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Abstract: In this paper, we introduce a new metric space called the mixed-norm Lebesgue space, which
allows its norm decay to zero with different rates as [x]| — oo in different spatial directions. Then we study
the well posedness for the system of magnetohydrodynamic equations in 3D mixed-norm Lebesgue spaces.
By using some fundamental analysis theories in mixed-norm Lebesgue space such as Young’s inequality,
time decaying of solutions for heat equations, and the boundedness of the Helmholtz-Leray projection,
we prove local well posedness and global well posedness of the solutions.
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1 Introduction

Unlike a usual Lebesgue space [1-3], the mixed-norm Lebesgue space allows its norm decay to zero with
different rates as |x| — oo in different spatial directions [4]. On the basis of the mixed-norm Lebesgue space
feature, we investigate the following magnetohydrodynamic (MHD) equations in R> [1]:

atu—RiAuw-Vu—S(va)xbWﬁ:o, in R x (0, +00),
e

b -Vxuxb)+ év x (Vxb)=0, in R3 x (0, +00), (1.1)
u(x, 0) = up(x), b(x, 0) = bo(x), in R3,
where u, b, ugy, and by satisfy
div u(x, t) = div b(x, t) = 0, div uy = div by = 0, (1.2)

s=_r
~ ReRm’
number. u : R3 x (0, +00) — R3 denote the velocity of the fluid, b : R3 x (0, +0co) — R3? denote the mag-

Re > 0 is the Reynolds number, Rm > 0 is the magnetic Reynolds number, M is the Hartman

netic field, and p = p(x, t) € R denote the pressure.

The main purpose of this paper is to study the well posedness of the solution for the equations (1.1) in
3D mixed-norm Lebesgue spaces. First, we review some of the relevant work of the MHD equations. Ifb = 0,
then the equations (1.1) can be reduced to the incompressible Navier-Stokes equations:
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U — RiAu +Uu-Vu+Vp =0, in R3x (0, +00),
e
u(x, 0) = up(x), in R3,

The mathematical theory of the Navier-Stokes equation has been much studied in recent years.
For example, Leray first introduced the weak solution [5], and later, Hopf gained the existence
of global weak solutions with uy € H(RY) [6], and Fujita and Kato demonstrated that the well posedness
of the Cauchy problem when ug € HS(RN)(N > 2) [7]. In addition, there are many monographs that study
the Navier-Stokes equation, for example, Temam [8], Lions [9], and Constantin and Foias [10]. The mild
and self-similar solutions in R3 are obtained in references [11,12]. Especially, Jia and Sverak derived that
the homogeneous classical Cauchy problem with initial value has a global scale invariant solution, and
the solution is smooth in positive time [13].

For the MHD system, the coupling between u and b makes the situation more complicated. Because it
describes abundant natural phenomena, as well as physical importance and mathematical challenges, the
MHD system has become the subject of the study by physicists and mathematicians. Duraut and Lions derived
the global weak solution and the local strong solution of the initial boundary value problem of equations (1.1)
and derived the existence of the global strong solution in the case of the small initial value [14]. Nevertheless,
itis still a challenging open problem whether a unique local solution of the exists globally when the initial value is
large. Furthermore, Sermange and Temam derived the regularity of the weak solution (u, b) € L*([0, T]; H'(R3))
[3]. Kozono derived the existence of classical solutions in bounded domain Q ¢ R3 for equations (1.1) [15]. For the
appropriately weak solution, He and Xin gained different local regularity results [16]. Cao and Wu obtained the
global well posedness of the MHD system for any initial value in H2(R?), but it needs a condition of mixed partial
dissipation and additional magnetic diffusion in R? [2].

