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1 Introduction

Let V be a vector space of dimension n over a field F of characteristic p and let F[V] be the symmetric
algebra of V* (the dual of V). If {x, ...,x,} is a basis for V, then F[V] can be identified with the polynomial
ring F[x,...,X,]. Let G € GL(V) be a finite group. Then the elements of G act on F[V] as algebra automor-
phisms and we form the subring

FIVI® £ {fe F[V]igf=f, VgeG}
of G-invariant polynomials. The image of transfer map

TrC : F[V] - F[V]%; f~ ng
geG
is an ideal of F[V]°. We call it the transfer ideal under the action of G and denoted by Im(Tr¢). If the order
of G is invertible in F, then the transfer map TrC is a surjection onto F[V]S. When the characteristic
of F divides the order of G, the transfer ideal is a proper, nonzero ideal in F[V]°. The transfer ideal
is of considerable interest in modular invariant theory.

In 1999 Shank and Wehlau [1] proved that Im(Tr®) is a principal ideal if G is a p-group defined over F,
and F[V]° is a polynomial ring. They also showed that Im(Tr¢) are principal for G = SL,(F,) and GL,(F,) with
natural actions. Later, Neusel [2,3] studied the transfer ideal Im(Tr®) for permutation group. In addition,
she proved that the ideal Im(Tr¢) is a prime ideal for cyclic p-groups and determined an upper bound of its
height. Moreover, Kuhnigt and Smith studied the transfer ideal for the symplectic group Sp,,(F;) and
showed that the radical ideal of transfer is a principal ideal. These detailed proofs can be found on page
276 of [4].

Along this research route, we focus on the transfer ideal for the orthogonal groups. Let g = p! be a
positive odd prime power, F; be the Galois field with g elements. Let S be an n x n nonsingular symmetric
matrix over F,. Then the set of all matrices A such that ASA = S forms a group with respect to matrix
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multiplication, where A’ denotes the transpose of A. We call it the orthogonal group of degree n with respect
to S and denote it by On(F,, S), i.e.,

Ou(F;, S) = {A € GL,(F,)|ASA = S}.

By [5, Theorem 6.4] we know that the nonsingular symmetric matrix S is one of the following forms:

0 IV 0 IV 0 1Y

W IV 0
Sy = (I(v) ); SZV+1,1 =1 0 5 52v+1,z =1V 0 5 Swi2= 1 0
1 z

0 -z

where IV is a v x v identity matrix and z is a non square element in F;. Then, up to isomorphism, the
orthogonal groups are four types. In this paper, we shall focus attention on the orthogonal group 0,,(F;, S)
with respect to the nonsingular symmetric matrix S = S,,. The other cases are similar and are omitted.

The paper is organized as follows. After this introductory section, in Sections 2 and 3 we discuss the
structures of invariant subspaces under the action of the orthogonal group Ox(F,, S). In Section 4, we
determine the structures of the transfer variety Qo,,,s) and give a primary decomposition for the radical
ideal of transfer ideal, and show that the height of this transfer ideal is 2. In addition, we give a detailed
example for ¢ = 3 and v = 2 in Section 5.

2 Types of 2-codimensional invariant subspaces

Let ey, e,,..., €5, be the standard basis of the vector space V = F;V. For each v = ke; + ey +---+ ke, €
V, k; € F, there is an action of 0,,(F;, S) on V defined as

V x 0p(Fyy S)— V
((kb er oo ykZV)) A) — (kla k2, ceey ka)A'

Then the vector space V together with this action is called the 2v-dimensional orthogonal space over F; with
respect to S.

Let P be an m-dimensional vector subspace of V. We use the same symbol P to denote the matrix
representation of the vector subspace P, i.e., P is an m x 2v matrix whose rows form a basis of the vector
subspace P. Two n x n matrices A and B are said to be cogredient, if there is a n x n nonsingular matrix
Q such that QAQ’ = B. It is well known that PSP’ is cogredient to one of the following normal forms [5]:

0 I® (()) ®
S
M(m,2s,s) =1 0 , M(m, 25 +1,5,1)= 17 0 ,
Q(m-2s) 1
0(m—25—1)
0 IO 0 I®
I® 0
M(m,2s +1,s,z) = I® 0 . , M(@m,2s+2,s) = 1
-z

O(m—2s—1) O(m—Zs—Z)
We use the symbol M(m, 2s + y, s, I') to represent any one of these four normal forms, where s is its index,
y=0,1, or 2, and I' represents the definite part in these normal forms. If PSP’ is cogredient to
M(m, 2s +y,s,T), then P is called a subspace of type (m, 2s + y, s, I') with respect to S in V. Subspaces
of type (m, 2s, s), (im,2s + 1, s, 1), (m, 2s + 1, s, z), and (m, 2s + 2, s) are also called subspace of the hyper-
bolic type, the square type, the nonsquare type, and the elliptic type, respectively.
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By the proof of Theorem 6.3 in [5], we have the following lemma

Lemma 2.1. [5] Subspaces of types (m, 2s + Y, s, I) exist in the 2v-dimensional orthogonal space V = F;V with
respect to the nonsingular symmetric matrix S if and only if

2s+y<m<v+s.

