S. Given a bigraphic pair S, and a complete
bipartite graph Ks t, , we say that S is a potentially Ks t, -bigraphic pair if some realization of S contains Ks t, as
a subgraph (with s vertices in the part of size m and t in the part of size n). Ferrara et al. (Potentially
H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009), 583–596) defined σ K m n, ,s t,( ) to be the
minimum integer k such that every bigraphic pair S a a b b, , ; , ,m n1 1( )= … … with σ S a a km1( ) = + ⋯+ ≥

is a potentially Ks t, -bigraphic pair. This problem can be viewed as a “potential” degree sequence relaxation
of the (forcible) Turán problem. Ferrara et al. determined σ K m n, ,s t,( ) for n m s t9 4 4

≥ ≥ . In this paper,

we furtherdetermineσ K m n, ,s t,( ) forn m s≥ ≥ andn m t t s2 2
+ ≥ + + . As twocorollaries, ifn m t t s2

2≥ ≥ +

+

or if n m s≥ ≥ and n t t2 2
≥ + , the values σ K m n, ,s t,( ) are determined completely. These results give

a solution to a problem due to Ferrara et al. and a solution to a problem due to Yin and Wang.
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1 Introduction

The study of vertex degrees in graphs has a long history, often asking when an n-tuple of nonnegative
integers is realizable as the vertex degrees of a simple n-vertex graph with specified properties. Analogous
problems are also studied for bipartite graphs. Let S a a b b, , ; , ,m n1 1( )= … … , where a a, , m1 … and b b, , n1 …

are two sequences of nonnegative integers with a am1 ≥⋯≥ and b bn1 ≥⋯≥ . We say that S is a bigraphic
pair if there is a simple bipartite graph G with partite sets x x, , m1{ }… and y y, , n1{ }… such that the degree of
xi is ai and the degree of yj is bj. In this case, we say that G is a realization of S. Two methods to determine

if S is a bigraphic pair are the Gale-Ryser criteria [1,2] and the Havel-Hakimi-type algorithm [3].

Theorem 1.1. [1,2] S is a bigraphic pair if and only if a bi
m

i i
n

i1 1∑ = ∑

= =

and a k bmin ,i
k

i i
n

i1 1 { }∑ ≤ ∑

= =

for

k m1, ,= … (or b k amin ,i
k

i i
m

i1 1 { }∑ ≤ ∑

= =

for k n1, ,= … ).

For p m1 ≤ ≤ and q n1 ≤ ≤ , let S a a a a a b b, , , , , ; , ,p p p m n1 1 1 1( ) ( )= … … ′ … ′
− +

and S b a a, , ;q m1( ) (= ′ … ′

b b b b, , , , ,q q n1 1 1 )… …
− +

, where b bn1′ ≥⋯≥ ′ is a rearrangement in nonincreasing order of b 1, ,1 − …
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b b b1, , ,a a n1p p− …
+

and a am1′ ≥⋯≥ ′ is a rearrangement in nonincreasing order of a a1, , 1,b1 q− … −

a a, ,b m1q …
+

. We say that S ap( ) (resp. S bq( )) is the residual pair obtained from S by laying off ap

(resp. bq).

Theorem 1.2. [3] S is a bigraphic pair if and only if S ap( ) (or S bq( )) is a bigraphic pair.

We can also askwhether there is a realization satisfying a particular property. Let S a a b b, , ; , ,m n1 1( )= … …

be a bigraphic pair, and let Ks t, be the complete bipartite graph with partite sets of size s and t . We say
that S is a potentially Ks t, -bigraphic pair if some realization of S contains Ks t, (with s vertices in the part
of size m and t in the part of size n). If some realization of S contains Ks t, on those vertices having
degree a a b b, , , , ,s t1 1… … , we say that S is a potentially As t, -bigraphic pair. Ferrara et al. [4] proved that
S is a potentially As t, -bigraphic pair if and only if it is a potentially Ks t, -bigraphic pair. Yin and Wang
[5] developed a Havel-Hakimi-type algorithm to determine if S is a potentially Ks t, -bigraphic pair.
This algorithm can also be used to construct a graph with degree sequence pair S and containing Ks t,

on those vertices having degree a a b b, , , , ,s t1 1… … .
Let S a a b b, , ; , ,m n1 1( )= … … , where a a, , m1 … and b b, , n1 … are two nonincreasing sequences of non-

negative integers. Let s m1 ≤ ≤ , t n1 ≤ ≤ , a ts ≥ and b st ≥ . We first define pairs S S, , s0 … as follows.
Let S S0 = . Let

