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Abstract: Following the results of our recently published book [F. Lev, Finite Mathematics as the Foundation
of Classical Mathematics and Quantum Theory. With Applications to Gravity and Particle Theory, Springer,
2020, ISBN 978-3-030-61101-9], we discuss different aspects of classical and finite mathematics and explain
why finite mathematics based on a finite ring of characteristic p is more general (fundamental) than
classical mathematics: the former does not have foundational problems, and the latter is a special degen-
erate case of the former in the formal limit p — co. In particular, quantum theory based on a finite ring of
characteristic p is more general than standard quantum theory because the latter is a special degenerate
case of the former in the formal limit p — oo.
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1 Problem statement

The title of the famous Wigner’s paper [1] is: “The unreasonable effectiveness of mathematics in the natural
sciences,” and the paper is concluded as follows:

The miracle of the appropriateness of the language of mathematics for the formulation of the laws of physics is a wonderful
gift which we neither understand nor deserve. We should be grateful for it and hope that it will remain valid in future
research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to our bafflement, to wide
branches of learning.

In view of these remarks, a problem arises whether there exists an approach to mathematics, which can be
treated as more adequate than other approaches. Probably, the most common approaches are Hilbert’s
approach and the approach from the point of view of physics.

In Hilbert’s approach, it is not posed a question whether mathematics should correctly describe nature.
The goal of the approach is to find a complete and consistent set of axioms, which will make it possible to
conclude whether any mathematical statement is true or false. This problem is also formulated as the
Entscheidungs problem, which asks for algorithms that consider statements and answers “Yes” or “No”
according to whether the statements are universally valid, i.e., valid in every structure satisfying the
axioms.

In mathematical logic, one can pose a problem what kind of mathematics is more general (funda-
mental). However, since in Hilbert’s approach, mathematics is treated as an abstract science, one cannot
pose a problem what kind of mathematics is more adequate for applications. By definition, classical
mathematics involves infinitesimals and limits while finite mathematics involves only a finite number of
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numbers. Those kinds of mathematics considerably differ from each other, but, in Hilbert’s approach,
the problem which mathematics is more adequate for applications does not arise.

In the framework of Hilbert’s approach, the problem of the foundation of mathematics is very difficult.
This problem has been considered by many great mathematicians. Gddel’s incompleteness theorems state
that mathematics involving standard arithmetic of natural numbers is incomplete and cannot demonstrate
its own consistency. The problem widely discussed in the literature is whether the problems posed by the
theorems can be circumvented by nonstandard approaches to natural numbers, e.g., by treating them in the
framework of Peano arithmetic, Robinson arithmetic, finitistic arithmetic, transfinite numbers, etc. However,
the results obtained by Tarski, Turing, and others show that, in Hilbert’s approach, the problem of the
foundation of mathematics remains. In the present paper, we do not consider this problem.

Although, as noted in [1], people do not understand the reason why mathematics is so effective in the
natural sciences, in this paper, we treat mathematics not as an abstract science but as a tool for describing
nature. Then, it is possible to pose a problem what mathematics is more pertinent for this goal.

In [2], we have proposed the following:

Definition. Let theory A contain a finite nonzero parameter and theory B be obtained from theory A in
the formal limit when the parameter goes to zero or infinity. Suppose that, with any desired accuracy,
A can reproduce any result of B by choosing a value of the parameter. On the contrary, when, the limit is
already taken, one cannot return to A and B cannot reproduce all results of A. Then, A is more general than
B and B is a special degenerate case of A.

Known examples are that:

(1) Nonrelativistic theory (NT) is a special degenerate case of relativistic theory (RT) in the formal limit
¢ — oo (where c is the speed of light);

(2) Classical (i.e., non-quantum) theory is a special degenerate case of quantum theory (QT) in the formal
limit # — O (where % is the Planck constant);

(3) RT is a special degenerate case of de Sitter (dS) and anti-de Sitter (AdS) invariant theories in the formal
limit R — oo, where R is the parameter of contraction from the dS or AdS groups or Lie algebras to
the Poincare group or Lie algebra, respectively.