Then, we can determine the types of 2-codimensional subspaces.

Lemma 2.2. There are five types of 2-codimensional subspaces of the 2v-dimensional orthogonal space
V=F¥
g

Proof. Letm = 2v — 2. By Lemma 2.1,2s + y < m < v + s, it follows that ifr = O thens = v — 2 orv - 1;ifr = 1
thens = v — 2;ifr = 2 then s = v — 2. Hence, we obtain the following five types of 2-codimensional subspaces:
2v-2,2v-2,v-2), 2v-2,2v-1,v-1), 2v-2,2v-2)+1,v-2,1), v-2,2(v-2) +1,v - 2,
z),and 2v - 2,2(v-2)+2,v-2). O

Remark 2.3. For convenience, let type I of 2-codim, type II of 2-codim, type III of 2-codim, type IV of 2-
codim, and type V of 2-codim denote the subspaces of type Qv — 2, 2(v — 2),v — 2),2v - 2,2(v - 1), v - 1),
@Qv-22v-2)+1,v-2,1),v-2,2v-2) + 1,v—-2,z),and (2v - 2, 2(v — 2) + 2, v — 2), respectively.

The following two lemmas celebrated Witt’s transitivity theorem will be often used.

Lemma 2.4. ([5], Theorem 6.4) Let P, and P, be two m-dimensional subspaces of V. Then there is an
A € 0n(F,, S) such that P, = BP,A, where B is an m x m nonsingular matrix, if and only if P, and P, are of
the same type with respect to S. In other words, O,,(F;, S) acts transitively on each set of subspaces of the
same type.

Lemma 2.5. [5, Lemma 6.8] Let P, and P, be two m x m matrices of rank m. Then there exists an element
A € 0y(F,, S) such that P, = PA if and only if P,SP| = P,SP;.

Now, let us study the structures of the type I of 2-codim subspaces.

Definition 2.6. ([6], Section 9.2 Definition) An element T € 0,,(F;, S) is called a 2-transvection if T =1 + N,
where I is the identity matrix, the rank of N is 2 and NSN' = 0.

Lemma 2.7. ([6], Section 9.2 Theorem 1) In the orthogonal group 0,,(F;, S), each 2-transvection is similar to

01

)
(IV K), where K=|-1 0

) () 002

LetVA ={v e V|[vA = v} where A ¢ GL,,(F). Then it is easy to check that VA4 is a subspace of vector space
V and VA 'BA = VBA for each B € GLy,(F,).

Lemma 2.8. Let T € 0,(F,, S). Then T is a 2-transvection if and only if the invariant subspace V7 is a type I of
2-codim subspace.

K
™

and ATA™ = T; for some A € 0y,(F;, S). For each v = kie; + -+ ky€2, € V, we have

Q)
Proof. Suppose that T is a 2-transvection. Let Ty = (I ) in Lemma 2.7. Then T is also a 2-transvection

vlh = lgey + -+ ke, + (kv — ko)evi + (ko + k)eyio + kyiszevis + -+ knea.
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If v e VD, then vT; = v, whence k = k, = 0. Therefore,
Vh = {k3e3 + k4€4 + "'+k2V62V | ki € EI}

and dim V% = 2v — 2. We denote the vector invariant subspace V0 as the (2v — 2) x 2v matrix

fb = (63’ (7P eZv),-
By computing, it follows that
02><(v—2) 0 I(V_z)
TOST(; = Iv-2 | is cogredient to 2 0 .
0v-2x2  [(v-2) | ‘ 8 8

Then the type of VD is v - 2, 2(v - 2), v - 2). This implies that V'’ is a type I of 2-codim subspace. Since
VT = VA'TA = VT4, the invariant subspace VT has the same type with V% by Lemma 2.4. Consequently,
VT is also a type I of 2-codim subspace.

Conversely, suppose that VT is a type I of 2-codim subspace. With the preceding discussion, the
invariant subspace V% is a type I of 2-codim subspace and {es, es,...,e»} € V. By Lemma 2.4, there exists
an element A € O4,(F;, S) such that Vb = VTA = VA'TA LetT, = A'TA. ThenT, ¢ 04,(F;, S) and the elements
es, e,,.., €y, are invariants under the action of T;. Therefore, we may assume that

ay ap Hy |aw, aw; Hp
ay ap Hy |ay.a ay.: Hp
Lhi=o o 1| 0 o0 o0v2

J (&)

where Hy, i,j = 1, 2, are 1 x (v — 2) matrices over F,. Since T € O,(F, S), it must satisfy T.ST; = S, then we
get the following equations:

ap =ap=1
Ay + vyl = 0 (2 1)
ap = ay = Ay = A2 = 0 ’

H;=0, i,j=1,2

I = (IM amzK}
m
where ay,,; € F.