S a a b b b b, , ; 1, , 1, , , ,m t t n1 2 1 1
1 1( )( ) ( )

= … − … − …
+

where b bt n1
1 1( ) ( )

≥⋯≥
+

is a rearrangement in nonincreasing order of b b b b1, , 1, , ,t a a n1 11 1− … − …
+ +

.
For i s2 ≤ ≤ , given S a a b i b i b b, , ; 1, , 1, , ,i i m t t

i
n

i
1 1 1

1 1( )( ) ( )
= … − + … − + …

−
+

− − , let

S a a b i b i b b, , ; , , , , , ,i i m t t
i

n
i

1 1 1( )( ) ( )
= … − … − …

+
+

where b bt
i

n
i

1
( ) ( )

≥⋯≥
+

is a rearrangement in nonincreasing order of b b b b1, , 1, , ,t
i

a
i

a
i

n
i

1
1 1

1
1 1

i i
( ) ( ) ( ) ( )

− … − …
+

− −

+

− − .
We now define pairs S S, , t0′ … ′ as follows. Let S S0′ = . Let

S a a a a b b1, , 1, , , ; , , ,s s m n1 1 1
1 1

2( )( ) ( )
′ = − … − … …

+

where a as m1
1 1( ) ( )

≥⋯≥
+

is a rearrangement in nonincreasing order of a a a a1, , 1, , ,s b b m1 11 1− … − …
+ +

.
For i t2 ≤ ≤ , given S a i a i a a b b1, , 1, , , ; , ,i s s

i
m

i
i n1 1 1

1 1( )( ) ( )
′ = − + … − + … …
− +

− − , let

S a i a i a a b b, , , , , ; , , ,i s s
i

m
i

i n1 1 1( )( ) ( )
′ = − … − … …

+
+

where a as
i

m
i

1
( ) ( )

≥⋯≥
+

is a rearrangement in nonincreasing order of a a a a1, , 1, , ,s
i

b
i

b
i

m
i

1
1 1

1
1 1

i i
( ) ( ) ( ) ( )

− … − …
+

− −

+

− − .

Theorem 1.3. [5] S is a potentially As t, -bigraphic pair if and only if Ss (or St′) is a bigraphic pair.

Motivated by the problem due to Erdős et al. [6] of finding the minimum integer k such that every
realizable n-tuple with a sum of at least k is potentially Kr-graphic, Ferrara et al. [4] investigated analogous
problem for bipartite graphs. They defined σ K m n, ,s t,( ) to be the minimum integer k such that every
bigraphic pair S a a b b, , ; , ,m n1 1( )= … … with σ S a a km1( ) = + ⋯+ ≥ is a potentially Ks t, -bigraphic pair.
They determined σ K m n, ,s t,( ) when m and n are sufficiently large in terms of s and t. This problem can
be viewed as a “potential” degree sequence relaxation of the (forcible) Turán problem.

Theorem 1.4. [4] If t s 1≥ ≥ and n m s t9 4 4
≥ ≥ , then σ K m n n s m t t s, , 1 1 1 1 1.s t,( ) ( ) ( ) ( )( )= − + − − − − +

Ferrara et al. proposed a problem as follows.

Problem 1.1. [4] This would be useful if one were interested in finding smaller bounds on the n and m
necessary to assure Theorem 1.4.
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Yin and Wang proved a new result as follows.

Theorem 1.5. [5] If t s 1≥ ≥ , n m s≥ ≥ and n s t s t s1 2 1 12( ) ( )≥ + − − + − , then σ K m n n s, , 1s t,( ) ( )= −

m t t s1 1 1 1( ) ( )( )+ − − − − + .

Yin and Wang also proposed a problem as follows.

Problem 1.2. [5] It would be meaningful to investigate a lower bound on n m+ necessary to assure
Theorem 1.5.