Since the coefficients in the equations have no critical influence on the subsequent analysis, we can
simply take Re = Rm = S = 1. Futhermore, we can obtain the following equations [1]:

(Vxb)yxb=(b-V)b-b-(Vbh),
VxVxb =vdiv b - Ab,
Vxxb)=(b-Vu-(u-V)b+udivb - b div u.
Then, (1.1) can be rewritten as follows:
o — Au+ (u-V)u — (b -V)b + b (Vb) + VP, in R3 x (0, +00),
ob —Ab + (u-V)b - (b -V)u=0, in R3 x (0, +00), (1.3)
u(X7 O) = uO(X)s b(X’ O) = bO(X)’ in [R3'

In 2D and 3D cases, Ai et al. applied the semi-Galerkin approximation method to obtain the existence of
weak solutions [1]. In 2D case, Ai et al. proved the global existence of strong solutions to (1.1), the con-
tinuous dependence of initial-boundary data, and the uniqueness of weak-strong solutions. On this basis,
they also proved the existence of a uniform attractor for (1.1). Inspired by [1,4], the main purpose of this
paper is to study the well posedness of the solution to (1.1) in 3D mixed-norm Lebesgue spaces. Specifically,

in Section 2, we state some mixed-norm legesgue spaces and related properties. In Section 3, we prove the
existence, uniqueness, and stability of the solution.

2 Preliminary

We define the 3D mixed-norm Lebesgue spaces as follows [4]:
o D2
LpppsR) =1 | f: R >R, fllL,,,,®) = J- I(J‘lflpldﬁ) do| dg| <+oof,

where py, p,, p3 € [1, +00).
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Let PL,, p,p,(R3) as follows:
PL . p,ps(R?) = {f € Lp p,p,(R?) : div f = 0}.

All the spaces that appear in this paper are invariant with respect to the scaling f(-) —» Af(A-), A > 0.
The mixed-norm space Ly, ,,p,(R%) is invariant if and only if i + i + i =1 [4]. For given T € (0, o],

S+ 4 =10+ 2+ =6€(0,1),p €(1,+00), gk € (pi, +00), k =1,2,3,and f : R® x [0, 00) — R?
n b2 p3 qQ 9 a3

denote the measurable vector field functions, we denote X, 4 r as follows [4]:
XpoT = { Frgint) = t2f00 ), &0, t) =D fx,t), (x,t) € R3x (0, T)},
then
g € C([0, T], PLyg,R?), & € C([0, T, PLy,p,p,(R?)).
Moreover, g(x, 0) = 0, §(x, 0) = 0, and the norm

Myq.7 = SUP TBC Ol + 181 0] < +00-

We denote Y, r as follows [4]:
Yy ={F: £ C(10, T1, PLypp,(RD), D f € C([0, T1, PLy,ppRY)
and the norm

sy = SUD IOl + €2 IS Ol 5] < 400
€(0,

We state the following result on Young’s inequality in mixed-norm Lebesgue spaces [4].

Lemma 2.1. [4] Let py, Ik, and gy be given numbers in [1, +oo] that satisfy

i+1:i+l, k=1,2,3.

Dk ax Tk
Then,
I * &lle, % = Wl ) 1811 @.1)
for all f € Lgg,q,(R?) and g € Ly, (R3).
We state the following results on heat equations in mixed-norm Lebesgue spaces. First, we see the
Cauchy problem for the heat equations:

u; — Au =0, in R3 x (0, +00),
b — Ab =0, in R3 x (0, +00), (2.2)
u(X’ O) = uO(X)’ b(X7 0) = bO(X)y in RB-

We see that (2.2) can be written as follows:

U - AU =0, in R3 x (0, +00), 2.3)
U(X’ O) = UO(X)’ in [RB’ '
u
where U = (Z), Up = ( bo). It is well known that a solution of (2.3) is
0
U(X’ t) = eAtUO(X) = (Gt*UO)(X’ t)’ (X’ t) € [R3 X (O’ +OO)’ (2-4)

where

1

Ix?
=———ea, ((x,t)eR3x(0,+00).
(4mt)2 “ 0 (0, +c0)

Ge(x)
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Next, we state the following fundamental results of the solution of the heat equation in the mixed-norm
Lebesgue space.

Lemma 2.2. [4] Let1 < py < g < +00. There exists a positive constant N depending only on py, b2, P3, 41, G2,
and gz such that for every solution U(x, t) = eMUy(x) defined in (2.4) of the Cauchy problem (2.3) with
Up € Lgyg,0,(R?), then fort > 0

_; kzz:l(qlk_plk) (2.5)

UG, t)lle1pzp3(R3) < Nt ||UO“L1114243(R3)’

,l,lni 1_1
2.6
DG, O,y < NEEE W oo (2:6)

w

Lemma 2.3. [4] Let p1, p,, p5 € (1, 00), and Uy € Ly, p,,,(R?). Let U(x, t) = e Uy(x) be the solution of the heat
equation (2.3) defined in (2.4). Then, U € C([0, 00), Ly, p,p,(R%)) and

tlirg*r UG, t) - UOIlLP1P2P3([R3) = 0. (2.7)

The following consequence illustrates the boundedness of Helmholtz-Leray projection P in mixed-
norm Lebesgue spaces.