It is easy to check that (T; — I)S(T; - I)) = (0) and rank(T; - I) = 2, thus T is a 2-transvection.
Consequently, T = ATA™! is also a 2-transvection. Oa

Hence,

Next, we are going to study the structures of the type II of 2-codim subspaces.

Definition 2.9. ([6], Section 9.3 Definition) Let v > 1. A subspace P of V is called a hyperbolic place if
dim(P) = 2 and P has a basis {u, v} such that uSu' = vSv' = 0, uSv' = 1. An element R € 0,,(F,, S) is called
hyperbolic motion taking the place P* as axis, if YR = v, Vv € P*,;and VR € P, Vv € P. Furthermore, we call
R a hyperbolic rotation if R € 05,(F, S).

Lemma 2.10. ([6], Section 9.3 Theorem 1) Let v > 1. In O,,(F;, S), each hyperbolic motion R is similar to one
of the following forms:
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a

-0 ow-D

o s aeF;.

-1 o-D -1

If R is a hyperbolic rotation, then R must be similar to R;.
Lemma 2.11. If R is a hyperbolic rotation, then |R| # p, i.e., the order of R is not p.
Proof. By Lemma 2.10, |R| = |R| = |a|. Since a € F}, it implies that |a| # p. O

Lemma 2.12. Let R € 0,(F,, S). Then R is a hyperbolic rotation if and only if the invariant subspace V¥ is
a type II of 2-codim subspace.

Proof. The following proof is similar to Lemma 2.8, thus we just give the main idea. Suppose that R is
a
-1

a hyperbolic rotation. Let R, = a-l »1# aeF;. We have that VR = {le, + - +ke+

-1
kys2eyi2 + - +hkaenlki € Fj} and dim VR = 2v — 2. Then V* is a type II of 2-codim subspace. By Lemma 2.10,
ARA™! = R, for some A € 0y/(F,, S), hence VR = VR4 is also a type II of 2-codim subspace by Lemma 2.4.

Conversely, suppose that V¥ is a type II of 2-codim subspace. Then there exists A € 0,,(F,, S) such that

VR = VRA by Lemma 2.4. Let R; = A'RA. We have that VR = V&, Ry € 0,(F,, S), and the elements
€2 ..., €y, €y12,..., €y, are invariant under the action of R;. Hence, consider the equations

RSR;=S and eRz=¢, i=2,..,v,v+2,..,2,

we obtain that

1 , an#0,

-1

and so R; is a hyperbolic rotation. Consequently, R = AR;A™! is also a hyperbolic rotation. O

Now, we shall consider the cases of the type III and type IV of 2-codim subspaces.
Let

10 0 -b
a1 b —ab
-2 -2
H={H v oV a,beF;
1 -a
0 1
10-2

be a set. The construction of this set is motivated by combining two 2-transvections.

Definition 2.13. An element A € GL,,/(F;) is called a Hj-type (resp. H,-type) matrix if there exists a
B € GLy(F,) such that BAB™' ¢ H and —2ab™' corresponding with BAB™! is a square (resp. nonsquare)
element in Fy.
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Lemma 2.14.

(1) H < 0,/(F, S).

(2) If H € H, then |H| = p.

(3) H is a H;-type (resp. H,-type) matrix if and only if the invariant subspace V! is a type III (resp. type IV)
of 2-codim subspace.

Proof. It is easy to check (1) and (2). The proof of (3) is similar to Lemma 2.8, so we just give the main idea.

Suppose that H is an Hi-type (resp. H,-type) matrix. Then we have that V¥ = {ky(—ab'e; + e,.1)+

kses + -+ ke, + kyioevin + -+ kneyn | ki € Ky} and dim VH = 2v — 2. Thus, the type of the matrix corre-
10v-2)

-2

sponding with V¥ is . Consequently, if —2ab™' is a square (resp. nonsquare)

—2ab™ 0
0 0
element in Fy, then VH is a type III (resp. type IV) of 2-codim subspace.

