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Abstract: In this article, we take into account the stochastic Kuramoto-Sivashinsky equation forced by
multiplicative noise in the Itô sense. To obtain the exact stochastic solutions of the stochastic Kuramoto-
Sivashinsky equation, we apply the ′G

G
-expansion method. Furthermore, we extend some previous results

where this equation has not been previously studied in the presence of multiplicative noise. Also, we show
the influence of multiplicative noise on the analytical solutions of the stochastic Kuramoto-Sivashinsky
equation.
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1 Introduction

Nonlinear partial differential equations (NLPDEs) are applied to describe a wide range of phenomena in
biology, fluid mechanics, chemical physics, chemical kinematics, solid-state physics, optical fibers, plasma
physics, geochemistry, and a lot of other fields. The research of analytical solutions for NLPDEs is important
in the investigation of nonlinear physical phenomena. Throughout the past several decades, the discovery
of new phenomena has been aided by new exact solutions. Thus, the seeking of exact solutions to those
equations of NLPDEs has long been a feature of mathematics and science. To obtain exact solutions
of NLPDEs, a variety of effective techniques have been applied, for instance, the Exp-function method

[1,2], the( )
′G

G -expansion method [3,4], the tanh–sech method [5,6], the improved tanh-function method [7],
the ( ( ))−φ ηexp -expansion method [8], the perturbation method [9–12], the extended tanh method [13,14],
the sine-cosine method [15,16], the Adomian decomposition method [17–20].
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Until the 1950s, deterministic models of differential equations were commonly used to describe the
dynamics of the system in implementations. However, it is evident that the phenomena that exist in today’s
world are not always deterministic.

Noise has now been shown to be important in many phenomena, also called randomness or fluctua-
tions. Therefore, random effects have become significant when modeling different physical phenomena that
take place in oceanography, physics, biology, meteorology, environmental sciences, and so on. Equations
that consider random fluctuations in time are referred to as stochastic differential equations.

Here, we treat the stochastic Kuramoto-Sivashinsky (SKS) equation in one dimension with multiplica-
tive noise in the Itô sense as follows:

[ ]+ ∂ + ∂ + ∂ =u αu u p u q u t σu βd d d ,x x x
2 4 (1)

where α, p, and q are nonzero real constants, σ is a noise strength, and ( )β t is the standard Wiener process
and it depends only on t.

The Kuramoto-Sivashinsky (KS) equation (1) with =σ 0 was first proposed in the mid-1970s. Kuramoto
was the first to derive the equations for the Belousov-Zabotinskii reaction using reaction-diffusion equa-
tions. Also, Sivashinsky used it to describe tiny thermal diffusive instabilities in laminar flamence Poiseuille
flow of a film layer on an inclined surface in higher space dimensions. It may also be used to represent
Benard convection in an elongated box in one space dimension, and it can be utilized to illustrate long
waves at the interface between two viscous fluids and unstable drift waves in plasmas. The KS equation can
be applied to control surface roughness in the growth of thin solid films by sputtering, step dynamics in
epitaxy, amorphous film formation, and population dynamics models [21–25].

The deterministic Kuramoto-Sivashinsky equation (1) (i.e., =σ 0) has been studied by a number of
authors to attain its exact solutions by different methods such as the modified tanh–coth method [26], the
tanh method and the extended tanh method [27], homotopy analysis method [28], the truncated expansion

method [29], the( )
′G

G -expansion [30], the polynomial expansion method [31–34], the perturbation method

[35], the Painlevé expansions methods [36]. However, the analytical stochastic solutions of the stochastic
Kuramoto-Sivashinsky have never been obtained till this moment.

Our motivation of this article is to obtain the analytical stochastic solutions of the SKS (1) with multi-
plicative noise by using the ( )

′G
G -expansion method. The results introduced here extend earlier studies,

for instance, those reported in [27]. Also, we address the effects of multiplicative noise on these solutions.
The format of this paper is as follows: In Section 2, we obtain the wave equation for SKS equation (1),

while in Section 3, we have the exact stochastic solutions of the SKS (1) by applying the ( )
′G

G -expansion
method. In Section 4, we show several graphical representations to demonstrate the effect of multiplicative
noise on the obtained solutions of SKS. Finally, the conclusions of this paper are shown.

