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Abstract: In this paper, we study the structures of the invariant subspaces under the action of orthogonal
group ( )O F S,ν q2 . In particular, we give a detailed description of 2-codimensional invariant subspaces.

Moreover, we show that the height of transfer ideal ( )( )Im TrO F S,ν q2 is 2 and give a primary decomposition
for the radical ideal of this transfer ideal.
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1 Introduction

Let V be a vector space of dimension n over a field F of characteristic p and let [ ]F V be the symmetric
algebra of ∗V (the dual of V ). If { }…x x, , n1 is a basis for V , then [ ]F V can be identified with the polynomial
ring [ ]…F x x, , n1 . Let ( )⊆G GL V be a finite group. Then the elements of G act on [ ]F V as algebra automor-
phisms and we form the subring

[ ] { [ ]∣ }≜ ∈ = ∀ ∈F V f F V gf f g G,G

of G-invariant polynomials. The image of transfer map

[ ] [ ] ∑→ ↦ ⋅

∈

F V F V f g fTr : ;G G

g G

is an ideal of [ ]F V G. We call it the transfer ideal under the action of G and denoted by ( )Im TrG . If the order
of G is invertible in F , then the transfer map TrG is a surjection onto [ ]F V G. When the characteristic
of F divides the order of G, the transfer ideal is a proper, nonzero ideal in [ ]F V G. The transfer ideal
is of considerable interest in modular invariant theory.

In 1999 Shank and Wehlau [1] proved that ( )Im TrG is a principal ideal if G is a p-group defined over Fp

and [ ]F V G is a polynomial ring. They also showed that ( )Im TrG are principal for ( )=G FSLn q and ( )FGLn q with

natural actions. Later, Neusel [2,3] studied the transfer ideal ( )Im TrG for permutation group. In addition,
she proved that the ideal ( )Im TrG is a prime ideal for cyclic p-groups and determined an upper bound of its
height. Moreover, Kuhnigt and Smith studied the transfer ideal for the symplectic group ( )FSp ν q2 and
showed that the radical ideal of transfer is a principal ideal. These detailed proofs can be found on page
276 of [4].

Along this research route, we focus on the transfer ideal for the orthogonal groups. Let =q pt be a
positive odd prime power, Fq be the Galois field with q elements. Let S be an ×n n nonsingular symmetric

matrix over Fq. Then the set of all matrices A such that ′ = SASA forms a group with respect to matrix
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multiplication, where ′A denotes the transpose of A. We call it the orthogonal group of degree n with respect
to S and denote it by ( )O F S,n q , i.e.,

( ) { ( )∣ }= ∈ ′ =O F S A F S, GL ASA .n q n q

By [5, Theorem 6.4] we know that the nonsingular symmetric matrix S is one of the following forms:
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where ( )I ν is a ×ν ν identity matrix and z is a non square element in Fq. Then, up to isomorphism, the
orthogonal groups are four types. In this paper, we shall focus attention on the orthogonal group ( )O F S,ν q2
with respect to the nonsingular symmetric matrix =S S ν2 . The other cases are similar and are omitted.

The paper is organized as follows. After this introductory section, in Sections 2 and 3 we discuss the
structures of invariant subspaces under the action of the orthogonal group ( )O F S,ν q2 . In Section 4, we
determine the structures of the transfer variety ( )ΩO F S,ν q2 and give a primary decomposition for the radical
ideal of transfer ideal, and show that the height of this transfer ideal is 2. In addition, we give a detailed
example for =q 3 and =ν 2 in Section 5.

2 Types of 2-codimensional invariant subspaces

Let …e e e, , , ν1 2 2 be the standard basis of the vector space =V Fq
ν2 . For each = + + ⋯+ ∈v k e k e k eν ν1 1 2 2 2 2

∈V k F, i q, there is an action of ( )O F S,ν q2 on V defined as

( )

(( ) ) ( )

× ⟶

… ⟼ …

V O F S V
k k k A k k k A

,
, , , , , , , .

ν q

ν ν

2

1 2 2 1 2 2

Then the vector spaceV together with this action is called the ν2 -dimensional orthogonal space over Fq with
respect to S.

Let P be an m-dimensional vector subspace of V . We use the same symbol P to denote the matrix
representation of the vector subspace P, i.e., P is an ×m ν2 matrix whose rows form a basis of the vector
subspace P. Two ×n n matrices A and B are said to be cogredient, if there is a ×n n nonsingular matrix
Q such that ′ = BQAQ . It is well known that ′PSP is cogredient to one of the following normal forms [5]:
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We use the symbol ( )+M m s γ s, 2 , , Γ to represent any one of these four normal forms, where s is its index,
=γ 0, 1, or 2, and Γ represents the definite part in these normal forms. If ′PSP is cogredient to
( )+M m s γ s, 2 , , Γ , then P is called a subspace of type ( )+m s γ s, 2 , , Γ with respect to S in V . Subspaces

of type ( )m s s, 2 , , ( )+m s s, 2 1, , 1 , ( )+m s s z, 2 1, , , and ( )+m s s, 2 2, are also called subspace of the hyper-
bolic type, the square type, the nonsquare type, and the elliptic type, respectively.
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By the proof of Theorem 6.3 in [5], we have the following lemma

Lemma 2.1. [5] Subspaces of types ( )+m s γ s, 2 , , Γ exist in the ν2 -dimensional orthogonal space =V Fq
ν2 with

respect to the nonsingular symmetric matrix S if and only if

+ ≤ ≤ +s γ m ν s2 .