Conversely, we give only the proof for the type III of 2-codim subspace. Suppose that the invariant
subspace V4 is a type III of 2-codim subspace. Then there exists an element B ¢ 0,,/(F,, S) such that VH =
VAB = VB 4B = V€ hy Lemma 2.4. LetC = B-'AB. We have that Ve = VH, C ¢ Ox(F;, S),and dim(V¢) = 2v - 2.
Moreover, the elements e, ..., e,, e,.»,..., €x, and —ab le; + e, are invariants under the action of C. Hence,
consider the equations

CSC' = S,
eC=e¢,i=3,...,Vv,v+2,...,2,
(-ab'e; + e,.1)C = —ab™'e; + ey,

we obtain that

1 0 0 — Q1
a 1 Ay — ANyt
v-2) (v-2)
C= I 071,
1 —dn
0 1

10-2

Next, we claim that ay # 0 and a1 # 0. If ay = a1 = 0, then C = I, contradicting dimV¢ = 2v - 2.
If @y = 0 and ay,41 # O, then C is a 2-transvection. By Lemma 2.8, V¢ is a type I of 2-codim subspace, which
contradicts that V¢ = V¥ is a type III of 2-codim subspace. If ay # 0 and a1 = O, then C is also a
2-transvection, a contradiction. Therefore, ax # 0 and ay,,1 # 0, thus C € H. Since V¢ = V¥ is a type III of
2-codim subspace, it follows that —2axay.,; is a square element in F,. Hence, A = BCB™' is a H-type matrix.

O

Finally, we shall show the structures of the type V of 2-codim subspaces.

Lemma 2.15. If the order of the matrix A = ('g g) is not p, where A, B, C, D are n x n matrices over I, then

A x|B x
the order of matrix i = 2 I g 0 is not p either, where I is an m x m identity matrix, and each * is an
* *
0 0|0 I
arbitrary n x m matrix over F;.

i (A BY (A B =i i
Proof. If A' = = ,then A" = . Therefore, if A? + I™, then we conclude that

CD G D

AP 4 [ovem), O
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Let
0O O ao
0O O 0Ob
J0-2 ov-2
Q=|— )
al 0 00
0 bt 00
ov-2) Jv-2)

where a, b € Fy, 2a is a square element, and 2b = —z. The construction of this element is motivated by
combining two hyperbolic motions. It is easily seen that Q € 0,/(F;, S), and

Ve = {ka(e; + aey,1) + ko(ey + beyyn) + kses +---+kvey + kyi3ep3 + -+ ke | ki € E1}

-2

-2
Then the type of the matrix corresponding with the invariant subspace V© is o=

Hence, V2 is a type V of 2-codim subspace. 10

0 -z

Lemma 2.16. If A € 0,(F;, S) and the invariant subspace V4 is a type V of 2-codim subspace, then |A| # p.

Proof. Since the invariant subspaces V4 and V< are both the type V of 2-codim subspaces, there exists an
element B € 0,,(F,;, S) such that V2 = V4B by Lemma 2.4. Let C = B!AB. Then C € 0,(F,, S) and the ele-
ments es, ..., €, €,,3,..., €y, €] + ae,.1, and e, + be,,, are all invariants under the action of C. Therefore,
we may assume that

an apn Hy Ay +1 Ay+2 Hyp,
an a» Hy My+1 42 Hy,
0 0 Iv2| o 0 0v2

C =
Ayi11 Qyir2 H31 Ayi1v+l Qyilv+2 H32

>

Ayi21 Ayi22 H41 Ayi2vil Aui2v+2 H42
0 0 0¥2] o 0o Iv2

where Hy,i1=1,2,3,4, j=1, 2, are 1 x (v — 2) matrices over F,.
Now we consider the sub-block of matrix C, i.e.,

an ap v +1 v +2
axn a» ‘ Av+1 Av+2

Ayi11 Ay+12 | Queivel Auilv+2 )

Ayi21 Ayi22 | Ayi2 v+l Ayi2 v42-

C:

Since e, + ae,,; and e, + be,,, are invariants under the action of C, we have

a;=1-aay;11

ap = —Aady.12

Qy+1 = A — AGy11 v+

Qy+2 = —AAy41 v+2

11 = —bay,21 22)
ap=1-bay.;

i1 = _bav+2 v+1

2 = b - bav+2 v+2

Since C € 0,/(F, S), it must satisfy CSC' = S, then C satisfies

00|10 00|10
-00‘01-/_00‘01
10‘00_10‘00'
0 1/00 0 1/00
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And adding (2.2), we can obtain the following equations:

Ayiive1 =1 = aay,1q (2.3)
Ays1v+2 = —bay,12 (2.4)
Ayi2vi1 = —A0yi21 (2.5)
Ays2vi2 =1 - bay,22 (2.6)
ay,11(1 - ady.11) = bag,, , 2.7)
ays22(1 = bay,2,) = aag,,, (2.8)
ay.212aa,11 - 1) + ay.12(2bay,,, - 1) = 0. (2.9)

Next, we have to consider the following situations: Whether or not a,,1 1, ay,1, av+21, and a,,,, are O,
respectively. We only give the proof of the most difficult case when a,,,1 # 0 and a,,,, # 27b7L.
Since a,,,, # 2707, 1 - 2ba,,,, # 0. So by (2.9), we obtain