Lemma 2.4. [4] Let P = Id — VA''V- be the Helmholtz-Leray projection onto the divergence-free vector fields.
Let p1, p2, p3 € (1, o). Then, one has

IP(OIL,, s < N fllL, @ (2.8)

for all f € (Lp,p,p,(R»)?, where N = N(p, p,, p3) is a positive constant.

3 MHD equations in 3D mixed-norm Lebesgue space

We apply P on the system (1.3), and then (1.3) can be expressed as follows:

{Ut + AU+ F(U,U) =0, in R3 x (0, +00), 3.1)

U(X’ O) = UO(X)’ in [RB;

as PVp = 0, where

_(u _(Uo _(-PA O
U_(b)’ U"_(bo)’ y(_(0 —[PA)’

F(U, U) = P -V)u —P(b-V)b +Pb -(Vh) .
P -V)b —P(b-V)u
By the Duhamel’s principle, the system (3.1) can be transformed into the following integral equations:
U=U, + GWU,VU), (3.2
where
At
U, = eiﬂ[Uo(X) = € uO(X)
eAtbo(X)

and

t
G, U) = - J‘e*(HV‘F(U, U)ds (3.3)
0
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t
-Ieﬂ-s)A(P(u V)u - P(b-V)b + Pb (Vh))ds

0
t

—Ieafs)ﬂ(u)(u V)b - P(b -V)u)ds
0

The main results in the paper are as follows.

Theorem 3.1. Let py € (1, +00), gk € [pk, +00), k =1, 2, 3, and
oyt Lyl sc0,).
b1 p2 D3 @1 T G

Then, there are a sufficiently small constant Ay > 0 and a number N > 0, depending on p1, p», D3, 1, 42, and
q3, such that the following results hold.
(i) ForallUy € Ly, p,p,(R?) withdiv Uy = 0, if || Up|| Lyipops®?) < Ao, then (3.1) has an unique global time solution

U € Xp,g,00 N Yp,oo With

Uy, , .. < N lWollz,, &>

101y, <NIWollg,,,,,®» + I1oll? ).

3
pip2psR7)

(i) For allU, € Lplpzm([R3) with div Uy = 0, there is a sufficiently small Ty > O depending on p1, P2, P3, @1, @25
and gz such that (3.1) has an unique local time solution U € X, 4 1, N Yy, 1, with

10l gz, < N 1ol 0

2
101y, r, < N(IUoll 0 + N0 )

To prove Theorem 3.1, we need the following lemmas.

Lemma 3.1. [4] Let p1, P2, D3, 91> @2, and gz be given numbers and 1 < py < qx < 0. Also, let 0 > 0 be defined
byo =53 - 2)

)23 qk
(i) There exists a number N depending only on pi1, p>, b3, 1, §», and qz such that
e Pl g0 ® < Nt_%|lf||Lp1P2p3(uz3), G.4)
IDe Pl < NECEOUfl, g, (3.5)

for all f € Ly, p,p,(R3).
(it) For all f € Ly, ,,p,(R?3, the following assertions hold: if o > 0, then

0 1S || oAt -

Jim ¢ lle Pl w0 = O 3:6)
tlif(l)l Ile*Pf] - Pfllg, &% = O, (3.7)
thlgl* ti%(lﬂj) ”DXeiﬂthfHLquB([Rg) = 0. (38)

Lemma 3.2. Let py € (1, 00), ax, By, ¥ € (0, 1] be given numbers satisfying y, < ax + B, < px, k=1, 2, 3. Let

;A
a=—"L4+ 242

_a e b hhioBoyBo () H H
b P2 D2 b P2 D2 b P2 D2
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Then,
”G(U’ U)"LEQQ(RS)