In the literature, those facts are explained from physical considerations but, as shown in the famous
Dyson’s paper “Missed Opportunities” [3], (1) follows from the pure mathematical fact that the Galilei group
can be obtained from the Poincare one by contraction ¢ — co, and (3) follows from the pure mathematical
fact that the Poincare group can be obtained from the dS or AdS groups by contraction R — co. At the same
time, since the dS and AdS groups are semisimple, they cannot be obtained from more symmetric groups
by contraction.

However, as argued in [2], on quantum level, symmetry should be defined not by groups but by
the corresponding Lie algebras. Then, the statements (1)-(3) follow from the facts that the Galilei
Lie algebra can be obtained from the Poincare one by contraction ¢ — co, classical Lie algebra can
be obtained from the quantum one by contraction # — 0, and the Poincare Lie algebra can be obtained
from the dS or AdS Lie algebras by contraction R — co. So, in general, theory B is a special degenerate
case of theory A if the symmetry algebra for theory B can be obtained from the symmetry algebra for theory
A by contraction. The main goal of this paper is to explain in the framework of Definition that:

Statement: Classical mathematics is a special degenerate case of finite one in the formal limit
p — oo, where p is the characteristic of the ring in finite mathematics.

As explained later, a consequence of this Statement is that, for describing nature at the most funda-
mental level, the concepts of infinitesimals, limits, continuity, etc. are not needed; they are needed only for
describing nature approximately.

The organization of this paper is clear from the titles of the sections.
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2 Problems with describing nature by classical mathematics

Mathematical education at physics departments develops a belief that classical mathematics is the most
fundamental mathematics, while finite mathematics is something inferior what is used only in special
applications. Many mathematicians have a similar belief.

Historically, it happened so because more than 300 years ago, Newton and Leibniz proposed the
calculus of infinitesimals, and, since that time, a titanic work has been done on the foundation of classical
mathematics. As noted in Section 1, this problem has not been solved till the present time, but for most of
physicists and many mathematicians, the most important thing is not whether a rigorous foundation exists
but that in many cases standard mathematics works with very high accuracy.

The idea of infinitesimals was in the spirit of existed experience that any macroscopic object can be
divided into arbitrarily large number of arbitrarily small parts, and, even in the nineteenth century, people
did not know about atoms and elementary particles. But now we know that when we reach the level of
atoms and elementary particles, then standard division loses its usual meaning, and in nature, there are
no arbitrarily small parts and no continuity.

For example, typical energies of electrons in modern accelerators are millions of times greater than
the electron rest energy, and such electrons experience many collisions with different particles. If it were
possible to break the electron into parts, then it would have been noticed long ago.

Another example is that if we draw a line on a sheet of paper and look at this line by a microscope, then
we will see that the line is strongly discontinuous because it consists of atoms. That is why standard geometry
(the concepts of continuous lines and surfaces) can work well only in the approximation when sizes of atoms
are neglected, and standard macroscopic theory can work well only in this approximation and so on.

Of course, when we consider water in the ocean and describe it by differential equations of hydro-
dynamics, this works well but this is only an approximation since water consists of atoms. However, it
seems unnatural that even quantum theory is based on continuous mathematics. Even the name “quantum
theory” reflects a belief that nature is quantized, i.e., discrete, and this name has arisen because in quantum
theory, some quantities have discrete spectrum (i.e., the spectrum of the angular momentum operator,
the energy spectrum of the hydrogen atom, etc.). But this discrete spectrum has appeared in the frame-
work of classical mathematics.

I asked physicists and mathematicians whether, in their opinion, the indivisibility of the electron shows
that in nature there are no infinitesimals, and standard division does not work always. Some mathemati-
cians say that sooner or later the electron will be divided. On the other hand, as a rule, physicists agree that
the electron is indivisible, and in nature, there are no infinitesimals. They say that, for example, dx/dt
should be understood as Ax/At, where Ax and At are small but not infinitesimal. I ask them: but you work
with dx/dt, not Ax/At. They reply that since mathematics with derivatives works well, then there is no need
to philosophize and develop something else (and they are not familiar with finite mathematics).