1- 2aav+11 — _av+1 2 (2 10)
1- 2bav+2 2 Ayi21 )
Combining (2.7) with (2.8), we have
ay,11(1 — ady,11) _ ba;,; 2.11)
Ay2 2(1 - bav+2 2) aa\3+2 1
Combining (2.11) with the square of (2.10), we conclude that
aday.q 1(1 — ady 1) =1= a\3+1 2 , (212)

- 2
ba,., »(1 - bay.;) ayio1

then a,,12 = tay.21.
If ay.1>=-a,.21, then it follows that a,,;; = a'ba,.,, according to 2.9. Thus, adding (2.2)-(2.6),
we have

1- bav+2 2 aay.o1 abav+2 2 _abav+2 1

_bav+2 1 1- bav+2 2 abav+2 1 bzav+2 2

C =
a'bay,, -y ‘ 1-bay.;> bayr:
Ayi21 22 -aay.21 1-bay.,
Let
10 ‘ a 0
01 0 b
p 2
! 0 O0|aay,21 —bay.z2
00 0 1
and
0 0 0 0
P2PCPl-1= 0 0 0 0
27 B 0 —Qyi22 0 2bav+22
Ayi21 Ayi22 -2 - 4bav+2 2

- 0O 2b .
If we denote E = ( 0 Qv+2 2), F= 22 ) then Pl = 0 0} since det(F) = 4bay,, -,
Ayi21 Ave22 -2 —4ba,,+2 2 Fi-lg Fi

ay.22 # 0 by (2.8), we have det(F) # 0, thus PP # (0). Therefore, |P,CP{| # p, |C| # p.
If a,.1, = a,,21, then it follows that |C| = 2 # p according to (2.2)—(2.9).

Using the same method, we finally prove that |C| # p for all situations. Hence, |C| # p by Lemma 2.15.
Since A = BCB, it follows that |A| # p. O
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We have totally described the structures of all types of 2-codimensional invariant subspaces.
We summarize the results so far obtained as follows:

Theorem 2.17. Let A € 0,(F,, S), |A| = p, and the codimension of the invariant subspace V4 be 2. Then the
invariant subspace V4 is a type I of 2-codim, type III of 2-codim, or type IV of 2-codim subspace, but neither
a type II of 2-codim nor a type V of 2-codim subspace.

Proof. By Lemma 2.2, the 2-codimensional subspaces of orthogonal space VV have five types. According to
Lemmas 2.11 and 2.12, V4 cannot be a type II of 2-codim subspace since |A| = p. Also, V4 cannot be a type V
of 2-codim subspace by Lemma 2.16. Consequently, V4 is a type I of 2-codim, type III of 2-codim, or type IV
of 2-codim subspace. O

Remark 2.18. By Lemmas 2.8 and 2.14, the invariant subspaces whose types are type I of 2-codim, type III of
2-codim, and type IV of 2-codim are not empty. And the type of an invariant subspace V4 and the type of an
element A can be determined by each other.

3 Embedding of 3-codimensional subspaces

In this section, we shall consider the invariant subspaces under the action of the elements of order p in
Ox/(F;, S), i.e., the set E = {VAA € Ox/(F;, S), |A| = p}. First, if A € 0,(F;, S) and the codimension of the
invariant subspace VA4 is 1, then, by Section 9 of Chapter 7 in [6], A is a quasi-symmetry transformation and
its order is 2 # p. So we know that the set E cannot contain any 1-codimensional invariant subspace.
Furthermore, the invariant subspaces V4 whose codimensions are 2 have been studied in Section 2 and
every m-codimensional subspace with m > 4 can be embedded into a 3-codimensional subspace. Hence,
the remainder work is to study the 3-codimensional subspaces of the orthogonal space V.

Proposition 3.1. Let W be a 3-codimensional subspace of the orthogonal space V. Then W ¢ U, where U is
a type I of 2-codim, type III of 2-codim, or type IV of 2-codim subspace.