2 Wave equation for SKS equation

To obtain the wave equation for SKS equation (1), we use the following wave transformation:

( ) ( ) ( ( ) )
= = −

−u x t φ η e η x ct, , ,σβ t σ t1
2

2 (2)

where c is the wave speed and φ is the deterministic function. Substituting equation (2) into equation (1)
and using
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where + σ φ1
2

2 is the Itô correction term, we obtain

( ( ) )
− ′ + ′ + ″ + ⁗ =

−cφ αφφ e pφ qφ 0.σβ t σ t1
2

2 (4)

Taking expectation on both sides and considering that φ is the deterministic function, we have

�( )( )
− ′ + ′ + ″ + ⁗ =

−cφ αφφ e e pφ qφ 0,σ t σβ t1
2

2 (5)

Since ( )β t is the standard Gaussian random variable, then for any real constant γ, we have �( )( )
=e eγβ t tγ2

2 .
Now equation (5) has the form

− ′ + ′ + ″ + ⁗ =cφ αφφ pφ qφ 0, (6)

Integrating equation (6) once in terms of η yields

‴ + ′ + − =qφ pφ α φ cφ
2

0,2 (7)

where we put the constant of integration equal zero.

3 The stochastic exact solutions of SKS equation

In this section, we use the ′G
G
-expansion method [3] to find the solutions of equation (7). As a result, we have

the exact stochastic solutions of the SKS (1). First, we assume that the solution of equation (7) has the form:

⎡

⎣⎢
⎤

⎦⎥
∑= ℏ

′

=

φ G
G

,
k

M

k

k

0

(8)

where ℏ ℏ … ℏ, , , M0 1 are uncertain constants that must be calculated later, and G solves

″ + ′ + =G λG μG 0, (9)

where λ μ, are unknown constants. Let us now calculate the parameter M by balancing φ2 with ‴φ in
equation (7) as follows:

= +M M2 3,

and hence,

=M 3. (10)

From (10), we can rewrite equation (8) as follows:

⎡
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′
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.0 1 2

2

3

3
(11)

Substituting equation (11) into equation (7) and using equation (9) , we obtain a polynomial with degree 6 of
′G

G
as follows:
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(
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Assuming coefficient of ⎡
⎣

⎤
⎦

′G
G

i
( =i 0, 1, 2, 3, 4, 5, 6) to zero, we obtain a system of algebraic equations.

Solving this system by using Maple, we obtain two cases:
First case:

ℏ = ±

−

ℏ = ℏ = ℏ =

= ±

−

= = <

p
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p
q

p
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q
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(12)

In this situation, the solution of equation (7) is

( ) ⎡
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Solving equation (9) with = =λ μ0, p
q76 if < 0p

q , we obtain
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,1 2 (14)

where c1 and c1 are arbitrary constants. Substituting equation (14) into equation (13), we have
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Hence, the exact stochastic solution in this case of the SKS (1), by using (2), has the following form:
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(15)

where = ±
−c p p

q
30
19 19

and < 0p
q .
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Second case:

ℏ = ± ℏ =

−

ℏ = ℏ =

= ± = =

−
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In this situation, the solution of equation (7) is expressed as follows:
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Solving equation (9) with =λ 0, =
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11
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q , we obtain
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Substituting equation (14) into equation (13), we have
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Therefore, by using (2), the exact stochastic solution in this case of the SKS (1) has the following form:
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where = ±c p p
q

30
19

11
19

and > 0p
q .

Special cases:
Case 1: If we choose = =c c 1,1 2 then equations (15) and (19) become
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p
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where = ±c p p
q

30
19

11
19

and > 0.p
q

Case 2: If we choose =c 11 and = −c 1,2 then equations (15) and (19) become

⎜ ⎟
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⎠
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where = ±
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⎠
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p
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p
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2

3
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1
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where = ±c p p
q

30
19

11
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and > 0p
q .

Remark 1. If we put =σ 0 (i.e., equation (1) without noise) in equations (20)–(23), then we obtain the same
results stated in [27].

4 The influence of noise on SKS solutions

Here, we discuss the influence of multiplicative noise on the exact solutions of the SKS equation (1). Fix the
parameters = = =α p q 1. We present a number of simulations for different values of σ (noise intensity).
We utilize the MATLAB package to simulate our figures as follows:

In Figure 1, we can see that there is a kink solution, which indicates that the solution is not planar when
=σ 0. But in Figure 2, when the noise appears and the intensity of the noise increases, we find that the

surface becomes much more planar after small transit patterns. This means that the multiplicative noise
affects and stabilizes the solutions.

Figure 1: Graph of solution u2 in equation (21) with σ 0= .
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5 Conclusion

In this paper, we presented a large variety of exact stochastic solutions of the Kuramoto-Sivashinsky
equation (1) forced by multiplicative noise. Moreover, several results were extended such as those described
in [27]. These types of solutions can be utilized to explain a variety of fascinating and complex physical
phenomena. Finally, we used the MATLAB program to generate some graphical representations to show the

Figure 2: Graph of solution u2 in equation (21) with σ 0.1, 0.3, 0.5, 1, 2, 3= .
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impact of multiplicative noise on the solutions of the SKS (1). In the future work, we can consider the
multiplicative noise with more dimensions or we can take this equation with additive noise.
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