One of the key problems of modern quantum theory is the problem of infinities: the theory gives
divergent expressions for the S-matrix in perturbation theory. In renormalized theories, the divergencies
are eliminated by the renormalization procedure where finite observable quantities are formally expressed
as products of singularities. Although this procedure is not well substantiated mathematically, in some
cases, it results in excellent agreement with the experiment. Probably, the most famous case is that the
results for the electron and muon magnetic moments obtained at the end of the 40th agree with the
experiment at least with the accuracy of eight decimal digits (see, however, a discussion in [4]). In view
of this and other successes of quantum theory, most physicists believe that agreement with the data is much
more important than the rigorous mathematical substantiation.

At the same time, in nonrenormalized theories, infinities cannot be eliminated by the renormalization
procedure, and this is a great obstacle for constructing quantum gravity based on quantum field theory
(QFT). As the famous physicist and the Nobel Prize laureate Steven Weinberg writes in his book [5]:
“Disappointingly this problem appeared with even greater severity in the early days of quantum theory,
and although greatly ameliorated by subsequent improvements in the theory, it remains with us to the
present day.” The title of Weinberg’s paper [6] is “Living with infinities.”
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In view of efforts to describe discrete nature by continuous mathematics, my friend told me the
following joke: “A group of monkeys is ordered to reach the Moon. For solving this problem each monkey
climbs a tree. The monkey who has reached the highest point believes that he has made the greatest
progress and is closer to the goal than the other monkeys.” Is it reasonable to treat this joke as a hint on
some aspects of the modern science? Indeed, people invented continuity and infinitesimals, which do not
exist in nature, created problems for themselves and now apply titanic efforts for solving those problems.
Below it will be explained on a popular level (and the rigorous proof is given in [2]) that classical mathe-
matics is a special degenerate case of finite mathematics.

The founders of quantum theory and scientists who essentially contributed to it were highly educated.
But they used only classical mathematics, and even now finite mathematics is not a part of standard
education for physicists. The development of quantum theory has shown that the theory contains anoma-
lies and divergences. Most physicists considering those problems worked in the framework of classical
mathematics and did not acknowledge that they arise just because this mathematics was applied.

Several well-known physicists, including the Nobel Prize laureates Gross, Nambu and Schwinger
discussed approaches when quantum theory involves finite mathematics (see, e.g., [7]). A detailed discus-
sion of these approaches has been given in the book [8], where they are characterized as hybrid
quantum systems. The reason is that here coordinates and/or momenta belong to a finite ring or
field, but wave functions are elements of standard complex Hilbert spaces. Then, the problem of the
foundation of quantum theory is related to the problem of the foundation of classical mathematics.
On the other hand, in [9,10], we have proposed an approach called finite quantum theory (FQT), where
physical quantities also belong to a finite ring or field, but wave functions are elements of a space over a
finite ring or a field. As explained in Section 5, FQT is more general (fundamental) than standard quantum
theory.

3 Why finite mathematics is more natural than classical one

We will now discuss whether it is justified to use mathematics with infinitesimals although in nature there are
no infinitesimals. As noted in Section 1, a typical situation in physics is that there are two theories, A and B,
and the problem arises when B can be treated as a special degenerate case of A. It has also been noted that
this problem can be considered in the framework of Definition, and several examples have been mentioned.

Let us consider that NT is a special degenerate case of RT in the special case ¢ — oco. According to
Definition, this implies that RT can reproduce any result of NT with any accuracy if ¢ is chosen to be
sufficiently large. However, NT cannot reproduce all results of RT because RT also describes phenomena
where it is important that c is finite. From the naive point of view, one might think that NT is more general
than RT because NT corresponds to the case ¢ = 00, i.e., one might think that NT describes more cases than
RT, where c is finite. However, NT gives the same results as RT only when speeds are much less than c,
but when they are comparable to ¢, then NT does not work.

Since in many cases speeds are much less than c, then, for describing those cases, NT works with very
high accuracy and there is no need to apply RT: although in principle RT describes those cases, typically
describing them by RT involves unnecessary complications. In particular, there is no need to apply RT for
describing everyday life. At the same time, when speeds are comparable to c, it is important that ¢ is not
infinitely large but finite, and only RT can be applied.