Proof. According to Lemma 2.1, there are seven types of the 3-codimensional subspaces in the orthogonal
space V. Now we shall choose the most complex type whose corresponding matrix is
Jv-3)
Jv-3)

M= 1 0 0
0 -z O

0 0O

to prove. Let P be the corresponding matrix of subspace W. Suppose that PSP’ = M.
If -z is a square (resp. nonsquare) element, then —z is cogredient to 1 (resp. z). Let W; be a type III
(resp. type IV) of 2-codim subspace. The corresponding matrix P; of subspace W, satisfies

JOv-3
JOv-3

PSP, =

co~o

coo~
|

o) oo

cooo
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I(V_3) I(va)
I(V_B) I(va)
1

Let 4 = 13 0 O Then 4,PSP/A! = 1001
0010 0 -z 00
0001 0 0 0O
0100 1000
i i

Suppose that AP, = v'. .Let AP, = | be the matrix obtained by deleting the last row vector of A;P;.
v-3
,V VZ/V—3
Vov-2

Then the corresponding subspace of A;P; is embedded in the corresponding subspace of AP, and
A;PiSAP; = M. By Lemma 2.5, there exists an A4 € Ox(F;, S) such that P = A;PA, thus, the subspace W is
embedded in the corresponding subspace of A;P;. Since A4, is an invertible matrix, the corresponding sub-
space of AP, is the corresponding subspace of P,, i.e., subspace W;. Hence, the subspace W is embedded
in the type III (resp. type IV) of 2-codim subspace W.

The proofs of the other six types are similar to the above type and are omitted. We summarize all
situations that if W be a 3-codimensional subspace, then W is embedded in a type I of 2-codim, type III of
2-codim, or type IV of 2-codim subspace. O

4 Transfer ideal

In this section, we shall determine the structures of the transfer variety and transfer ideal. First, we recall
some notations. If J is an ideal of F[x,...,X,], then

Y(J) = {(ay,...,a,) € F" | f(ay,...,ay) =0, VYfe]}

is called the variety defined by an ideal J. Consider a collection, S, of points of the affine space F". We define
the set I(S) of polynomials in F[x,...,x,] by

I(S) ={f e Flx,....x,] | f(ai,...,a,) =0, V(ay,...,a,) € S}.

It is easy to verify that the set I(S) is an ideal in F[x,...,x,] and Y(I(S)) = S.

Lemma 4.1. ([7, Hilbert Nullstellensatz]) Let F be an algebraically closed field. If ] is an ideal of F[x,...,Xy],
then I(V())) = \/J.

Letp : G — GL(n, F) be a faithful representation of a finite group over the field F. The transfer variety,
denoted by Qg, is defined by ([4, Section 6.4])
Q¢ ={v e VITIC(f)(v) =0, Vfe Tot(F[V]}.
Since Im(Tr®) is an ideal of F[V]%, F[V]® ¢ F[V]is a ring extension, we have
Q¢ ={v e VIf(v) =0, Vfe (Im(Tr%)°} = V((Im(Tr%))*),

where (Im(Tr%))¢ denotes the extension ideal of Im(Tr%) in F[V].

Lemma 4.2. ([Corollary 2.6] and [4, Corollary 6.4.6]) Let p : G — GL(n, F) be a representation of a finite
group over the field F of characteristic p. Then

Q= U Vs,

8¢G,|gl=p

i.e., transfer variety is the union of the fixed-point sets of the elements in G of order p.
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By Theorem 6.4.7 in [4] and its proof, we have

Lemma 4.3. [4] Let p : G — GL(n, F) be a representation of a finite group over the field F of characteristic p.
Then

JIm(Tr%) = /(Im(TrG))° n FV]S,
and ht(Im(Tr%)) = ht(y/Im(Tr¢)) = n — max{dimp(V8) | g € G and |g| = p} < n.
Now we can obtain the main results for the transfer variety.

Theorem 4.4. The transfer variety Qo,,,s) of the orthogonal group 0,,(F, S) is

Qo9 =| U Ufu U Bfu U Ul
U istypel U, is type III Us is type IV
of 2-codim of 2-codim of 2-codim

Le., Qo,,&,s) is the union of all type I of 2-codim, type III of 2-codim, and type IV of 2-codim subspaces
(the same notations in Remark 2.3).

Proof. Let U be the right side of the above equality. For each Ui, let T € 0,,(F,;, S) be a 2-transvection.

By Lemmas 2.8 and 2.4, there exists an element 4; € 0,(F;, S) such that U; = VTA; = VA'TA and |A] TA| =

|T| = p. For each U, (resp. Us), let H; (resp. H,) be a H;-type (resp. H,-type) matrix. By Lemmas 2.14 and 2.4,

there exists an element A, (resp. A;) €0/(F,;, S) such that U, = ViA, = VA B4 and |4 HA| = (B = p

(resp. Us = VE:A; = VA'E:A and |A;'H,4s| = || = p). So we have U € |Jaco,,s), VA. On the other hand,
|Al=p

according to Theorem 2.17 and Section 3, it follows that Jaco, .5, VA € U. Hence, U = [Jaco,(,s). V2.

|Al=p |Al=p
Then Qo,,,s) = U by Lemma 4.2. O

Remark 4.5. By the discussions in Section 3, we deduce that the whole space V is contained in transfer
variety. Then Qo, ,s) = V over F,. Let F; be the algebraic closure of F;, and Qo,,s) be the transfer variety
over Fq. By the similar argument, we have that