The purpose of this paper is to improve Theorem 1.5 and determine σ K m n, ,s t,( ) for n m s≥ ≥ and

n m t t s2 2
+ ≥ + + , that is, a solution to Problems 1.2. As two corollaries, if n m t t s2

2≥ ≥ +

+ or if n m s≥ ≥

and n t t2 2
≥ + , the values σ K m n, ,s t,( ) are determined completely, that is, a solution to Problem 1.1.

Theorem 1.6. If t s 1≥ ≥ , n m s≥ ≥ and n m t t s2 2
+ ≥ + + , then σ K m n n s m t, , 1 1s t,( ) ( ) ( )= − + −

t s1 1 1( )( )− − − + .

Corollary 1.1. If t s 1≥ ≥ and n m t t s2
2≥ ≥ +

+ , then σ K m n n s m t t s, , 1 1 1 1 1s t,( ) ( ) ( ) ( )( )= − + − − − − + .

Corollary 1.2. If t s 1≥ ≥ , n m s≥ ≥ and n t t2 2
≥ + , then σ K m n n s m t t, , 1 1 1s t,( ) ( ) ( ) ( )= − + − − −

s 1 1( )− + .

2 Proof of Theorem 1.6

In order to prove Theorem 1.6, we need some lemmas.

Lemma 2.1. [7] Theorem 1.1 remains valid if a k bmin ,i
k

i i
n

i1 1 { }∑ ≤ ∑

= =

is assumed only for those k for which

a ak k 1>
+

or k m= (or b k amin ,i
k

i i
m

i1 1 { }∑ ≤ ∑

= =

is assumed only for those k for which b bk k 1>
+

or k n= ).

Lemma 2.2. [5] Let S a a b b, , ; , ,m n1 1( )= … … be a bigraphic pair with a ts ≥ , b st ≥ , m b b1 t1− ≥ ≥⋯≥

b b ba a n1 21 1= ⋯= ≥ ≥⋯≥
+ +

and n a a a a a1 s b b m1 1 21 1− ≥ ≥⋯≥ = ⋯= ≥ ≥⋯≥
+ +

. For each S a a, , ;i i m1(= …
+

b i b i b b, , , , ,t t
i

n
i

1 1 )( ) ( )
− … − …

+

with i s0 ≤ ≤ , let t j b bmax 1i t
i

t j
i

1{ ∣ }( ) ( )
= − ≤

+ +

. Then

(1) t t t a t1s s 1 0 1≥ ≥⋯≥ ≥ + −
−

.

(2) For each i with i s1 ≤ ≤ , we have b bt k
i

t k
i 1( ) ( )

=

+ +

− for k ti> . Consequently, b bt k
s

t k
( )

=

+
+

for k ts> .

Lemma 2.3. Let S a a b b, , ; , ,m n1 1( )= … … be a bigraphic pair with a ts ≥ , b st ≥ , m b b1 t1− ≥ ≥⋯≥ = ⋯=

b b ba a n1 21 1≥ ≥⋯≥
+ +

and n a a a a a1 s b b m1 1 21 1− ≥ ≥⋯≥ = ⋯= ≥ ≥⋯≥
+ +

. If b b b tsi
t

i t i a
n

i1 1s 1
( )∑ − + ∑ ≥

= = +
+

,

then S is a potentially As t, -bigraphic pair.

Proof. It is trivial for s 1= . Assume s 2≥ . By Theorem 1.3, we only need to check that S a a, , ;s s m1(= …
+

b s b s b b, , , , ,t t
s

n
s

1 1 )( ) ( )
− … − …

+

is a bigraphic pair. Clearly, as 1 + ⋯+
+

a b s b s bm t t
s

1 1( ) ( ) ( )
= − + ⋯+ − + + ⋯

+

bn
s( )

+ . Denote btℓ = and p i a amax s i s{ ∣ }= =
+

. Then s p b 11+ ≥ + , i.e., p b s11≥ + − . By Lemma 2.1, it is

enough to check that a k b s k bmin , min ,i
k

s i i
t

i i t
n

i
s

1 1 1{ } { }( )
∑ ≤ ∑ − + ∑

=
+

= = +

for p k m s≤ ≤ − . Denote x bt
s

1
( )

=
+

.