Then, we can determine the types of 2-codimensional subspaces.

Lemma 2.2. There are five types of 2-codimensional subspaces of the ν2 -dimensional orthogonal space
=V Fq

ν2 .

Proof. Let = −m ν2 2. By Lemma 2.1, + ≤ ≤ +s γ m ν s2 , it follows that if =r 0 then = −s ν 2 or −ν 1; if =r 1
then = −s ν 2; if =r 2 then = −s ν 2. Hence, we obtain the following five types of 2-codimensional subspaces:
( ( ) )− − −ν ν ν2 2, 2 2 , 2 , ( ( ) )− − −ν ν ν2 2, 2 1 , 1 , ( ( ) )− − + −ν ν ν2 2, 2 2 1, 2, 1 , ( ( )− − + −ν ν ν2 2, 2 2 1, 2,

)z , and ( ( ) )− − + −ν ν ν2 2, 2 2 2, 2 . □

Remark 2.3. For convenience, let type I of 2-codim, type II of 2-codim, type III of 2-codim, type IV of 2-
codim, and typeV of 2-codim denote the subspaces of type ( ( ) )− − −ν ν ν2 2, 2 2 , 2 , ( ( ) )− − −ν ν ν2 2, 2 1 , 1 ,
( ( ) )− − + −ν ν ν2 2, 2 2 1, 2, 1 , ( ( ) )− − + −ν ν ν z2 2, 2 2 1, 2, , and ( ( ) )− − + −ν ν ν2 2, 2 2 2, 2 , respectively.

The following two lemmas celebrated Witt’s transitivity theorem will be often used.

Lemma 2.4. ([5], Theorem 6.4) Let P1 and P2 be two m-dimensional subspaces of V . Then there is an
( )∈A O F S,ν q2 such that =P BP A1 2 , where B is an ×m m nonsingular matrix, if and only if P1 and P2 are of

the same type with respect to S. In other words, ( )O F S,ν q2 acts transitively on each set of subspaces of the
same type.

Lemma 2.5. [5, Lemma 6.8] Let P1 and P2 be two ×m m matrices of rank m. Then there exists an element
( )∈A O F S,ν q2 such that =P P A1 2 if and only if ′ = ′P SP P SP1 1 2 2.

Now, let us study the structures of the type I of 2-codim subspaces.

Definition 2.6. ([6], Section 9.2 Definition) An element ( )∈T O F S,ν q2 is called a 2-transvection if = +T I N ,
where I is the identity matrix, the rank of N is 2 and ′ =NSN 0.

Lemma 2.7. ([6], Section 9.2 Theorem 1) In the orthogonal group ( )O F S,ν q2 , each 2-transvection is similar to

⎜ ⎟
⎛
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⎠
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1 0

0
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ν
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Let { ∣ }= ∈ =V v V vA vA where ( )∈A FGL ν q2 . Then it is easy to check thatVA is a subspace of vector space

V and =

−V V AA BA B1
for each ( )∈B FGL ν q2 .

Lemma 2.8. Let ( )∈T O F S,ν q2 . Then T is a 2-transvection if and only if the invariant subspaceV T is a type I of
2-codim subspace.

Proof. Suppose thatT is a 2-transvection. Let ⎜ ⎟
⎛

⎝

⎞

⎠

( )

( )
=T I K

I
ν

ν0 in Lemma 2.7. ThenT0 is also a 2-transvection

and =
−ATA T1

0 for some ( )∈A O F S,ν q2 . For each = + ⋯+ ∈v k e k e Vν ν1 1 2 2 , we have

( ) ( )= + ⋯+ + − + + + + ⋯+
+ + + + + +

vT k e k e k k e k k e k e k e .ν ν ν ν ν ν ν ν ν ν0 1 1 1 2 1 2 1 2 3 3 2 2
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If ∈v V T0, then =vT v0 , whence = =k k 01 2 . Therefore,

{ ∣ }= + + ⋯+ ∈V k e k e k e k FT
ν ν i q3 3 4 4 2 20

and = −V νdim 2 2T0 . We denote the vector invariant subspace V T0 as the ( )− ×ν ν2 2 2 matrix

= ( … )′T e e eˆ , , , .ν0 3 4 2

By computing, it follows that
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Then the type of V T0 is ( ( ) )− − −ν ν ν2 2, 2 2 , 2 . This implies that V T0 is a type I of 2-codim subspace. Since
= =

−V V V AT A T A T1
0 0 , the invariant subspace V T has the same type with V T0 by Lemma 2.4. Consequently,

V T is also a type I of 2-codim subspace.
Conversely, suppose that V T is a type I of 2-codim subspace. With the preceding discussion, the

invariant subspaceV T0 is a type I of 2-codim subspace and { }… ⊆e e e V, , , ν
T

3 4 2 0. By Lemma 2.4, there exists

an element ( )∈A O F S,ν q2 such that = =

−V V A VT T A TA0
1

. Let =
−T A TA1

1 . Then ( )∈T O F S,ν q1 2 and the elements
…e e e, , , ν3 4 2 are invariants under the action of T1. Therefore, we may assume that
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ν ν
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ν
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where =H i j, , 1, 2ij , are ( )× −ν1 2 matrices over Fq. Since ( )∈T O F S,ν q1 2 , it must satisfy ′ =T ST S1 1 , then we
get the following equations:

⎧
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⎪

⎩
⎪

= =

+ =

= = = =

= =

+ +

+ +

a a
a a
a a a a
H i j
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0
0, , 1, 2.