V1¥273

t

B-y
= Nj(t —-S) 2 ("u”LszP}([R3)||DXu||Lp1P2P3(R3) + 2”b”mezn3([R3)”Dxb”mezps(W) (3.9)
5 w3 BBy CrorE B2 By .
+ Ul p, py p3®3 IDP Ly py 133 + ||b"Lplp2p;(R3)||Dxu”Lp1pzp3([R3))dS’

a1a2 03 B1B2 B3 apag a3 Bi1B2 B3

"DXG(U’ U) ”LP1 R

< NI(t—

Y1v273
+ ||u||Lp1pzp3(R3)||DXb||Lp1pzp3(R3) + ||b||Lp1sz3(R3)IIDXu||Lp1sz3(R3) ds,
apazaz B1B2 B3 apa a3 B1B2 B3

(|u||Lp1pzp3([R )IIDXulle1pzp3(R3) + 2||b||Lp1pzp3([R )”D bllLD1P2P3([R ) (3.10)

apag az B1B2 B3 e a3 BB B3

where N > 0 is a constant depending on py, &, By, Vio k =1, 2, 3.

Proof. We first prove (3.9) in Lemma 3.2. For y; < ax + B, < px, we can gain

—(
Pi, _Pe Z(k+ﬁk_ﬁ):a+ﬁ_y.
Yo atB o\ Dx Dk

By (3.4), we can obtain

a+p-
”G(U’ U)llLﬂﬂﬁ(R3) < NJ‘ (t - S)_ 2 y”Fl(U’ U)”L 1 P ([R3)ds’ (3-11)

1v273 ar+By ax+p; a3+py3

where F(U, U) = ((u V)u—-(b-V)b +b (Vb))

(u V)b - (b -V)u
By using Holder’s inequality repeatedly, we can find that

ll(u v)b"L n p s (R

ar+fy ax+fp az+p3

_ (a3+p3)
_ p3(a+f;) P3
n pa(a+fy) p2(az+B3)
- j I“m .(Vb)|m+l31dx1]pl(a2+ﬁ 2 1 dxs
: (a3+p3)
_ e p3(aa+f,y) P3
By JarsBy) pa(az+B3)
< j I (Jlulaldxl) Uw b|ﬁ1dx1) dx dx
_ i , s (azlgﬁs)
S e [
< j j [I|u|a1dx1 e g I[IlebVﬂdxl]plﬁzdxz dx,
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5 b
a3 p3b; b3
b3y

Doy s P2py pab;

L o o P
I j[jlulaldxl dXz dX3 I j J-leblﬁldX1 dX2 dX3

= ”u”Lm p2p3(R%) ”Dxanm r®RY-
apaz a3 B1B2 B3

IN

Then,

I1FU, U, n n o ®R)

ag+py az+By a3+py3

< Q@ -Vyul + [(b -V)b| + b (VD) + [(u-V)bl + |(B-VIUllL p, 5, » ®

ar+By ax+p; a3+py3

< ”(u 'v)u“L n pm p R)T ”(b 'V)b”L n m o R

ar+By a+B; a3+By3 ar+py ax+By a3+py3
+ ”b (Vb)”L n m o ®R)T ”(u V)b“L n o p ®R)T ”(b 'v)u”L n 1 R
ar+py az+By a3+By3 ar+By az+By a3+By3 a+By a2+By az+pi3

< Nl py s @3 IDxU Ly, py s + 2 b”LPl p2p3(R?) "Dxb"Lm p2p3R%)
apa a3 B1B2 B3 e a3 B1B2 B3

+ ||u||Lp1pzp3([R3) "DXb||Lp1pzp3(R3) + "b"mezpz([R3) ||DXu||Lp1sz3(R3)'
wayay P1B2B3 qaya3 B1B2 B3

By substituting the aforementioned formula into (3.11), we can obtain (3.9). Similarly, (3.10) can be proved
by (3.5). O
Lemma 3.3. [4] Let X be a Banach space with norm|-||x. Let G : X x X — X be a bilinear map such that there
is Ny > O so that

IGU, x < NollUllxIVllx, YU,V eX.
Then, for all U, € X with 4Ny|Uillx < 1, the equation

U=U + GU,U)

has an unique solution U with

IUlx < 2| Thllx.