Let us consider, for example, the following problem. Suppose that some reference frame moves relative
to us with the speed V = 0.6¢, and in this frame, a body moves in the same direction with the same speed.
Then, the speed of the body relative to us is not v = 1.2c, as one might think from naive considerations, but
v = 0.882c, and if, for example, V = 0.99c, then v = 0.9999495c, i.e., there is no way to get v > c. The lesson
of this example is that it is not always correct to make judgments proceeding from “common sense.”

Analogously, for describing almost all phenomena on a macroscopic level, there is no need to apply QT.
In particular, there is no need to describe the motion of the Moon by the Schrédinger equation. In principle,
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this is possible but results in unnecessary complications. At the same time, microscopic phenomena can be
correctly described only in the framework of QT.

In view of those examples, the following problem arises: Is it justified to always use mathematics with
infinitesimals for describing nature in which infinitesimals do not exist? There is no doubt that the tech-
nique of classical mathematics is very powerful and in many cases describes physical phenomena with
a very high accuracy. However, a problem arises whether there are phenomena, which cannot be correctly
described by mathematics involving infinitesimals.

Some facts of classical mathematics seem to be unnatural from the point of view of common sense.
For example, tg(x) is one-to-one reflection of (-m1/2, 7/2) onto (-oo0, ), i.e., the impression might arise
that the both intervals have the same numbers of elements although the first interval is a nontrivial part
of the second one. Another example is the Hilbert paradox with an infinite hotel. But mathematicians
even treat those facts as pretty ones. For example, Hilbert said: “No one shall expel us from the paradise
that Cantor has created for us.”

From the point of view of Hilbert’s approach to mathematics (see Section 1), it is not important whether
the aforementioned statements are natural, since the goal of the approach is to find a complete and
consistent set of axioms. In the framework of this approach, the problem of the foundation of classical
mathematics has been investigated by many great mathematicians (e.g., Cantor, Fraenkel, Gédel, Hilbert,
Kronecker, Russell, Zermelo, and others). Their philosophy was based on macroscopic experience in which
the concepts of infinitesimals, continuity and standard division are natural. However, as noted earlier,
those concepts contradict the existence of elementary particles and are not natural in quantum theory.
The illusion of continuity arises when one neglects the discrete structure of matter.

The fact that in Hilbert’s approach there exist foundational problems follows, in particular, from
Godel’s incompleteness theorems that state that no system of axioms can ensure that all facts about natural
numbers can be proved, and the system of axioms in classical mathematics cannot demonstrate its own
consistency. The theorems are written in highly technical terms of mathematical logics. As noted in Section 1,
in this paper, we do not consider Hilbert’s approach to mathematics. However, simple arguments in [2] show
that, if mathematics is treated as a tool for describing nature, then foundational problems of classical
mathematics follow from simple considerations, and below, we give those arguments.

In the 20s of the twentieth century, the Viennese circle of philosophers under the leadership of Schlick
developed an approach called logical positivism, which contains the verification principle: A proposition is
only cognitively meaningful if it can be definitively and conclusively determined to be either true or false
(see, e.g., [11,12]). However, this principle does not work if classical mathematics is treated as a tool for
describing nature. For example, in Hilbert’s approach, one of the axioms is thata + b = b + a for all natural
numbers a and b, and a question of whether this is true or false does not arise. However, in the approach
when mathematics is treated as a tool for describing nature, it cannot be determined whether this statement
is true or false.

As noted by Grayling [13], “The general laws of science are not, even in principle, verifiable, if verifying
means furnishing conclusive proof of their truth. They can be strongly supported by repeated experiments
and accumulated evidence but they cannot be verified completely.” So, from the point of view of classical
mathematics and classical physics, verification principle is too strong.

Popper proposed the concept of falsificationism [14]: If no cases where a claim is false can be found, then
the hypothesis is accepted as provisionally true. In particular, the statement thata + b = b + a for all natural
numbers a and b can be treated as provisionally true until one has found some numbers a and b for
whicha+ b # b + a.