ν ν

ν ν

i j

11 22

1 2 2 1

12 21 1 1 2 2
(2.1)

Hence,

⎜ ⎟
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⎞
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+T I a K
I

,
ν
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1 2

where ∈
+

∗a Fν q1 2 .
It is easy to check that ( ) ( ) ( )− − ′ =T I S T I 01 1 and rank( )− =T I 21 , thus T1 is a 2-transvection.

Consequently, =
−T AT A1 1 is also a 2-transvection. □

Next, we are going to study the structures of the type II of 2-codim subspaces.

Definition 2.9. ([6], Section 9.3 Definition) Let ≥ν 1. A subspace P of V is called a hyperbolic place if
( ) =Pdim 2 and P has a basis { }u v, such that ′ = ′ =uSu vSv 0, ′ =uSv 1. An element ( )∈R O F S,ν q2 is called

hyperbolic motion taking the place ∗P as axis, if = ∀ ∈
∗vR v v P, , and ∈ ∀ ∈vR P v P, . Furthermore, we call

R a hyperbolic rotation if ( )∈
+R O F S,ν q2 .

Lemma 2.10. ([6], Section 9.3 Theorem 1) Let ≥ν 1. In ( )O F S,ν q2 , each hyperbolic motion R is similar to one
of the following forms:
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If R is a hyperbolic rotation, then R must be similar to R1.

Lemma 2.11. If R is a hyperbolic rotation, then ∣ ∣ ≠R p, i.e., the order of R is not p.

Proof. By Lemma 2.10, ∣ ∣ ∣ ∣ ∣ ∣= =R R a1 . Since ∈
∗a Fq, it implies that ∣ ∣ ≠a p. □

Lemma 2.12. Let ( )∈R O F S,ν q2 . Then R is a hyperbolic rotation if and only if the invariant subspace VR is
a type II of 2-codim subspace.

Proof. The following proof is similar to Lemma 2.8, thus we just give the main idea. Suppose that R is

a hyperbolic rotation. Let
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and so R3 is a hyperbolic rotation. Consequently, =
−R AR A3

1 is also a hyperbolic rotation. □

Now, we shall consider the cases of the type III and type IV of 2-codim subspaces.
Let
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be a set. The construction of this set is motivated by combining two 2-transvections.

Definition 2.13. An element ( )∈A FGL ν q2 is called a H1-type (resp. Hz-type) matrix if there exists a
( )∈B FGL ν q2 such that ∈

−BAB H1 and −
−ab2 1 corresponding with −BAB 1 is a square (resp. nonsquare)

element in ∗Fq .
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Lemma 2.14.
(1) ( )⊆ O F SH ,ν q2 .
(2) If ∈H H, then ∣ ∣ =H p.
(3) H is a H1-type (resp. Hz-type) matrix if and only if the invariant subspace VH is a type III (resp. type IV)

of 2-codim subspace.

Proof. It is easy to check (1) and (2). The proof of (3) is similar to Lemma 2.8, so we just give the main idea.
Suppose that H is an H1-type (resp. Hz-type) matrix. Then we have that { ( )= − + +
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element in ∗Fq , then VH is a type III (resp. type IV) of 2-codim subspace.
Conversely, we give only the proof for the type III of 2-codim subspace. Suppose that the invariant
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Next, we claim that ≠a 021 and ≠
+

a 0ν2 1 . If = =
+

a a 0ν21 2 1 , then ( )
=C I ν2 , contradicting = −V νdim 2 2C .

If =a 021 and ≠
+

a 0ν2 1 , then C is a 2-transvection. By Lemma 2.8,V C is a type I of 2-codim subspace, which
contradicts that =V VC H is a type III of 2-codim subspace. If ≠a 021 and =

+
a 0ν2 1 , then C is also a

2-transvection, a contradiction. Therefore, ≠a 021 and ≠
+

a 0ν2 1 , thus ∈C H. Since =V VC H is a type III of
2-codim subspace, it follows that −

+

−a a2 ν21 2 1
1 is a square element in ∗Fq . Hence, =

−A BCB 1 is a H1-type matrix.
□

Finally, we shall show the structures of the type V of 2-codim subspaces.

Lemma 2.15. If the order of the matrix ⎛
⎝

⎞
⎠
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⎟
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⎠
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⎠
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∗ ∗
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i
i i

i i
. Therefore, if ( )

≠A I¯ p n , then we conclude that

( )
≠

+A I¯̄ p n m . □
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( ) ( )

=

− −

−

−

− −

Q

a
b

I
a

b
I

0 0 0
0 0 0

0
0 0 0

0 0 0
0

,
ν ν

ν ν

2 2

1

1

2 2

where ∈
∗a b F a, , 2q is a square element, and = −b z2 . The construction of this element is motivated by

combining two hyperbolic motions. It is easily seen that ( )∈Q O F S,ν q2 , and

{ ( ) ( ) ∣ }= + + + + + ⋯+ + + ⋯+ ∈
+ + + +

V k e ae k e be k e k e k e k e k F .Q
ν ν ν ν ν ν ν ν i q1 1 1 2 2 2 3 3 3 3 2 2

Then the type of the matrix corresponding with the invariant subspace V Q is
⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

( )

( )

−

−

−

I
I

z
1 0
0

ν

ν

2

2
.