Qo,(5,5) = U UegFR|u U WegF|u U UWegF|+VegkE,.
U istypel U, is type III Us is type IV
of 2-codim of 2-codim of 2-codim
; . . IW| K
Now, we shall determine the structures of radical ideal of transfer. Let T = o) where
01
K=|-10 . By the proof of Lemma 2.8, T is a 2-transvection. Moreover, the invariant subspace
ov-2

VT is a type I of 2-codim subspace and
VT = {lges +---+kney | ki € E}.
Thus, the ideal
I(VT) = (a, X)g vy

where (X, X) E[v] is the ideal generated by x; and x, in the polynomial ring F;[V].
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10 0 -b
a 1 b —ab
-2 -2
Let H-= 102 o
1 -a
0 1

10-2
By the proof of Lemma 2.14, we see that
VH = {lq(-able; + e,11) + kges + - +kvey + kyis€yio + ke | ki € F}.

Whena =1, b = -2, let A, = H. Then the invariant subspace V' is a type III of 2-codim subspace and the
ideal

I(VHl) = <X2, 2X1 - Xv+1>Fq{V]'

Whena =1, b = -2z, let H, = H. Then the invariant subspace VEisa type IV of 2-codim subspace and the
ideal

I(VE) = (6, 220 — Xpe))E[v)-

Remark 4.6. For convenience, we denote

Jo = (a)gv) N F[V]0>ES);
hi =4, %)g vy N Fy[V]02ES);
J2 = (%, 26 = Xy.1)g vy N Fy[V]02ES);

J5 = (%, 22 — Xy 1) v) N Fy[V]0>ES),

Theorem 4.7. The radical ideal of transfer is

A Im(TrOZ‘/(Fq’S) = ]1 n ]2 n ]3.

Moreover, it is a primary decomposition of \/Im(Tr%»#5) and J;, i = 1, 2, 3 are all prime ideals.

Proof. From Lemma 2.4, we know that 0,,(F;, S) acts transitively on each set of subspaces of the same type.
Thus, by Remark 4.5,

ﬁOzv(l‘"q»s) :( U VTA ®F, E]) U( U VA ®F, Ff‘]) U [ U VA ®F FZ]

AGOZ\/(EPS) AEOZV(Fl]yS) AEOZV(Fq’S)

=V N A, v ®F 1|UYVY N Abe, 24 - X D)Ev) ®F 1
Ae0y(E,S) A€0y(F,,S)

U W( N Al 224 - X )E[v] ®F, 1]-
A€0n(E,S)

Therefore, by Hilbert’s Nullstellensatz, it follows that

 (Im(TrO>WES)y)e =( N A, X2>Fq[V]] N ( N Alo, 2 - Xv+1>Fq[V]]

Ae0x/(F,S) A€0x(F,,S)

n ( N A, 2zx - Xv+l>Fq[V]]in E[V].
Ac04(EpS)

By flat base change [4, p. 276], we deduce that the above equation is also held in F;[V], since each
x; is defined over F;. Hence, by Lemma 4.3, we see that
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\/Im(TrOZV(Fq.S)) = \/(Im(TrOZV(F,,,S»)e N E[V 025

=( N A, Xz)Fq[V]] N ( N A, 24 - Xv+1>Fq[V])

Ae0y/(F,S) Ae0x(F,,S)

n N A, 226 — X)) | N F[V]0>ES)
Ac02(EpS)

= 0a, X)gv) N 00, 26 = X D)Ev] N O, 22X = Xys1dgvy N B[V]0ES)

=hnhnj.
The third equation is satisfied because

[ N A, IZ>Fq[V]] N B[V1025S) = (1, L)g vy N F[V]02ES), (4.1)
A€0x(F,S)

Consider the embedded mapping ¢ : F;[V]°S) — E[V]. We have that the limit ideal (h, L)gv) N
Fy[V]°»S) is also a prime ideal in the ring of invariant E[V]°2(5), since (k, L)gv) is a prime ideal
in F[V]. Thus, Ji, /, and J; are prime ideals in E[V]°>%%). Consequently, Im(Tr%%9) = nhn J;
is a primary decomposition. O
Theorem 4.8. ht(Im(Tr0»9)) = ht(,/Im(Tr%%) ) = 2. And

O<chch Och<ch Ochch

are all prime ideal chains of height 2 (J; the same notations in Remark 4.6).

Proof. In Section 3, we know that the set E = {VA | A € 0,,(F,, S), |A| = p} cannot contain any 1-codimen-
sional invariant subspace. From Section 2, we have that there exist the 2-codimensional invariant sub-
spaces in set E. Then combining Lemma 4.3, it follows that

ht(Im(TrOZv(Fq’S))) = ht(JIm(TrOZv(Fq’S)) ) =2v-(v-2)=2.