Before discussing the foundation of mathematics and physics in greater details, let us make several
remarks about problems in accepting new theories. Probably, the main problem is the following. Our
experience is based on generally acknowledged theories and everything not in the spirit of this experience
is treated as contradicting common sense. A known example is that, from the point of view of classical
mechanics, it seems unreasonable that the speed 0.999c is possible while the speed 1.001c is not. The
reason for this judgment is that the experience based on everyday life works only for speeds that are much
less than c, and extrapolating this experience to cases where speeds are comparable to ¢ is not correct.
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Another example is the paradox of twins in the theory of relativity: one of the brothers flew to a distant
star, and when he returned being 10 years older, he realized that 1,000 years had passed on Earth. From
the point of view of “common sense,” this seems meaningless, but this seems so because our experience
based on everyday life is extrapolated to the case of speeds comparable to ¢, and this experience does not
work there.

One more example is the following. If we accept that physics in our world is described by finite
mathematics with characteristics p, then this can be treated as the statement that p is the greatest possible
number in nature. The argument attributed to Euclid is that there can be no greatest number, because if p is
such a number, then p + 1is greater than p. This is again an example where our experience based on rather
small numbers is extrapolated to numbers where it does not work.

According to the philosophy of quantum theory, in contrast to Hilbert’s approach to mathematics, there
should be no statements accepted without proof and based on belief in their correctness (i.e., axioms).
The theory should contain only those statements that can be verified, where by “verified” physicists
mean an experiment involving only a finite number of steps. This philosophy is the result of the fact that
quantum theory describes phenomena that, from the point of view of “common sense,” seem meaningless
but they have been experimentally verified. So, the philosophy of quantum theory is similar to verifica-
tionism, not falsificationism. Note that Popper was a strong opponent of quantum theory and supported
Einstein in his dispute with Bohr.

From the point of view of verificationism and the philosophy of quantum theory, classical mathematics
is not well defined because it contains an infinite number of numbers. Consider, for example, whether
the rules of standard arithmetic can be justified.

We can verify that 10 + 10 = 20 and 100 + 100 = 200, but can we verify that, 101000000 , 11000000 —
2 - 1010000002 One might think that this is obvious, and in Hilbert’s approach, this follows from main axioms.
But, if mathematics is treated as a tool for describing nature, then this is only a belief based on extra-
polating our everyday experience to numbers where it is not clear whether the experience still works.
According to the principles of quantum theory, the statement that 101000000 4 11000000 — 3 . 11000000 jg
true or false depends on whether this statement can be verified. Is there a computer that can verify this
statement? Any computing device can operate only with a finite number of resources and can perform
calculations only modulo some number p. If our universe is finite and contains only N elementary particles,
then there is no way to verify that N + N = 2N. So, if, for example, our universe is finite, then in principle,
it is not possible to verify that standard rules of arithmetic are valid for any numbers.

That is why the statement a + b = ¢ is ambiguous because it does not contain information on the
computing device which will verify this statement. For example, let us pose a problem whether 10 + 20
equals 30. If our computing device is such that p = 40, then the experiment will confirm that 10 + 20 = 30,
while if p = 25, then we will get that 10 + 20 = 5.

So, the statements that 10 + 20 = 30 and even that 2 - 2 = 4 are ambiguous because they do not contain
information on how they should be verified. On the other hand, the statements

10 + 20 =30 (mod 40), 10 + 20 = 5 (mod 25),
2-2=4(mod5), 2-2=2(mod2)

are well defined because they do contain such information. So only operations modulo a number are well
defined.

I believe the following observation is very important: Although classical mathematics (including its
constructive version) is a part of our everyday life, people typically do not realize that classical mathematics
is implicitly based on the assumption that one can have any desired number of resources. So, classical
mathematics is based on the implicit assumption that we can consider an idealized case when a computing
device can operate with an infinite number of resources. Typically, people do not realize that standard
operations with natural numbers are implicitly treated as limits of operations modulo p when p — co.
For example, if (a, b, c, d) are natural numbers, then the statements

a+b=c, a-b=d



100 —— Felix M. Lev DE GRUYTER

are implicitly treated as follows:

lim [(a + b) (mod p)] =¢, lim[(a-b) (mod p)]=d.
p—00 p—0oo
As arule, every limit in mathematics is thoroughly investigated, but, in the case of standard operations
with natural numbers, it is not even mentioned that those operations are limits of operations modulo p.
In real life, such limits even might not exist if, for example, the universe contains a finite number of ele-
mentary particles.