Hence, V Q is a type V of 2-codim subspace.

Lemma 2.16. If ( )∈A O F S,ν q2 and the invariant subspace VA is a type V of 2-codim subspace, then ∣ ∣ ≠A p.

Proof. Since the invariant subspaces VA and V Q are both the type V of 2-codim subspaces, there exists an
element ( )∈B O F S,ν q2 such that =V V BQ A by Lemma 2.4. Let =

−C B AB1 . Then ( )∈C O F S,ν q2 and the ele-
ments … …

+
e e e e, , , , ,ν ν ν3 3 2 , +

+
e aeν1 1, and +

+
e beν2 2 are all invariants under the action of C. Therefore,

we may assume that

⎛

⎝

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟
⎟

( ) ( )

( ) ( )

=

+ +

+ +

− −

+ + + + + +

+ + + + + +

− −

C

a a H a a H
a a H a a H

I
a a H a a H
a a H a a H

I

0 0 0 0 0

0 0 0 0 0

,

ν ν

ν ν
ν ν

ν ν ν ν ν ν

ν ν ν ν ν ν
ν ν

11 12 11 1 1 1 2 12

21 22 21 2 1 2 2 22
2 2

1 1 1 2 31 1 1 1 2 32

2 1 2 2 41 2 1 2 2 42
2 2

where =H i, 1, 2, 3, 4ij , =j 1, 2, are ( )× −ν1 2 matrices over Fq.
Now we consider the sub-block of matrix C, i.e.,

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
=

+ +

+ +

+ + + + + +

+ + + + + +

C

a a a a
a a a a

a a a a
a a a a

¯

.
.

ν ν
ν ν

ν ν ν ν ν ν
ν ν ν ν ν ν

11 12 1 1 1 2
21 22 2 1 2 2
1 1 1 2 1 1 1 2
2 1 2 2 2 1 2 2

Since +
+

e aeν1 1 and +
+

e beν2 2 are invariants under the action of C, we have

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

= −

= −

= −

= −

= −

= −

= −

= −

+

+

+ + +

+ + +

+

+

+ + +

+ + +

a aa
a aa
a a aa
a aa
a ba
a ba
a ba
a b ba

1

1

ν
ν

ν ν ν
ν ν ν

ν

ν

ν ν ν

ν ν ν

11 1 1
12 1 2
1 1 1 1
1 2 1 2

21 2 1

22 2 2

2 1 2 1

2 2 2 2

(2.2)

Since ( )∈C O F S,ν q2 , it must satisfy ′ =CSC S, then C̄ satisfies

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

′
=C C¯

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

¯
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

.

410  Zeng Lingli



And adding (2.2), we can obtain the following equations:

= −
+ + +

a aa1ν ν ν1 1 1 1 (2.3)

= −
+ + +

a baν ν ν1 2 1 2 (2.4)
= −

+ + +
a aaν ν ν2 1 2 1 (2.5)

= −
+ + +

a ba1ν ν ν2 2 2 2 (2.6)

( )− =
+ + +

a aa ba1ν ν ν1 1 1 1 1 2
2 (2.7)

( )− =
+ + +

a ba aa1ν ν ν2 2 2 2 2 1
2 (2.8)

( ) ( )− + − =
+ + + +

a aa a ba2 1 2 1 0.ν ν ν ν2 1 1 1 1 2 2 2 (2.9)

Next, we have to consider the following situations: Whether or not
+ +

a a,ν ν1 1 1 2, +
aν 2 1, and +

aν 2 2 are 0,
respectively. We only give the proof of the most difficult case when ≠

+
a 0ν 2 1 and ≠

+

− −a b2ν 2 2
1 1.

Since ≠
+

− −a b2ν 2 2
1 1, − ≠

+
ba1 2 0ν 2 2 . So by (2.9), we obtain

−

−

= −
+

+

+

+

aa
ba

a
a

1 2
1 2

.ν

ν

ν

ν

1 1

2 2

1 2

2 1
(2.10)

Combining (2.7) with (2.8), we have

( )

( )

−

−

=
+ +

+ +

+

+

a aa
a ba

ba
aa

1
1

.ν ν

ν ν

ν

ν

1 1 1 1

2 2 2 2

1 2
2

2 1
2 (2.11)

Combining (2.11) with the square of (2.10), we conclude that

( )

( )

−

−

= =
+ +

+ +

+

+

aa aa
ba ba

a
a

1
1

1 ,ν ν

ν ν

ν

ν

1 1 1 1

2 2 2 2

1 2
2

2 1
2 (2.12)

then = ±
+ +

a aν ν1 2 2 1.
If = −

+ +
a aν ν1 2 2 1, then it follows that =

+

−

+
a a baν ν1 1

1
2 2 according to 2.9. Thus, adding (2.2)–(2.6),

we have

⎛

⎝

⎜

⎜
⎜

⎞

⎠

⎟

⎟
⎟

=

− −

− −

− −

− −

+ + + +

+ + + +

−

+ + + +

+ + + +

C

ba aa aba aba
ba ba aba b a

a ba a ba ba
a a aa ba

¯

1
1

1
1

.