Proof of Theorem 3.1. We now prove (i). First, we start from the proof that U € Xp,q,00- FrOm Lemma 2.2 and

_yn=3f1 1) _

o= Zk:l(ﬁ - E) =1- 4, we have
18

101l 00,3 < Nit™ 2 W WollL, 5, . R »

_1
IDxUAlL %) < Nit 20 Uollz, ) )5

where N; > 0 is a constant depending on py, pa, P3, ¢1, g2, and gs.
Furthermore, according to Lemma 3.1, we know that when t — 0, e AP - 0, and when t = 0,
t-2°U, = 0. Hence,

t= e P : Ly, p,ps(R) — PLyg,,(R3)
is uniformly bounded. Similarly, when ¢ — 0, t3 ,.e~"P — 0, and when t = 0, t‘liUl = 0. Hence,
72Dy MP 2 Ly, p,p(RD — PLy p,pi(R3)
is also uniformly bounded. Hence, we have U, € Xp.q.00 and
1Uilly, .. <NulTollL,, @3- (3.12)

Now let’s prove that bilinear G : X, ; , X Xp,g.c0 = Xp,g,00 1S bOUnded.
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Let § =1, Yk—ak——e(O 1], weobtaln—_qk,

- 1231 1
_m___ (ak &_ﬁ):__z(_+___):__z( )
2 Pk Px Pk 2. 5\a P 4k 2,5\ b
By usmg—+—+i 1,—+—+——6€(O 1), (3.9) and the definition of X, 4 r, and applying (3.3),
P P2 p3 Q1 q2

we can obtain

1
16U, DIz, g, < Nj(t = s)2(lully, . @> I1IDxullL, &% + 20l . @) IDPIL, , &>
0
+ ulle, @ IDPIIL, w2 + 1PN, @3 IDxtll,, , . 3)dS

_1f 1-6 1 _1-6 1
<N [ 93 (" Ml " 1D, 0555

1-6 1 16 1 1-6 1
+ 25 2 1Bl 0, w2y S2 1Dsbllz,pwyS™ 2872 + 82 Ul 0, )52

15 1 1-6 1 15 1
||Dxb||Lp1pzp3(R3)S 252482 ”b”LQIQZ%([R})SZ ||Dxu||Lp1pzp3(R3)s S 2)ds

2 2 1 1.6
SN, + 1B + 2uly,,  bly,, ) [ ¢ - syis s,

and
t 2 ¢
I(t —s)yistids = I(l‘ — 5)2s71*0ds + I(t — s)is1*3ds
0 0 £
5 t
‘l ’ 1+—
2 e () oo
t
2
A )
2 2
< Nt 7.
So, we have
IGU, U)lIL, w3 < Nt-%(llullim +2|IbIi .+ 2lully,, by, - (3.13)

Similarly, let B, =y, = 1, ax = % € (0,1], and % = G,
k

n=3 n=3 n=3
_M:_ll+z(ﬂ+&_ﬁ):_11+Z(i+i_i)__ll+ 1) 1+9
2 2 i\Pk D Dk 2 o\  Px Dk 2 o1 2
1

By using ~ + — + — =1, —
b1 b2 b3 > @

n qi qi =6 € (0, 1), and (3.10), we also obtain

1DxG(U, U)||Lp1p2p3(uz3)

IN

146
N I(t - (”u"quqzqs([R )”Dxu”mezpa([R )+ 2"b"quqzqa('R Pl b”mezm([R )

+ ||u||quqzq3([R3)||Dxb||Lp1p2p3([R3) + ||b||quqzq3([R3)||Dxu||Lp1,,2,,3([R3))dS

1+6

NG, + BB, + 2y, Wl [ (€~ 9)¥'sias,

IN
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and
t
I(t - S)_#s‘“gds
0
t
2 t
= I(t —5)s1*5ds + I(t —s) s +ids
0 t
2
5 t
IREL -148
() fovsse () oo
2 2
0 t
2
() )G
2 2 2 2
< Nt
So, we have
DG, U0 < NI, + 21BIG,  + 2y, bl ). (.14

From the estimates (3.13), (3.14), and Lemma 3.1, we can prove that tgG(U, U):[0,00) > [I’quqzq3(R3)
is continuous and when t — 0, tIEEG(U , U) — 0. Similarly, we can also prove that t:D,G(U, U) : [0, c0) —
PLy, p,p,(R) is continuous and whent — 0, t2D,G(U, U) — 0. Therefore, we obtain G(U, U) ¢ Xp,q,00 and for
allU € X,, 4 oot