By the proof of Theorem 4.7, it is obvious that (0) € J € J;, i =1,2,3 are all prime ideal chains

of height 2. O
5 Example
Suppose g = 3, v = 2 and consider the orthogonal group O,(Fs, S) over the field 5 with respect to the
10
symmetric matrix S = 10 0 11 We shall give the structures of the radical ideal /Im(Tr%"%) and
01

the prime ideal chains of the transfer ideal Im(Tr%%),
First, by Lemma 2.4, we have these orbits

o[x] = o[x] = {kx + ko + kg + kaxalkixg + kox, = 03,
o[x — 5] = {kpq + ko + kaxz + kuxylkg + kox, = -1},
O[—X1 - X3] = {k1X1 + k2X2 + k3X3 + k4X4|k1X3 + k2X4 = 1}.

Second, using MACAULAY, which is a kind of computer algebra systems, to compute the intersection of
the ideals in the orbit o[ (x, %)rv1], we have

2 2.2 2
L= (1 AQq, %)ev) = 66 + XX4, X4 — X5 + X5 — X))V
Ae0,(F3,5)



DE GRUYTER The transfer ideal under the action of orthogonal group in modular case = 417

The intersection of the ideals in the orbit o[ (X, X3 — X3)gv7] is
L= N Alo,n - x)
A€04(F5,5)
= (66 + XPG + X6 + X5X, — XXXy + XIXZ + XoX2, XiXo — XG5 + XDX0Xs + X3XG — XX
3.3 4 2 2 2 3 2 2 3 3
= X0X3 — X{ X4 — XiXp Xy — X{ XXy + XXXy + X X3Xy4 + X3Xy4 + XPX0X, — XoX3X, + XXy — X3X4>F3[V].
The intersection of the ideals in the orbit o[ (X, —x; — X3)g,v7] is
L= 1 A, -x-x)
A€04(F3,S)
= (66 — XPX5 + X065 + XGX4 + XXXGaXs — XXE + XoXi, XiXo — X6 — XX — X506 — XXX
3, .3 4 2 2 2 3 2 2 3 3
TX0X3 + X{ Xy + XXXy — Xy X3Xy + XXXy —XiX3Xy + X3X4 + XXXy, + X0X3Xy, — XX, — X3X4>F3[V]'
And
L= [ A
A€04(F3,5)
2 22 v 2\(v2 v\ (v2 _ v2
= x4 - )06 — X)06 - x3)06 — Xi)
Ca+X%+x6-x)0 + X% - x5+ X)00 — X + X5+ X)(=X + X + X5+ Xa))R[v]-

In [8], Chu found the polynomial invariants of 4-dimensional orthogonal group with the nondegenerate
quadratic form Q/ = x? - X3 + x§ — x;. By the variable substitution, x — —x +X3, % — -X — X3, 3 —
—X + X4, X4 — X + X4, We can obtain the polynomial invariants of O,(F3, S) with respect to the sym-
metric matrix S,

G1(Qu0, Qar, Quz, Qu3)  G2(Quo, Qur, Qo Qu3) ]

B[V = Bl Quo, Qu1y Qua, ,
Vi 3[ 10 b T F(Qas0, Qu1, Qs2) F(Q40, Qu1, Qu2)

where

Qa0 = X6 — XXy Qu1 = XD + X5 + X5X4 + X7,
Qi = X6 + X5 + x4 + %X7,  Quz = X6 + X3 + X3 x4 + ox2,
G1(Qu0, Qu1, Qua, Qu3) = Qu3Q3p — QuQ3y — (Qiy — Q4N(Qu1Qu2 — QuoQ3),
G2(Qs0, Qur, Quz, Qu3) = Q303 — Q4 - (Q4 - Q)%

F(Qu0, Qa1, Qu2) = (Q2Q30 — Qi) — (Q2 — Q)2

Then, using MACAULAY, we have
Jo =Io N BIV]%ES9) = (Qf + QioQi — Qat — QioQu2)pyyposs),

h=Ln F3[V]04(F3,S) = (Quo0, Qu1, Q42>F3[V]04(F3’S)’

G
J, =L n BV = <Qfo ~ Qu1, Qu0Q% — Quzy QuoQui— - —> )
F F F3[V]O“<F3‘5)

G
J; =L n B[V]%49 = <Qfo + Qu1, Qu0Q2 — Quz, QuoQui— — —> ,
F  F [pyparss

and by Theorem 4.6, we have

VIm(Tr%E9) = 1 n 0 J

G G G G
. <Q4OQz?1 - Qq, Qz?o + Qzﬁ, Q4z—1 - Qm—z, Qfon—l - Q40—2> .
F F F F [ prvposess

Moreover,
©Ochch Ochch Ochekh

are prime ideal chains of height 2.
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