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Abstract: Let S = (ay,...,an; by,...,by), Where ay, ..., a, and by,..., b, are two nonincreasing sequences of
nonnegative integers. The pair S = (aj,...,an; by,...,by,) is said to be a bigraphic pair if there is a simple
bipartite graph G = (X U Y, E) such that a, ..., a, and b, ..., b, are the degrees of the vertices in X and Y,
respectively. In this case, G is referred to as a realization of S. Given a bigraphic pair S, and a complete
bipartite graph K, we say that S is a potentially K; ;-bigraphic pair if some realization of S contains K as
a subgraph (with s vertices in the part of size m and t in the part of size n). Ferrara et al. (Potentially
H-bigraphic sequences, Discuss. Math. Graph Theory 29 (2009), 583-596) defined o(Ks;, m, n) to be the
minimum integer k such that every bigraphic pair S = (ay,...,an;b1,...,by) wWith o(S) =a; +---+ a, = k
is a potentially K; (-bigraphic pair. This problem can be viewed as a “potential” degree sequence relaxation

of the (forcible) Turan problem. Ferrara et al. determined o(Ks, m, n) for n > m > 9s“t*. In this paper,
we further determine 6(Ks ¢, m, n) forn > m > sandn + m > 2t? + t + s. Astwo corollaries, ifn > m > t? + s

orif n>mzs and n > 2t? + t, the values g(Ks;, m, n) are determined completely. These results give
a solution to a problem due to Ferrara et al. and a solution to a problem due to Yin and Wang.
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1 Introduction

The study of vertex degrees in graphs has a long history, often asking when an n-tuple of nonnegative
integers is realizable as the vertex degrees of a simple n-vertex graph with specified properties. Analogous
problems are also studied for bipartite graphs. Let S = (ay,...,an; by,...,b,), where ai, ..., a, and by, ..., by,
are two sequences of nonnegative integers with a; >---> a,;, and b; >---> b,. We say that S is a bigraphic
pair if there is a simple bipartite graph G with partite sets {x, ..., x,} and {y,, ..., ¥,} such that the degree of
X; is a; and the degree of Y is b;. In this case, we say that G is a realization of S. Two methods to determine

if S is a bigraphic pair are the Gale-Ryser criteria [1,2] and the Havel-Hakimi-type algorithm [3].

Theorem 1.1. [1,2] S is a bigraphic pair if and only if Y@ = Y7 b; and Y+ & < ¥ min{k, b;} for
k=1,...,m (or Zleb,- < Y minfk, a} fork = 1,..., n).

! ! ! !
For 1<p<m and 1<q<n, let S(ay) = (a,...,0p_1, Aps1,...,am; by,...,by) and S(by) = (aj,...,ay;
bi,...,bg-1, bgs1s...,by), where b{ >---> b, is a rearrangement in nonincreasing order of b; - 1,...,
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bg, — 1, bgye1,..., by and @ 2---> a,, is a rearrangement in nonincreasing order of a; - 1,..., ap, - 1,
Ap,+15--+» Am. We say that S(a,) (resp. S(by)) is the residual pair obtained from S by laying off a,
(resp. by).

Theorem 1.2. (3] S is a bigraphic pair if and only if S(ap) (or S(by)) is a bigraphic pair.

We can also ask whether there is a realization satisfying a particular property. LetS = (ay, ..., am; b1,...,by)
be a bigraphic pair, and let K; be the complete bipartite graph with partite sets of size s and t. We say
that S is a potentially K ;-bigraphic pair if some realization of S contains K;, (with s vertices in the part
of size m and ¢ in the part of size n). If some realization of S contains K, on those vertices having
degree ay, ..., as, by, ..., by, we say that S is a potentially A, -bigraphic pair. Ferrara et al. [4] proved that
S is a potentially A;¢-bigraphic pair if and only if it is a potentially K;-bigraphic pair. Yin and Wang
[5] developed a Havel-Hakimi-type algorithm to determine if S is a potentially K;,-bigraphic pair.
This algorithm can also be used to construct a graph with degree sequence pair S and containing Kj
on those vertices having degree a,..., a, by, ..., b;.