ν ν ν ν

ν ν ν ν

ν ν ν ν

ν ν ν ν

2 2 2 1 2 2 2 1

2 1 2 2 2 1
2

2 2
1

2 2 2 1 2 2 2 1

2 1 2 2 2 1 2 2

Let

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
≜

−
+ +

P

a
b

aa ba

1 0 0
0 1 0
0 0
0 0 0 1

ν ν
1

2 1 2 2

and

⎛

⎝

⎜

⎜⎜

⎞

⎠

⎟

⎟⎟

≜ − =

−

− −

−

+ +

+ + +

P P CP I a ba
a a ba

¯
0 0 0 0
0 0 0 0
0 0 2

2 4

.
ν ν

ν ν ν

2 1 1
1

2 2 2 2

2 1 2 2 2 2

If we denote ⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
=

−

=

− −

+

+ +

+

+

E a
a a F ba

ba
0 , 0 2

2 4
ν

ν ν

ν

ν

2 2
2 1 2 2

2 2

2 2
, then ⎛

⎝
⎞
⎠

=
−

P
F E F

0 0i
i i2 1 . Since ( ) =

+
F badet 4 ν 2 2,

≠
+

a 0ν 2 2 by (2.8), we have ( ) ≠Fdet 0, thus ( )≠P 0p
2 . Therefore, ∣ ∣ ≠

−P CP p¯1 1
1 , ∣ ∣ ≠C p¯ .

If =
+ +

a aν ν1 2 2 1, then it follows that ∣ ∣ = ≠C p¯ 2 according to (2.2)–(2.9).
Using the same method, we finally prove that ∣ ∣ ≠C p¯ for all situations. Hence, ∣ ∣ ≠C p by Lemma 2.15.

Since =
−A BCB 1, it follows that ∣ ∣ ≠A p. □
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We have totally described the structures of all types of 2-codimensional invariant subspaces.
We summarize the results so far obtained as follows:

Theorem 2.17. Let ( )∈A O F S,ν q2 , ∣ ∣ =A p, and the codimension of the invariant subspace VA be 2. Then the
invariant subspace VA is a type I of 2-codim, type III of 2-codim, or type IV of 2-codim subspace, but neither
a type II of 2-codim nor a type V of 2-codim subspace.

Proof. By Lemma 2.2, the 2-codimensional subspaces of orthogonal space V have five types. According to
Lemmas 2.11 and 2.12,VA cannot be a type II of 2-codim subspace since ∣ ∣ =A p. Also,VA cannot be a type V
of 2-codim subspace by Lemma 2.16. Consequently,VA is a type I of 2-codim, type III of 2-codim, or type IV
of 2-codim subspace. □

Remark 2.18. By Lemmas 2.8 and 2.14, the invariant subspaces whose types are type I of 2-codim, type III of
2-codim, and type IV of 2-codim are not empty. And the type of an invariant subspaceVA and the type of an
element A can be determined by each other.

3 Embedding of 3-codimensional subspaces

In this section, we shall consider the invariant subspaces under the action of the elements of order p in
( )O F S,ν q2 , i.e., the set { ∣ ( ) ∣ ∣ }= ∈ =E V A O F S A p, ,A

ν q2 . First, if ( )∈A O F S,ν q2 and the codimension of the

invariant subspaceVA is 1, then, by Section 9 of Chapter 7 in [6], A is a quasi-symmetry transformation and
its order is ≠ p2 . So we know that the set E cannot contain any 1-codimensional invariant subspace.
Furthermore, the invariant subspaces VA whose codimensions are 2 have been studied in Section 2 and
every m-codimensional subspace with ≥m 4 can be embedded into a 3-codimensional subspace. Hence,
the remainder work is to study the 3-codimensional subspaces of the orthogonal space V .

Proposition 3.1. Let W be a 3-codimensional subspace of the orthogonal space V . Then ⊆W U , where U is
a type I of 2-codim, type III of 2-codim, or type IV of 2-codim subspace.

Proof. According to Lemma 2.1, there are seven types of the 3-codimensional subspaces in the orthogonal
space V . Now we shall choose the most complex type whose corresponding matrix is

⎛

⎝

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

( )

( )

=

−

−

−

M

I
I

z
1 0 0
0 0
0 0 0

ν

ν

3

3

to prove. Let P be the corresponding matrix of subspace W . Suppose that ′ =PSP M .
If −z is a square (resp. nonsquare) element, then −z is cogredient to 1 (resp. z). Let W1 be a type III

(resp. type IV) of 2-codim subspace. The corresponding matrix P1 of subspace W1 satisfies

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

( )

( )

′ =

−

−

−

P SP

I
I

z

0 1 0 0
1 0 0 0
0 0 0
0 0 0 0

.

ν

ν

1 1

3

3
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Let

⎛

⎝

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟
⎟

( )

( )

=

−

−

A

I
I

1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

ν

ν

1

3

3

1
2 . Then

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

( )

( )

′ ′ =

−

−

−

A P SP A

I
I

z
1 0 0 1
0 0 0
0 0 0 0
1 0 0 0

ν

ν

1 1 1 1

3

3

.

Suppose that

⎛

⎝

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

=

′

⋮

′

′

−

−

A P

v

v
v

ν

ν

1 1

1

2 3

2 2

. Let
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

=

′

⋮

′
−

A P
v

v ν

1 1

1

2 3

be the matrix obtained by deleting the last row vector of A P1 1.