4 A sketch of the proof that finite mathematics is more general
than classical one

In the standard technique of classical mathematics, there is no number co, infinity is understood only as
a limit (i.e., as a potential infinity) and, as a rule, legitimacy of every limit is thoroughly investigated.
However, the basis of classical mathematics involves actual infinity from the very beginning. For example,
the ring of integers Z is involved from the very beginning and, even in standard textbooks, it is not even
posed a problem whether Z should be treated as a limit of finite rings. Moreover, Z is the starting point
for constructing the sets of rational, real and complex numbers and the sets with greater and greater
cardinalities.

As noted in Section 1, for solving the problem of infinities, different kinds of arithmetic have been
proposed. However, finite mathematics rejects infinities from the beginning. This mathematics starts from
thering R, = (0, 1, 2, ... p — 1), where addition, subtraction and multiplication are performed as usual but
modulo p, and p is called the characteristic of the ring. In the literature, the ring R, is usually denoted as
Z/(pZ).In my opinion, this notation is not adequate because finite mathematics should not involve infinite
sets. The notation may give a wrong impression that finite mathematics starts from the infinite set Z and
that Z is more general than R,. However, although Z has more elements than Ry, Z cannot be more general
than R, because Z does not contain operations modulo a number. We will see below that the concept of R,
is more general than the concept of Z, and Z is a special degenerate case of R,, in the formal limit p — oo.

In the aforementioned discussion of the relation between NT and RT, we noted that those theories give
close results when speeds are much less than ¢, but the results are considerably different when speeds are
comparable to ¢, and in RT, it is not possible to get v > c. Analogously, the results in finite and classical
mathematics are the same if the numbers in question are much less than p but, since in finite mathematics
all operations are modulo p, it is not possible to get a result greater than p. Physicists might think that
calculations modulo a number are nonphysical, but, as noted earlier, just such calculations are more
physical than calculations in classical mathematics.

One can prove [2]

Statement 1: For any p, > 0, there exists a set S belonging to all sets R, with p > p,, and a natural
number n such that for any m < n, the result of any m operations of summation, subtraction or multi-
plication of elements from S is the same for any p > py and the same as in Z, and that cardinality of S and
the number n formally go to infinity when py — co.

The proof is analogous to the standard proof that a sequence of natural numbers (a,) goes to infinity
if VM > 0 3ny, such that a, > M Vn > ng. In particular, the proof involves only potential infinity but not
actual one. This means that: (a) for the set S and the number n there is no manifestation of operations
modulo p, i.e., the results of any m < n operations of elements from S are formally the same in R, and Z; (b)
when p, increases, the set S also increases, and in the formal limit py — oo, S becomes Z.

That is why Z can be treated as a limit of R, when p — co. This result looks natural from the
following considerations. Since all operations in R, are modulo p, then R, can be treated as a set
(-(p-1/2,...-1,0,1, ...(p - 1)/2) if p is odd and as a set (-p/2+1,...-1,0,1, ... p/2) if p is even.
In this representation, for relatively small sets of numbers with the absolute values much less than p,
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the results of addition, subtraction and multiplication are the same in R, and in Z, i.e., for such sets of
numbers, it is not manifested that in R, operations are modulo p. Then, since in theory with R,, there exist
operations modulo p, which do not exist in theory with Z, it follows from Statement 1 and Definition that:

Statement 2: Theory with Z is a special degenerate case of theory with R, in the formal limit p — co.

This result is natural from the following graphical representation of the sets Z and R,. If elements of Z
are depicted as integer points on the x axis of the xy plane, then, if p is odd, the elements of R, can be
depicted as points of the circle in Figure 1 and analogously if p is even.

The analogy between R, and the circle follows from the following observations. If we take an element
of R, and successively add 1 to it, then after p steps, we will return to the original element because addition
in R, is modulo p. This is analogous to the fact that if we are moving along the circle in same direction, then,
sooner or later, we will arrive to the initial point.