Let S = (ay,...,am; by, ...,by), Where ai, ..., a, and by,..., b, are two nonincreasing sequences of non-
negative integers. Let 1<s<m,1<t<n, a; >t and b; > s. We first define pairs Sy,..., Ss as follows.
Let Sg = S. Let

Sl = (az,...,am; bl — 1,...,bt - 1, bt(_'l_)l,..-,b,(ll));

where b} >---> bV is a rearrangement in nonincreasing order of by —1,..., by, — 1, bas1, ... bp.
For2<i<s, given Si_y = (@,...,@m; by — i+ 1,...,b — i + 1, b7V, ..., b{iD), let

Si = (ai+1a""am; bl - i’~'~’bt - i; bt(i)la“-’bpgi))’

where b, >---> b{" is a rearrangement in nonincreasing order of b,V - 1,..., bV - 1, b P, ..., bV,
We now define pairs Sy, ..., S/ as follows. Let Sj = S. Let

Si=(a;-1,....,as - 1,a,,...,a%P; by,...,by),

where al’; >---> a’ is a rearrangement in nonincreasing order of as,; —1,..., @y, — 1, @y s1s..., An-
For2<i<t,givenS/ = (@ —i+1,..,a5—i+1,a%P,...,a"Y; b...,by), let

! . . i i
S/ =(ay - 1i,...,as — i,a®,,...,al; bi1,...,by),

where af; >---> @i is a rearrangement in nonincreasing order of al;;V - 1,..., af " - 1,ay 7, .., ai V.
Theorem 1.3. [5] S is a potentially As-bigraphic pair if and only if S (or S{) is a bigraphic pair.

Motivated by the problem due to Erdds et al. [6] of finding the minimum integer k such that every
realizable n-tuple with a sum of at least k is potentially K,-graphic, Ferrara et al. [4] investigated analogous
problem for bipartite graphs. They defined o(Ks;, m, n) to be the minimum integer k such that every
bigraphic pair S = (ay,...,am; bi1,...,bn) with 0(S) = a; +---+ an > k is a potentially K;,-bigraphic pair.
They determined o(Ks,, m, n) when m and n are sufficiently large in terms of s and ¢. This problem can
be viewed as a “potential” degree sequence relaxation of the (forcible) Turan problem.

Theorem 1.4. (4] Ift > s > 1andn > m > 9s*t*, then o(Ksp, m,n) =n(s - ) + m(t - 1) — (t - (s - 1) + 1.
Ferrara et al. proposed a problem as follows.

Problem 1.1. [4] This would be useful if one were interested in finding smaller bounds on the n and m
necessary to assure Theorem 1.4.
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Yin and Wang proved a new result as follows.

Theorem 1.5. [5] Ift>s>1,n>mx>s and n > (s + Dt? - (2s — Dt + s — 1, then o(Ks, m, n) = n(s — 1)
+mit-1)-(t-1D(-1)+1.

Yin and Wang also proposed a problem as follows.

Problem 1.2. [5] It would be meaningful to investigate a lower bound on n + m necessary to assure
Theorem 1.5.

The purpose of this paper is to improve Theorem 1.5 and determine o(Ks¢, m, n) for n > m > s and
n+m>2t? + t + s, that is, a solution to Problems 1.2. As two corollaries, ifn > m > t% + ”TS orifn>mz=>s

and n > 2t2 + t, the values 0(Ks,t, m, n) are determined completely, that is, a solution to Problem 1.1.

Theorem 1.6. If t>s>1, n>m>s and n+ m=2t> +t+s, then 0(Ks¢, m,n) =n(s - 1) + m(t - 1)
-t-Ds-1+1.

Corollary 1.1. Ift >s>1landn>m > t* + ”TS, theno(Ks, mn)=n(s-D+m(t-1) - -1 -1)+1.

Corollary 1.2. If t>s>1, n>2m=s and n>2t?> +t, then 0(Ks;,m,n) =n(s - 1) + m(t - 1) - (t - 1)
(s-1)+1.

2 Proof of Theorem 1.6

In order to prove Theorem 1.6, we need some lemmas.

Lemma 2.1. [7] Theorem 1.1 remains valid if Z;‘Zlai < Y min{k, b} is assumed only for those k for which
ay > a1 ork =m (or Z:‘Zlbi < Z;’ilmin{k, a;} is assumed only for those k for which by > by, or k = n).

Lemma 2.2. [5] Let S = (ay,...,an; by1,...,by) be a bigraphic pair with a; > t, by >s, m - 1> b; >---> b,
=-=Dbgy1 2 bgu2 == bpandn-1>a >--> as == Ap,41 = Apy2 =+ > am. For each S; = (Qis1,...,Am;
by —i,....,b =1, b, ...,b{) with 0 < i < s, let t; = max{jl|b) - b} < 1}. Then

D ts=zteqz22toza+1-t.

(2) Foreachiwith1<1ix<s, wehaveb® =b%? for k > t.. Consequently, b}, = by, for k > t;.

Lemma 2.3. Let S = (ay,...,an; by,...,by) be a bigraphic pair withas > t, by >s,m-1>by >---> by =---=
bas1 2 ba2 22 bpandn -1z @ >---> as =---= Ap;11 = Appsz 22 Am. Ifzle(bi — by) + z?:asﬂnbi > ts,
then S is a potentially As,-bigraphic pair.