Then the corresponding subspace of A P1 1 is embedded in the corresponding subspace of A P1 1, and
′

=A P SA P M1 1 1 1 . By Lemma 2.5, there exists an ( )∈A O F S,ν q2 such that =P A P A1 1 , thus, the subspace W is

embedded in the corresponding subspace of A P1 1. Since A1 is an invertible matrix, the corresponding sub-
space of A P1 1 is the corresponding subspace of P1, i.e., subspace W1. Hence, the subspace W is embedded
in the type III (resp. type IV) of 2-codim subspace W1.

The proofs of the other six types are similar to the above type and are omitted. We summarize all
situations that if W be a 3-codimensional subspace, then W is embedded in a type I of 2-codim, type III of
2-codim, or type IV of 2-codim subspace. □

4 Transfer ideal

In this section, we shall determine the structures of the transfer variety and transfer ideal. First, we recall
some notations. If J is an ideal of [ ]…F x x, , n1 , then

�( ) {( ) ∣ ( ) }= … ∈ … = ∀ ∈J a a F f a a f J, , , , 0,n
n

n1 1

is called the variety defined by an ideal J . Consider a collection, S, of points of the affine space Fn. We define
the set ( )I S of polynomials in [ ]…F x x, , n1 by

( ) { [ ] ∣ ( ) ( ) }= ∈ … … = ∀ … ∈I S f F x x f a a a a S, , , , 0, , , .n n n1 1 1

It is easy to verify that the set ( )I S is an ideal in [ ]…F x x, , n1 and �( ( )) =I S S.

Lemma 4.1. ([7, Hilbert Nullstellensatz]) Let F be an algebraically closed field. If J is an ideal of [ ]…F x x, , n1 ,

then �( ( )) =I J J .

Let ( )↪ρ G GL n F: , be a faithful representation of a finite group over the field F . The transfer variety,
denoted by ΩG, is defined by ([4, Section 6.4])

{ ∣ ( )( ) ( [ ])}= ∈ = ∀ ∈v V f v f F VΩ Tr 0, Tot .G
G

Since ( )Im TrG is an ideal of [ ]F V G, [ ] [ ]⊆F V F VG is a ring extension, we have

�{ ∣ ( ) ( ( )) } (( ( )) )= ∈ = ∀ ∈ =v V f v fΩ 0, Im Tr Im Tr ,G
G e G e

where ( ( ))Im TrG e denotes the extension ideal of ( )Im TrG in [ ]F V .

Lemma 4.2. ([Corollary 2.6] and [4, Corollary 6.4.6]) Let ( )↪ρ G GL n F: , be a representation of a finite
group over the field F of characteristic p. Then

∣ ∣

= ⋃

∈ =

VΩ ,G
g G g p

g

,

i.e., transfer variety is the union of the fixed-point sets of the elements in G of order p.
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By Theorem 6.4.7 in [4] and its proof, we have

Lemma 4.3. [4] Let ( )↪ρ G GL n F: , be a representation of a finite group over the field F of characteristic p.
Then

( ) ( ( )) [ ]= ∩ F VIm Tr Im Tr ,G G e G

and ( ( )) ( ( ) ) { ( ) ∣ ∣ ∣ }= = − ∈ = <n V g G and g p nht Im Tr ht Im Tr max dimG G
F

g .

Now we can obtain the main results for the transfer variety.

Theorem 4.4. The transfer variety ( )ΩO F S,ν q2 of the orthogonal group ( )O F S,ν q2 is

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
( ) = ⋃ ∪ ⋃ ∪ ⋃

- - -

U U UΩ ,O F S
U U U

,
is type I

of 2 codim

1
is type III

of 2 codim

2
is type IV

of 2 codim

3ν q2
1 2 3

i.e., ( )ΩO F S,ν q2 is the union of all type I of 2-codim, type III of 2-codim, and type IV of 2-codim subspaces
(the same notations in Remark 2.3).

Proof. Let U be the right side of the above equality. For each U1, let ( )∈T O F S,ν q2 be a 2-transvection.
By Lemmas 2.8 and 2.4, there exists an element ( )∈A O F S,ν q1 2 such that = =

−U V A VT A TA
1 1 1

1
1 and ∣ ∣ =

−A TA1
1

1

∣ ∣ =T p. For eachU2 (resp.U3), let H̄1 (resp. H̄z) be a H1-type (resp. Hz-type) matrix. By Lemmas 2.14 and 2.4,

there exists an element A2 (resp. A3) ( )∈O F S,ν q2 such that = =

−U V A VH A H A
2

¯
2

¯1 2
1

1 2 and ∣ ∣ ∣ ∣= =
−A H A H p¯ ¯2

1
1 2 1

(resp. = =

−U V A VH A H A
3

¯
3

¯z z3
1

3 and ∣ ∣ ∣ ∣= =
−A H A H p¯ ¯z z3

1
3 ). So we have ( )⊆ ⋃ ∈

∣ ∣=

U VA O F S
A p

A, ,ν q2 . On the other hand,

according to Theorem 2.17 and Section 3, it follows that ( )⋃ ⊆∈

∣ ∣=

V UA O F S
A p

A, ,ν q2 . Hence, ( )= ⋃ ∈

∣ ∣=

U VA O F S
A p

A, ,ν q2 .

