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Abstract: In this paper, we introduce a new metric space called the mixed-norm Lebesgue space, which
allows its norm decay to zero with different rates as x∣ ∣ → ∞ in different spatial directions. Then we study
the well posedness for the system of magnetohydrodynamic equations in 3D mixed-norm Lebesgue spaces.
By using some fundamental analysis theories in mixed-norm Lebesgue space such as Young’s inequality,
time decaying of solutions for heat equations, and the boundedness of the Helmholtz-Leray projection,
we prove local well posedness and global well posedness of the solutions.
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1 Introduction

Unlike a usual Lebesgue space [1–3], the mixed-norm Lebesgue space allows its norm decay to zero with
different rates as x∣ ∣ → ∞ in different spatial directions [4]. On the basis of the mixed-norm Lebesgue space
feature, we investigate the following magnetohydrodynamic (MHD) equations in 3� [1]:
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where u, b, u0, and b0 satisfy

u x t b x t u bdiv , div , 0, div div 0,0 0( ) ( )= = = = (1.2)

S M
ReRm

2
= , Re 0> is the Reynolds number, Rm 0> is the magnetic Reynolds number, M is the Hartman

number. u : 0,3 3� �( )× +∞ → denote the velocity of the fluid, b : 0,3 3� �( )× +∞ → denote the mag-
netic field, and p p x t˜ ˜ , �( )= ∈ denote the pressure.

The main purpose of this paper is to study the well posedness of the solution for the equations (1.1) in
3D mixed-norm Lebesgue spaces. First, we review some of the relevant work of the MHD equations. If b 0= ,
then the equations (1.1) can be reduced to the incompressible Navier-Stokes equations:
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The mathematical theory of the Navier-Stokes equation has been much studied in recent years.
For example, Leray first introduced the weak solution [5], and later, Hopf gained the existence
of global weak solutions with u Hs N

0 �( )∈ [6], and Fujita and Kato demonstrated that the well posedness
of the Cauchy problem when u H N 2s N

0 �( )( )∈ ≥ [7]. In addition, there are many monographs that study
the Navier-Stokes equation, for example, Temam [8], Lions [9], and Constantin and Foias [10]. The mild
and self-similar solutions in 3� are obtained in references [11,12]. Especially, Jia and Šverák derived that
the homogeneous classical Cauchy problem with initial value has a global scale invariant solution, and
the solution is smooth in positive time [13].

For the MHD system, the coupling between u and b makes the situation more complicated. Because it
describes abundant natural phenomena, as well as physical importance and mathematical challenges, the
MHDsystemhasbecome the subject of the studybyphysicists andmathematicians.Duraut andLions derived
the globalweak solution and the local strong solution of the initial boundary value problemof equations (1.1)
and derived the existence of the global strong solution in the case of the small initial value [14]. Nevertheless,
it is still a challengingopenproblemwhether aunique local solutionof the exists globallywhen the initial value is
large.Furthermore,SermangeandTemamderived the regularityof theweaksolution u b L T H, 0, ; 1 3�( ) ([ ] ( ))∈

∞

[3]. Kozono derived the existence of classical solutions in bounded domainΩ 3�⊂ for equations (1.1) [15]. For the
appropriately weak solution, He and Xin gained different local regularity results [16]. Cao and Wu obtained the
global well posedness of theMHD system for any initial value in H2 2�( ), but it needs a condition ofmixed partial
dissipation and additional magnetic diffusion in 2� [2].

Since the coefficients in the equations have no critical influence on the subsequent analysis, we can
simply take SRe Rm 1= = = . Futhermore, we can obtain the following equations [1]:
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Then, (1.1) can be rewritten as follows:
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In 2D and 3D cases, Ai et al. applied the semi-Galerkin approximation method to obtain the existence of
weak solutions [1]. In 2D case, Ai et al. proved the global existence of strong solutions to (1.1), the con-
tinuous dependence of initial-boundary data, and the uniqueness of weak-strong solutions. On this basis,
they also proved the existence of a uniform attractor for (1.1). Inspired by [1,4], the main purpose of this
paper is to study the well posedness of the solution to (1.1) in 3D mixed-norm Lebesgue spaces. Specifically,
in Section 2, we state some mixed-norm legesgue spaces and related properties. In Section 3, we prove the
existence, uniqueness, and stability of the solution.

2 Preliminary

We define the 3D mixed-norm Lebesgue spaces as follows [4]:
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We state the following result on Young’s inequality in mixed-norm Lebesgue spaces [4].

Lemma 2.1. [4] Let p r,k k, and qk be given numbers in 1,[ ]+∞ that satisfy
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We state the following results on heat equations in mixed-norm Lebesgue spaces. First, we see the
Cauchy problem for the heat equations:
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We see that (2.2) can be written as follows:
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Next, we state the following fundamental results of the solution of the heat equation in the mixed-norm
Lebesgue space.
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The following consequence illustrates the boundedness of Helmholtz-Leray projection � in mixed-
norm Lebesgue spaces.
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Let p p p, , 1,1 2 3 ( )∈ ∞ . Then, one has

f N f ,L Lp p p p p p1 2 3
3

1 2 3
3� � �∥ ( )∥ ∥ ∥( ) ( )≤ (2.8)

for all f L p p p
3 3

1 2 3 �( ( ))∈ , where N N p p p, ,1 2 3( )= is a positive constant.

3 MHD equations in 3D mixed-norm Lebesgue space

We apply � on the system (1.3), and then (1.3) can be expressed as follows:
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The main results in the paper are as follows.
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By substituting the aforementioned formula into (3.11), we can obtain (3.9). Similarly, (3.10) can be proved
by (3.5). □

Lemma 3.3. [4] Let X be a Banach space with norm X‖⋅‖ . LetG X X X: × → be a bilinear map such that there
is N 00 > so that
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where N 01 > is a constant depending on p1, p2, p3, q1, q2, and q3.

Furthermore, according to Lemma 3.1, we know that when t 0→ , t e 0tσ1
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Now let’s prove that bilinear G χ χ χ: p q p q p q, , , , , ,× →
∞ ∞ ∞

is bounded.
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by using (3.16), we obtain that
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(3.21)

Similarly, by using (3.14) and (3.16), we obtain that
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From estimates (3.17), (3.19), and (3.21), we see that
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From the estimates (3.18), (3.20), and (3.22), we see that
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Now, we have to prove (ii). Similar to the proof of (3.12), we found thatU χp q1 , ,∈
∞
, χp q, ,∞

is continuous,

and when t 0→ , t U 01
δ1

2 →

−

, t D U 0x 1
1
2 → . There is a sufficiently small constant T 00 > depending on p1, p2,

p3, q1, q2, q3, and U0 such that
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Furthermore, similar to the proof of (3.15), we also found that the bilinear G: χ χ χp q T p q T p q T, , , , , ,0 0 0
× →

is bounded and
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Then, by Lemma 3.3, we can obtain a unique local time solution U χp q T, , 0
∈ of (3.2) with
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As in proof (i), we can gain U p T, 0�∈ and
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