Proof. It is trivial for s = 1. Assume s > 2. By Theorem 1.3, we only need to check that S; = (as,1,...,am;
by —s,...,b — 5, b%),...,b{) is a bigraphic pair. Clearly, @g,1 +---+apy = (by = 8) +---+ (b; — 5) + bS) +---
+ b,(f). Denote € = b; and p = max{i|as,; = as}. Thens + p > b; + 1, i.e.,, p > b; + 1 — s. By Lemma 2.1, it is
enough to check that Y¥ a.; < ¥ min{k, b; — s} + ¥
By b < b= ¢, wehavex < . Ifk>x,byk>p>b; +1 -5 > b; - sforl1 <i < ¢, then Y|_ minfk, b; - s}

n
i=t+

min{k, b} for p < k <m - s. Denote x = b{).
+ Y0, min{k, b} = Y (b —8) + Y, b = Gsq ++ @ = T a5, Assume p < k < x - L If ts > a1,

by ba,i+¢ 2 beat, 2 X — 1>k, then Y minfk, b; - s} + Y1, minfk, b®} > Y& 'minfk, b®} = kas; >

Zleasﬁ. Assume f;< as,;. Then by Lemma 2.2, bt(f;:btﬂ- for j>dasq. If k<bg,., then
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Y min{k, b; - s} + ¥, min{k, b®} > "s””mm{k b} = kag,1 > Y¥ ag.i. Assume k > by, . For each i
with as,; + 1 <i <t + t;, we have min{k, bi(s)} =k=¢-(-k)=b; - (£ - k). Also, for each i with t +
+1< i< ag +t, by Lemma 2.2, we have min{k, bl@} = min{k, b;} = min{€ — (¢ - k), b;} > min{b; - (¢ - k), b3}
= b; - (¢ - k). Therefore, ¥|_ min{k, b; — s} + Y, ;min{k, b} = ¥i_ (b; - s) + Y& min{k, b} +y 501"

i=t+1 i=ag,1+1
min{k, b} + Y1, min{k, b} > Y (b - €) + (€= 5)) + k(@5 — ) + T (- (€ — k) + T, L

b,-:(zl.zl(b 0+ Y )+({’,—s)t+k(as+1—t) @Kt > ts + (€ — S)t + k(asey — t) — (€ — k)t = kag,; >
Zg(:las-%—i- D

Lemma 2.4. Let S = (ay,...,am; by,...,by) be a bigraphic pair withas > t, by >s,m - 1> b; >---> b; =
Days1 2 bgz 22 bpandn =12 @ 2-+2 @s == Apys1 2 Apr 22 G IF Y] (@ - ag) + X, @i > ts,
then S is a potentially A -bigraphic pair.

Proof. By the symmetry, the proof of Lemma 2.4 is similar to that of Lemma 2.3. O

Lemma 2.5. [4] Suppose that S = (ay, ...,am; b, ...,by) is not a potentially As;-bigraphic pair. Let G be a
realization of S with partite sets X and Y, with|X| = m and|Y| = n. Let X; be the set of s highest degree vertices
of X, and Y; be the set of t highest degree vertices of Y. Assume that G is a realization of S that maximizes the
number of edges between Xs and Y,. Let x and y be nonadjacent members of Xs and Y, and let A = N;(x)\Y;
and B = N5(y)\Xs. Then both A and B contain at most (s — 1)(t — 1) vertices.

Lemma 2.6. [7] If S = (ay,...,ay; by,...,by) is a bigraphic pair with as > 2t — 1 and b; > 2s — 1, then S is
a potentially As.-bigraphic pair.

Lemma 2.7. Let S = (ay,...,am; b1,...,b,) be a bigraphic pair with m —1>by >---> by =---= bgy1 >
bgsa=2by and n—-1>a; 2> a5 ="""= Apy41 = Apy2 22 . If n(s — 1) + m(t — 1) > max{2st? -
2+t —5,2ts? - 252 +s—t} and o(S)=2n(s-1) +m(t-1) —(t-1)(s-1)+1, then S is a potentially
A, +-bigraphic pair.

Proof. By o(S) > n(s - 1) + m(t — 1) — (t — 1)(s — 1) + 1, it is straightforward to show that a; > t and b; > s.
On the contrary, we assume that S is not a potentially A; (-bigraphic pair. Let G be a realization of S with
partite sets X and Y, with |X| = m and |Y| = n. Let X; be the set of s highest degree vertices of X, and ¥; be the
set of t highest degree vertices of Y. Assume that G is a realization of S that maximizes the number of edges
between X; and ¥;. Let x and y be nonadjacent members of X; and ¥;, and let A = N5(x)\ ¥; and B = Ng(y)\ X;.
By Lemma 2.5, both A and B contain at most (s — 1)(t — 1) vertices. This implies as < ds(x) < |A] +
| -1<(s-D{t-1)+t-1=st—-sand b, <dg(y)<|B| +|Xs| -1<(s-1Yt-1) +s-1=st - t. By Lemma
2.6, we have as < 2t — 2 or by < 2s — 2, and so we may consider the following two cases.
Case 1. a, < 2t - 2.