Then ( ) = UΩO F S,ν q2 by Lemma 4.2. □

Remark 4.5. By the discussions in Section 3, we deduce that the whole space V is contained in transfer
variety. Then ( ) = VΩO F S,ν q2 over Fq. Let Fq be the algebraic closure of Fq and ( )ΩO F S,ν q2 be the transfer variety

over Fq. By the similar argument, we have that

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟

⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
( ) = ⋃ ⊗ ∪ ⋃ ⊗ ∪ ⋃ ⊗ ≠ ⊗

- - -

U F U F U F V FΩ .O F S
U

F q
U

F q
U

F q F q,
is type I

of 2 codim

1
is type III

of 2 codim

2
is type IV

of 2 codim

3ν q q q q q2
1 2 3

Now, we shall determine the structures of radical ideal of transfer. Let ⎜ ⎟
⎛

⎝

⎞

⎠

( )

( )
=T I K

I
ν

ν
, where

⎛

⎝
⎜

⎞

⎠
⎟

( )

= −

−

K
0 1
1 0

0 ν 2
. By the proof of Lemma 2.8, T is a 2-transvection. Moreover, the invariant subspace

V T is a type I of 2-codim subspace and

{ ∣ }= + ⋯+ ∈V k e k e k F .T
ν ν i q3 3 2 2

Thus, the ideal

( ) [ ]= ⟨ ⟩I V x x, ,T
F V1 2 q

where [ ]⟨ ⟩x x, F V1 2 q is the ideal generated by x1 and x2 in the polynomial ring [ ]F Vq .
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Let

⎛

⎝

⎜

⎜

⎜

⎜⎜

⎞

⎠

⎟

⎟

⎟

⎟⎟

( ) ( )

( )

=

−

−

−

− −

−

H

b
a b ab

I
a

I

1 0 0
1

0
1
0 1

ν ν

ν

2 2

2

.

By the proof of Lemma 2.14, we see that

{ ( ) ∣ }= − + + + ⋯+ + + ⋯+ ∈
−

+ + +
V k ab e e k e k e k e k e k F .H

ν ν ν ν ν ν ν i q1
1

1 1 3 3 2 2 2 2

When = = −a b1, 2, let =H H¯1 . Then the invariant subspace V H̄1 is a type III of 2-codim subspace and the
ideal

( ) [ ]= ⟨ − ⟩
+

I V x x x, 2 .H
ν F V

¯
2 1 1 q

1

When = = −a b z1, 2 , let =H H¯z . Then the invariant subspaceV H̄z is a type IV of 2-codim subspace and the
ideal

( ) [ ]= ⟨ − ⟩
+

I V x zx x, 2 .H
ν F V

¯
2 1 1z

q

Remark 4.6. For convenience, we denote

[ ]

[ ]

[ ]

[ ]

[ ]
( )

[ ]
( )

[ ]
( )

[ ]
( )

= ⟨ ⟩ ∩

= ⟨ ⟩ ∩

= ⟨ − ⟩ ∩

= ⟨ − ⟩ ∩

+

+

J x F V
J x x F V
J x x x F V
J x zx x F V

;
, ;
, 2 ;
, 2 .

F V q
O F S

F V q
O F S

ν F V q
O F S

ν F V q
O F S

0 2
,

1 1 2
,

2 2 1 1
,

3 2 1 1
,

q
ν q

q
ν q

q
ν q

q
ν q

2

2

2

2

Theorem 4.7. The radical ideal of transfer is

( )( )
= ∩ ∩J J JIm Tr .O F S,

1 2 3ν q2

Moreover, it is a primary decomposition of ( )( )Im TrO F S,ν q2 and Ji, =i 1, 2, 3 are all prime ideals.

Proof. From Lemma 2.4, we know that ( )O F S,ν q2 acts transitively on each set of subspaces of the same type.
Thus, by Remark 4.5,

� �

�

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

( )

( ) ( ) ( )

( )
[ ]

( )
[ ]

( )
[ ]

= ⋃ ⊗ ∪ ⋃ ⊗ ∪ ⋃ ⊗

= ⋂ ⟨ ⟩ ⊗ ∪ ⋂ ⟨ − ⟩ ⊗

∪ ⋂ ⟨ − ⟩ ⊗

∈ ∈ ∈

∈ ∈

+

∈

+

V A F V A F V A F

A x x A x x x

A x zx x

Ω

, 1 , 2 1

, 2 1 .
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A O F S
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A O F S
F V F

A O F S
ν F V F

A O F S
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,
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,
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,
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q
ν q

q
ν q

z
q

ν q
q q
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ν q
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2
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1

2
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2

Therefore, by Hilbert’s Nullstellensatz, it follows that
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⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
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⎛

⎝
⎜

⎞

⎠
⎟ [ ]

( )
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[ ]

( )
[ ]

( )
[ ]

= ⋂ ⟨ ⟩ ∩ ⋂ ⟨ − ⟩

∩ ⋂ ⟨ − ⟩

∈ ∈

+

∈

+

A x x A x x x

A x zx x F V

Im Tr , , 2

, 2 in .