By b bt
s

t1 1
( )

≤ = ℓ
+

+
, we have x ≤ ℓ. If k x≥ , by k p b s b s1 i1≥ ≥ + − > − for i t1 ≤ ≤ , then k b smin ,i

t
i1 { }∑ −

=

k bmin ,i t
n

i
s

1 { }( )
+ ∑

= +

= b s b a a ai
t

i i t
n

i
s

s m i
k

s i1 1 1 1( ) ( )
∑ − + ∑ = + ⋯+ ≥ ∑

= = +
+

=
+
. Assume p k x 1≤ ≤ − . If t as s 1≥

+
,

by b b x k1a t t ts s1 ≥ ≥ − ≥
+ +

+

, then k b s k b k bmin , min , min ,i
t

i i t
n

i
s

i t
a t

i
s

1 1 1
s 1{ } { } { }( ) ( )

∑ − + ∑ ≥ ∑

= = + = +

+
+ = kas 1 ≥

+

ai
k

s i1∑

=
+
. Assume t as s 1<

+
. Then by Lemma 2.2, b bt j

s
t j

( )
=

+
+

for j as 1≥
+
. If k ba ts 1≤

+
+

, then
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k b s k b k bmin , min , min ,i
t

i i t
n

i
s

i t
a t

i
s

1 1 1
s 1{ } { } { }( ) ( )

∑ − + ∑ ≥ ∑

= = + = +

+
+ = ka as i

k
s i1 1≥ ∑

+
=

+
. Assume k ba ts 1>

+
+

. For each i
with a i t t1s s1 + ≤ ≤ +

+
, we have k b k k b kmin , i

s
i{ } ( ) ( )( )

= = ℓ − ℓ − ≥ − ℓ − . Also, for each i with t ts+

i a t1 s 1+ ≤ ≤ +
+

, by Lemma 2.2, we have k b k bmin , min ,i
s

i{ } { }( )
= = k b b k bmin , min ,i i i{ ( ) } { ( ) }ℓ − ℓ − ≥ − ℓ −

b ki ( )= − ℓ − . Therefore, k b s k bmin , min ,i
t

i i t
n

i
s

1 1{ } { }( )
∑ − + ∑

= = +

= b s k bmin ,i
t

i i t
a

i
s

1 1
s 1( ) { }( )

∑ − + ∑ +

= = +

+

i a
a t

1s
s

1
1

∑

= +

+

+

+

k bmin , i
s{ }( ) + k b b smin ,i a t

n
i

s
i
t

i1 1s 1
{ } (( ) ( ))( )

∑ ≥ ∑ − ℓ + ℓ −

= + + =
+

+ k a t b ks i a
a t

i i a t
n

1 1 1s
s

s1
1

1
( ) ( ( ))− + ∑ − ℓ − + ∑

+
= +

+

= + +
+

+

+

bi = b b s t k a t k t ts s t k a t k t kai
t

i i a
n

i s s s1 1 1 1 1s 1
( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
∑ − ℓ + ∑ + ℓ − + − − ℓ − ≥ + ℓ − + − − ℓ − = ≥

= = +
+ + +

+

ai
k

s i1∑

=
+
. □

Lemma 2.4. Let S a a b b, , ; , ,m n1 1( )= … … be a bigraphic pair with a ts ≥ , b st ≥ , m b b1 t1− ≥ ≥⋯≥ = ⋯=

b b ba a n1 21 1≥ ≥⋯≥
+ +

and n a a a a a1 s b b m1 1 21 1− ≥ ≥⋯≥ = ⋯= ≥ ≥⋯≥
+ +

. If a a a tsi
s

i s i b
m

i1 1t 1
( )∑ − + ∑ ≥

= = +
+

,

then S is a potentially As t, -bigraphic pair.

Proof. By the symmetry, the proof of Lemma 2.4 is similar to that of Lemma 2.3. □

Lemma 2.5. [4] Suppose that S a a b b, , ; , ,m n1 1( )= … … is not a potentially As t, -bigraphic pair. Let G be a
realization of S with partite sets X andY , with X m∣ ∣ = and Y n∣ ∣ = . Let Xs be the set of s highest degree vertices
of X , andYt be the set of t highest degree vertices ofY . Assume that G is a realization of S that maximizes the
number of edges between Xs and Yt. Let x and y be nonadjacent members of Xs and Yt, and let A N x YG t( )= ⧹

and B N y XG s( )= ⧹ . Then both A and B contain at most s t1 1( )( )− − vertices.