It follows from Lemma 2.3 that o(S) = Zl bi+ Y b+ Y ar1Di = Z;zl(bi — b+ b)) + Y& by

i=t+1

F X D (S b= b) + X bi) + the + (@1 - Dby < t5— 1+ @y b < ts =1+ (2 = 2)(st - t)

<@st2-22+t-s)-(t-Ds-D+1<n(s-1)+m(t-1)-(t-1(s -1 +1, a contradiction.
Case 2. b; < 2s — 2.

It follows from Lemma 2.4 that o(S) = )} a; + Zf’jsl+1ai + Y@ = 2@ - as + as) + Zf’”sﬂl +

Y b @i < (Zis:l(ai - as) + Z;’lbﬁﬁlai) + Sas+ (bpp1 —S)as<ts—1 + bpas<ts—1 + (2s — 2)(st - s)
<Q@s?-282+s-t)-(t-1D(s-1D+1<n(s-1)+m(t-1) - (t-1)(s-1) + 1, a contradiction. O

Lemma 2.8. Let S = (ay,...,am; by,...,b,) be a bigraphic pair. If n + m > 2max{t?, s?} + t + s and o(S) =
nis-1)+m(t-1) - (t-1)(s-1) + 1, then S is a potentially A, ;-bigraphic pair.
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Proof. It is straightforward to show that a; > t and b; > s. We use induction on s + t. It is trivial for s = 1 or
t =1. Assume s > 2 and t > 2. If a; = n or there exists an integer k with t < k < a; such that b, > by, then
the residual pair S(ay) = (ay,...,am; b{,...,b,) obtained from S by laying off a; satisfies n+ (m — 1) =
2max{t?, s+t + (s—-1) 22max{t’,(s- 1D} +t+(s-1), oS(@)=0S)-a=2n(s-1)+m(t-1) -
t-Ds-D+1-n = ns-)+m-1D)t-1)-(t-1)(s-2)+1 and b{=b;-1,...,b/ =b; - 1. By
Theorem 1.2 and the induction hypothesis, S(a;) is a potentially As_1-bigraphic pair, and hence S is a
potentially A ;-bigraphic pair. So we may assume a; <n —1and by >---> by =++-= bg41 > bge2 2-+-> bp.
If by =m or there exists an integer k with s < k < b; such that ax > ay,;, then the residual pair
S(by) = (aj,...,ay; by,...,b,) obtained from S by laying off b, satisfies (n — 1) + m > 2max{t?, s?} +
(t-1D+sz2max{(t - 1%, s+t -1 +s, oSb)=06S)-biznis-1) + mt-1)-(C-1)(s-1)+
1-m=n-D(s-1D)+mit-2)-{t-2)(s-1)+1and a =a; - 1,...,a, = as — 1. By Theorem 1.2 and
the induction hypothesis, S(b;) is a potentially Ag. ;-bigraphic pair, and hence S is a potentially
A, s-bigraphic pair. So we may further assume by <m -1 and @ >---> a5 == Ap41 = Apy2 =+ 2 A,
If s<t, then 2st2-22+t-s>22s?-282+s-t and ns-D+mit-1D=n+m)(s-1) =
Q2+t+8)(s—1) = 2st2 22+ (t+s)(s—1)=2st?-2t>+t+s, implying that n(s-1) + m(t - 1)
> max{2st? — 2t2 + t — s, 2ts*> — 2s> + s — t}. Similarly, if t <s, then 2ts? — 28> + s —t>2st> 22+t —s
andn(s - D+mit-D>n+m)(t-1)>Qs2+t+s)(t—1)=2ts2 - 282+ (t +s)(t —1) > 2s2 - 252 + t + s,
implying that n(s — 1) + m(t - 1) > max{2st? — 2t> + t — s, 2ts> — 2s> + s — t}. Thus by Lemma 2.7, S is
a potentially A; ¢-bigraphic pair. O

Proof of Theorem 1.6. To show the lower bound, Ferrara et al. [4] considered the bigraphic pair
S=(m, (t - )ms+l; ms71 (¢ - 1)™s*1, (s — 1)™), where the symbol x¥ stands for y consecutive terms,
each equal to x. Clearly, neither partite set in any realization of S has s vertices of degree t. Hence, S is not
a potentially Ks,-bigraphic pair. Thus, c(Kst, m,n) 2 o(S) +1=n(s-1)+m{t-1) - -D(s-1) + 1
The upper bound directly follows from Lemma 2.8. O
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