Let us also note that Figure 1 is analogous to the figure illustrating stereographic projection. In this
case, every point on the circle, except the northern pole, is projected to a certain point on the x axis, but
the projection of the northern pole is not defined, and it is not clear whether this point corresponds to
+00 or —co. Analogously, Figure 1 shows, that the closest points to the northern pole are (p — 1)/2 and
—(p - 1)/2, i.e., very large positive and negative numbers when p is very large. In R,, those points are
close to each other because ((p — 1)/2 + 1) mod(p) = —(p — 1)/2, i.e., when we add 1 to a large positive
number (p — 1)/2, we get a large negative number —(p - 1)/2.

Figure 1 is also natural from the following historical analogy. For many years, people believed that the
Earth was flat and infinite, and only after a long period of time, they realized that it was finite and curved.
It is difficult to notice the curvature when we deal only with distances much less than the radius of the
curvature. Analogously, when we deal with numbers the modulus of which is much less than p, the results
are the same in Z and R, i.e., we do not notice the “curvature” of R,. This “curvature” is manifested only
when we deal with numbers the modulus of which is comparable to p.

As noted earlier, Dyson’s idea [3] is that theory A is more general than theory B if the symmetry in B can
be obtained from the symmetry in A by contraction. It is clear from Figure 1 that R, has a higher symmetry
than Z. Mathematically this follows from the following facts. As noted earlier, when we take an element
a € R, and successively add 1 to it, then after p steps, we will get all elements of R,. However, all elements
of Z can be obtained from an element a € Z only in two infinite stages when the first stage is successively
adding 1 to a and the second stage is successively adding -1 to a.

Figure 1: Relation between R, and Z.
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As already mentioned, in Ry, the elements (p — 1)/2 and —(p — 1)/2 are close to each other. The set Z
can be treated as obtained from R, as follows. First, we break the circle in Figure 1 at the top and move
the points (p — 1)/2 and —(p — 1)/2 a great distance from each other. Then, in the formal limit p — oo,
the part (1, 2, ...(p — 1)/2) of the circle becomes the part (1, 2, ... co) of the straight line, and the part
(-1, -2, ...—(p - 1)/2) of the circle becomes the part (-1, -2, ... - 0co) of the straight line. Finally, by adding
0, we obtain the set Z.

This observation can be treated as an illustration of Dyson’s idea because it becomes clear why R, has
a higher symmetry than Z. In Z, it is not possible to reproduce all results in R, since in Z there are no
operations modulo a number. The validity of Statement 2 takes place although R, contains less elements
than Z. This situation is analogous to that discussed earlier that RT is more general than NT and to other
cases discussed earlier when theory A is more general than theory B.

The fact that the theory with R, is more general than the theory with Z implies that even from purely
mathematical point of view, the concept of infinity is not fundamental since, when we introduce infinity, we get
the degenerate theory where all operations modulo a number disappear.

The fact that R, — Z when p — oo can be proved in the framework of the theory of ultraproducts
described in a vast literature. As pointed out to me by Zelmanov, infinite fields of zero characteristic (and Z)
can be embedded in ultraproducts of finite fields. This approach is in the spirit of belief of many mathe-
maticians that sets of characteristic O are more general that finite sets, and for investigating infinite sets, it
might be convenient to use properties of simpler sets of positive characteristics.

The theory of ultraproducts is essentially based on classical results on infinite sets involving actual
infinity. In particular, the theory is based on £0§’ theorem involving the axiom of choice. Therefore, the
theory of ultraproducts cannot be used in proving that finite mathematics is more general than the clas-
sical one.

Let us also note that standard terminology that Z and the fields constructed from Z (e.g., the fields of
rational, real and complex numbers) are sets of characteristic O reflects the usual spirit that classical
mathematics is more fundamental than finite one. I think that it is natural to say that Z is the ring of
characteristic co because Z is a limit of rings of characteristic p when p — co. The characteristic of the ring
pis understood such that all operations in the ring are modulo p, but operations modulo 0 are meaningless.
Usually, the characteristic n of the ring is defined as the smallest positive number n such that the sum of
nunits1 + 1+ 1... in the ring equals zero if such a number exists and 0 otherwise. However, this sum can
be written as 1 - n and the equality 1- 0 = O takes place in any ring.