Lemma 2.6. [7] If S a a b b, , ; , ,m n1 1( )= … … is a bigraphic pair with a t2 1s ≥ − and b s2 1t ≥ − , then S is
a potentially As t, -bigraphic pair.

Lemma 2.7. Let S a a b b, , ; , ,m n1 1( )= … … be a bigraphic pair with m b b b1 t a1 11− ≥ ≥⋯≥ = ⋯= ≥
+

b ba n21 ≥⋯≥
+

and n a a a a a1 s b b m1 1 21 1− ≥ ≥⋯≥ = ⋯= ≥ ≥⋯≥
+ +

. If n s m t st1 1 max 2 2( ) ( ) {− + − ≥ −

t t s ts s s t2 , 2 22 2 2 }+ − − + − and σ S n s m t1 1( ) ( ) ( )≥ − + − − t s1 1 1( )( )− − + , then S is a potentially
As t, -bigraphic pair.

Proof. By σ S n s m t t s1 1 1 1 1( ) ( ) ( ) ( )( )≥ − + − − − − + , it is straightforward to show that a ts ≥ and b st ≥ .
On the contrary, we assume that S is not a potentially As t, -bigraphic pair. Let G be a realization of S with
partite sets X andY , with X m∣ ∣ = and Y n∣ ∣ = . Let Xs be the set of s highest degree vertices of X , andYt be the
set of t highest degree vertices ofY . Assume thatG is a realization of S that maximizes the number of edges
between Xs andYt. Let x and y be nonadjacent members of Xs andYt, and let A N x YG t( )= ⧹ and B N y XG s( )= ⧹ .
By Lemma 2.5, both A and B contain at most s t1 1( )( )− − vertices. This implies a d x As G( ) ∣ ∣≤ ≤ +

Y s t t st s1 1 1 1t∣ ∣ ( )( )− ≤ − − + − = − and b d y B X s t s st t1 1 1 1t G s( ) ∣ ∣ ∣ ∣ ( )( )≤ ≤ + − ≤ − − + − = − . By Lemma
2.6, we have a t2 2s ≤ − or b s2 2t ≤ − , and so we may consider the following two cases.

Case 1. a t2 2s ≤ − .

It follows from Lemma 2.3 that σ S b b bi
t

i i t
a

i i a
n

i1 1 1
s

s
1

1
( ) = ∑ + ∑ + ∑

= = + = +

+

+

= b b b bi
t

i t t i t
a

i1 1
s 1( )∑ − + + ∑

= = +

+

+ b b b bi a
n

i i
t

i t i a
n

i1 1 1s s1 1
( )

( )
∑ ≤ ∑ − + ∑

= + = = +
+ +

+ tb a t b ts a b ts t st t1 1 2 2t s t s t1 1( ) ( )( )+ − ≤ − + ≤ − + − −
+ +

st t t s t s2 2 1 12 2( ) ( )( )< − + − − − − + n s m t t1 1 1 1( ) ( ) ( )≤ − + − − − s 1 1( )− + , a contradiction.
Case 2. b s2 2t ≤ − .

It follows from Lemma 2.4 that σ S a ai
s

i i s
b

i1 1
t 1( ) = ∑ + ∑

= = +

+ + ai b
m

i1t 1
∑

= +
+

= a a a ai
s

i s s i s
b

i1 1
t 1( )∑ − + + ∑

= = +

+ +

a a a ai b
m

i i
s

i s i b
m

i1 1 1t t1 1
( )

( )
∑ ≤ ∑ − + ∑

= + = = +
+ +

+ sa b s a ts 1s t s1( )+ − ≤ −
+

+ b a ts 1t s1 ≤ −
+

+ s st s2 2( )( )− −

ts s s t t s2 2 1 12 2( ) ( )( )< − + − − − − + n s m t t s1 1 1 1 1 1( ) ( ) ( )( )≤ − + − − − − + , a contradiction. □