O F S e

A O F S
F V

A O F S
ν F V

A O F S
ν F V q

,

,
1 2

,
2 1 1

,
2 1 1

ν q

ν q
q

ν q
q

ν q
q

2

2 2

2

By flat base change [4, p. 276], we deduce that the above equation is also held in [ ]F Vq , since each
xi is defined over Fq. Hence, by Lemma 4.3, we see that

The transfer ideal under the action of orthogonal group in modular case  415



( ) ( ( )) [ ]

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟ [ ]

[ ]
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+

∈
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The third equation is satisfied because

⎛

⎝
⎜

⎞

⎠
⎟ [ ] [ ]

( )
[ ]

( )
[ ]

( )
⋂ ⟨ ⟩ ∩ = ⟨ ⟩ ∩

∈

A l l F V l l F V, , .
A O F S

F V q
O F S

F V q
O F S

,
1 2

,
1 2

,

ν q
q

ν q
q

ν q

2

2 2 (4.1)

Consider the embedded mapping [ ] [ ]( )
↪φ F V F V: q

O F S
q

,ν q2 . We have that the limit ideal [ ]⟨ ⟩ ∩l l, F V1 2 q

[ ] ( )F Vq
O F S,ν q2 is also a prime ideal in the ring of invariant [ ] ( )F Vq

O F S,ν q2 , since [ ]⟨ ⟩l l, F V1 2 q is a prime ideal

in [ ]F Vq . Thus, J J,1 2, and J3 are prime ideals in [ ] ( )F Vq
O F S,ν q2 . Consequently, ( )( )

= ∩ ∩J J JIm TrO F S,
1 2 3ν q2

is a primary decomposition. □

Theorem 4.8. ( ) ( )( ) ( )
( ) ( )= =ht Im Tr ht Im Tr 2O F S O F S, ,ν q ν q2 2 . And

( ) ( ) ( )⊆ ⊆ ⊆ ⊆ ⊆ ⊆J J J J J J0 , 0 , 00 1 0 2 0 3

are all prime ideal chains of height 2 (Ji the same notations in Remark 4.6).

Proof. In Section 3, we know that the set { ∣ ( ) ∣ ∣ }= ∈ =E V A O F S A p, ,A
ν q2 cannot contain any 1-codimen-

sional invariant subspace. From Section 2, we have that there exist the 2-codimensional invariant sub-
spaces in set E. Then combining Lemma 4.3, it follows that

( )( ) ( )
( ( )) ( ( ))= = − − =ν νht Im Tr ht Im Tr 2 2 2 2.O F S O F S, ,ν q ν q2 2

By the proof of Theorem 4.7, it is obvious that ( ) ⊆ ⊆ =J J i0 , 1, 2, 3i0 are all prime ideal chains
of height 2. □

5 Example

Suppose = =q ν3, 2 and consider the orthogonal group ( )O F S,4 3 over the field F3 with respect to the

symmetric matrix
⎛

⎝

⎜

⎜

⎞

⎠

⎟

⎟
=S

1 0
0 1

1 0
0 1

. We shall give the structures of the radical ideal ( )
( )Im TrO F S,4 3 and

the prime ideal chains of the transfer ideal ( )
( )Im TrO F S,4 3 .

First, by Lemma 2.4, we have these orbits

[ ] [ ] { ∣ }

[ ] { ∣ }

[ ] { ∣ }

= = + + + + =

− = + + + + = −

− − = + + + + =

o x o x k x k x k x k x k x k x
o x x k x k x k x k x k x k x
o x x k x k x k x k x k x k x

0 ,
1 ,
1 .

1 2 1 1 2 2 3 3 4 4 1 3 2 4

1 3 1 1 2 2 3 3 4 4 1 3 2 4

1 3 1 1 2 2 3 3 4 4 1 3 2 4

Second, using MACAULAY, which is a kind of computer algebra systems, to compute the intersection of
the ideals in the orbit [ ][ ]⟨ ⟩o x x, F V1 2 3 , we have

( )
( )

[ ] [ ]= ⋂ ⟨ ⟩ = ⟨ + − + − ⟩

∈

I A x x x x x x x x x x x x, , .
A O F S

F V F V1
,

1 2 1 3 2 4 2 4 1
2

2
2

3
2

4
2

4 3
3 3
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The intersection of the ideals in the orbit [ ][ ]⟨ − ⟩o x x x, F V2 1 3 3 is
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2

2 3 4
2

1 4
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3

The intersection of the ideals in the orbit [ ][ ]⟨ − − ⟩o x x x, F V2 1 3 3 is
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And

( )( )( )( )
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3

In [8], Chu found the polynomial invariants of 4-dimensional orthogonal group with the nondegenerate
quadratic form = − + −

+Q x x x x4 1
2

2
2

3
2

4
2. By the variable substitution, → − +x x1 1 → − − →x x x x x, ,3 2 1 3 3

− + → +x x x x x,2 4 4 2 4, we can obtain the polynomial invariants of ( )O F S,4 3 with respect to the sym-
metric matrix S,

[ ] ⎡
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( )

( )
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=F V F Q Q Q G Q Q Q Q
F Q Q Q

G Q Q Q Q
F Q Q Q

, , , , , ,
, ,

, , , ,
, ,

,O F S
3

,
3 40 41 42

1 40 41 42 43

40 41 42

2 40 41 42 43

40 41 42
4 3

where
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Then, using MACAULAY, we have
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and by Theorem 4.6, we have
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J J J
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Moreover,

( ) ( ) ( )⊆ ⊆ ⊆ ⊆ ⊆ ⊆J J J J J J0 , 0 , 00 1 0 2 0 3

are prime ideal chains of height 2.
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