IGU, U)Xy, g,00 < N(llullip!m +2 ||b||f(pyq’m + 2lully, bl , )
< NIUl,, 10l . (3.15)
2
< NZ ”U”)(p‘q’my VU € Xp,q,oo’

where N is a constant depending on py, p, ps, 41, g2, and gs. That is, the bilinear G : x,, , ., X X400 = Xp.g,00
is bounded.
Next, let us choose a sufficiently small constant Ay so that

4NN>Ag < 1,
where N, is defined in (3.12) and N, is defined in (3.15). If || Uy|| Lo ®) S Ao, then it can be obtained by (3.12)
4N\ Uilly,, .0 < 4NiN2 ([ TollL, %) < 4NiNAAG < 1.
By this and Lemma 3.3, we can gain a unique time solution U € y, . , of (3.2) such that
Uy, ,. <2Ully,,. < 2N Gollr, .- (3.16)
Now, we need to prove thatU € Y, .. AsU = U; + G(U, U), we have
10, &% < UilL,,,,.®>» + IGU, DL, , &> (3.17)

||DxU||Lp1p2,,3([R3) < ||DxU1||Lp1pzp3([R3) + [DxG(U, U)||Lm2p3(uz3)- (3.18)

Then, by Lemma 3.1, we see that

NUillL,, i < NIWollL, R (3.19)
1
IDxUAllL,, &> < Nt2Uollz,, &2 (3.20)

— — _ Pk ﬂ:
Let B =y =1, a = a © (0, 1], and = P



232 — Yongfang Liu and Chaosheng Zhu DE GRUYTER

ﬁzz(_ﬁ_y_)zz(iii)zz(i)é
2 2 5\bx Dk Dx 2. 2\a px P 2,2\ ak 2

By using (3.9), we can infer that

IGCU, DL, ,,,,®%
t
8
N '[(t - s)2(llully, .. @ I1Dxullr, . ,.®» + 20PlL, . &% IDxbllL,, . @
0
+ ulle, 0@ IDPIIL, w2 + 1PIL,, @3 IDxtll,, , . ®3)ds

IN

N

t
N(lulB +BIZ  + 2l lIbl, . )| (¢ - s)2s2ds
- Xp,q,00 Xp,g,c0 Xp.g.00 Xp,q,00 .
0
Since

t % t
I(t —s)is+ids = I(t —s)os1+ids + j(t —s)os1+ids
0 0 t

by using (3.16), we obtain that

16U, Ul » < NQllully |+ 2101bIG  + 2luly,, (bl )

<N|UIR < NI|UlP G20
- Xp.g.0 ~ 0 Lpypyps®))”
Similarly, by using (3.14) and (3.16), we obtain that
_1 2 2
IDGW, Dy, &> < NI+ 21BIE o+ 2uly,, 1Bl ) .

< Nt ||U||§(p’m < Nt ||U0||§p

1ars®R)
From estimates (3.17), (3.19), and (3.21), we see that

2
I U||Lp1pzp3(R3) < N(l U0||Lp1pzp3([R3) + UOHLplpzps([R}))'

From the estimates (3.18), (3.20), and (3.22), we see that

1
-1 2
1DVl < NEHUUolp 0 + 10O )

It is known that || U0||L,,lp2p3(uz3) is sufficiently small, we can gain

1015, . < NoCIUol 00 + NUBIE o).

pars®)

Now, we have to prove (ii). Similar to the proof of (3.12), we found that U; € Xp.q.000 Xp.q,00 IS CONtinUOUS,

and when t — 0, t’U, — 0, t:D,U; — 0. There is a sufficiently small constant Ty > 0 depending on p;, p,
D3, ¢1> 42, G3, and Uy such that

1Tilly, , , < Ao-
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Furthermore, similar to the proof of (3.15), we also found that the bilinear G: X, , . X X,.0.1 = Xp.q.7
is bounded and

IGCU, Wlly, ., < NIUly, 10l 700 YU € Xpg 15
Then, by Lemma 3.3, we can obtain a unique local time solution U ¢ Xp.0.7 of (3.2) with
Uy, .7, < 2N1 1WollL,, 0% -
As in proof (i), we can gain U € Y, 7, and

2
U1z, < NGl ) + 001 ). O
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