Lemma 2.8. Let S a a b b, , ; , ,m n1 1( )= … … be a bigraphic pair. If n m t s t s2max ,2 2{ }+ ≥ + + and σ S( ) ≥

n s m t t s1 1 1 1 1( ) ( ) ( )( )− + − − − − + , then S is a potentially As t, -bigraphic pair.
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Proof. It is straightforward to show that a ts ≥ and b st ≥ . We use induction on s t+ . It is trivial for s 1= or
t 1= . Assume s 2≥ and t 2≥ . If a n1 = or there exists an integer k with t k a1≤ ≤ such that b bk k 1>

+
, then

the residual pair S a a a b b, , ; , ,m n1 2 1( ) ( )= … ′ … ′ obtained from S by laying off a1 satisfies n m 1( )+ − ≥

t s t2max ,2 2{ } + + s t s t s1 2max , 1 12 2( ) { ( ) } ( )− ≥ − + + − , σ S a σ S1( ( )) ( )= −a n s m t1 11 ( ) ( )≥ − + − −

t s n1 1 1( )( )− − + − = n s 2( )− + m t t s1 1 1 2 1( )( ) ( )( )− − − − − + and b b b b1, , 1t t1 1′ = − … ′ = − . By
Theorem 1.2 and the induction hypothesis, S a1( ) is a potentially As t1,−

-bigraphic pair, and hence S is a
potentially As t, -bigraphic pair. So we may assume a n 11 ≤ − and b bt1 ≥⋯≥ = b b ba a n1 21 1⋯= ≥ ≥⋯≥

+ +
.

If b m1 = or there exists an integer k with s k b1≤ ≤ such that a ak k 1>
+
, then the residual pair

S b a a b b, , ; , ,m n1 1 2( ) ( )= ′ … ′ … obtained from S by laying off b1 satisfies n m t s1 2max ,2 2( ) { }− + ≥ +
t s t s t s1 2max 1 , 12 2( ) {( ) } ( )− + ≥ − + − + , σ S b σ S b n s 11 1( ( )) ( ) ( )= − ≥ − + m t t s1 1 1( ) ( )( )− − − − +

m n s m t t s1 1 1 2 2 1 1( )( ) ( ) ( )( )− = − − + − − − − + and a a 1, ,1 1′ = − … a a 1s s′ = − . By Theorem 1.2 and
the induction hypothesis, S b1( ) is a potentially As t, 1−

-bigraphic pair, and hence S is a potentially
As t, -bigraphic pair. So we may further assume b m 11 ≤ − and a as1 ≥⋯≥ = a a ab b m1 21 1⋯= ≥ ≥⋯≥

+ +
.

If s t≤ , then st t t s ts s s t2 2 2 22 2 2 2
− + − ≥ − + − and n s m t n m1 1( ) ( ) ( )− + − ≥ + s 1( )− ≥

t t s s2 12( )( )+ + − = st2 2
− t t s s st t t s2 1 2 22 2 2( )( )+ + − ≥ − + + , implying that n s m t1 1( ) ( )− + −

st t t s ts s s tmax 2 2 , 2 22 2 2 2{ }≥ − + − − + − . Similarly, if t s≤ , then ts s s t st2 2 22 2 2
− + − ≥ − t t s2 2

+ −

andn s m t n m t s t s t1 1 1 2 12( ) ( ) ( )( ) ( )( )− + − ≥ + − ≥ + + − = ts s t s t ts s t s2 2 1 2 22 2 2 2( )( )− + + − ≥ − + + ,
implying that n s m t1 1 max( ) ( )− + − ≥ st t t s ts s s t2 2 , 2 22 2 2 2{ }− + − − + − . Thus by Lemma 2.7, S is
a potentially As t, -bigraphic pair. □

Proof of Theorem 1.6. To show the lower bound, Ferrara et al. [4] considered the bigraphic pair
S n t m t s, 1 ; , 1 , 1 ,s m s s m s n m1 1 1 1( ( ) ( ) ( ) )= − − −

− − + − − + − where the symbol xy stands for y consecutive terms,
each equal to x. Clearly, neither partite set in any realization of S has s vertices of degree t . Hence, S is not
a potentially Ks t, -bigraphic pair. Thus, σ K m n σ S n s m t t s, , 1 1 1 1 1 1s t,( ) ( ) ( ) ( ) ( )( )≥ + = − + − − − − + .
The upper bound directly follows from Lemma 2.8. □
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