5 Why finite quantum theory is more general than standard one

Consider now the following question. Does the fact that R, is more general than Z mean that in applications
finite mathematics is more general (fundamental) than classical one? Indeed, in applications, not only rings
are used but also fields which contain division. For example, if p is prime, then R, becomes the Galois field
F, in which division is defined as usual but modulo p.

As noted earlier, for numbers with the absolute values much less than p, the results of summation,
subtraction and multiplication are the same in R, and Z. That is why if an experiment deals only with such
numbers, and the theory describing this experiment involves only sums, subtractions and multiplications,
then the results of the experiment cannot answer the question what mathematics is more adequate for
describing this experiment: classical or finite. However, in the case of division, the difference is essential.
For example, 1/2in F, equals (p + 1)/2, i.e., a very large number if p is large. That is why an impression may
arise that finite mathematics is not adequate for describing experimental data. Let us consider this problem
in more detail.

Now it is accepted that the most general physical theory is quantum one, i.e., any classical theory is
a special case of quantum one. This fact has been already mentioned earlier. Therefore, the problem arises
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whether quantum theory based on real and complex numbers containing division (and also quantum
theories based on their generalizations, e.g., p-adic numbers or quaternions) can be a special case of
a quantum theory based on finite mathematics.

In standard quantum theory (SQT), a state of a system is described by the wave function ¥ = ge; +
&€y + ..., where the ¢ (j =1, 2,... co) are the elements of the basis of the Hilbert space, and the ¢; are
complex coefficients. Usually, basis elements are normalized to one: ||gj| = 1, and then, the probability for
a system to be in the state ¢ is |cj|>. However, normalization to one is only the question of convention but
not the question of principle. The matter is that not the probability itself but only relative probabilities
of different events have a physical meaning. That is why spaces in quantum theory are projective: const - ¥
and ¥ describe the same state if const + 0.

Hence, one can choose the basis where all the |¢j| are positive integers. Then, we use the theorem
proved in standard textbooks on Hilbert spaces: any element of the Hilbert space can be approximated with
any desired accuracy by a finite linear combination ¥ = ¢ie; + e, + ...+ cqe,, Where the coefficients are
rational numbers. Finally, by using the fact that spaces in quantum theory are projective, one can multiply
Y by the common denominator of all the coefficients and get the case when all the complex coefficients
G = a; + ib; are such that all the numbers a; and b; are integers.

Therefore, although formally Hilbert spaces in quantum theory are complex, with any required accu-
racy, any state can be described by a set of coefficients, which are elements of Z + iZ. Hence, the description
of states by means of Hilbert spaces is not optimal since such a description contains a big redundancy of
elements, which are not needed for a full description.

Now we use Statement 2 and describe quantum states not by elements of Hilbert spaces but by elements
of spaces over a finite ring R, + iR,, i.e., now all the a;, b; and | ¢j| are elements of R,. As noted earlier, we call
this theory FQT. As mentioned eatlier, FQT is more general than SQT: when the absolute values of all the a;,
b; and | ej| are much less than p, then both theories give the same results, but if the absolute values of some
of those quantities are comparable to p, then the descriptions are different because in SQT there are no
operations modulo p. We conclude that if mathematics is treated as a tool for describing nature, then
Statement in Section 1 is valid.

6 Examples when finite mathematics can solve problems that
classical mathematics cannot

In [2], we considered phenomena where it is important that p is finite. They cannot be described by SQT,
and this is analogous to the fact that NT cannot describe phenomena in which it is important that c is finite.
Later, we describe several such phenomena.

Example 1. Gravity. Since quantum theory is treated as more general than the classical one, any result of
classical theory should be a special case of a result obtained in quantum theory. However, the Newton
gravitational law cannot be derived in QFT because the theory is nonrenormalizable. But in our approach,
the universal law of gravitation can be derived as a consequence of FQT in semiclassical approximation [2].
In this case, the gravitational constant G is not a constant taken from the outside but a function of p, which
depends on p as 1/ In(p). By comparing the result with the experimental value, one gets that In(p) is of the
order of 108 or more, and therefore, p is a huge number of the order of exp(108°) or more. One might think
that since p is so huge, then in practice, p can be treated as an infinite number. However, since G depends
on p as1/In(p), and In(p) is “only” of the order of 108, gravity is observable. In the formal limit p — oo,
G becomes zero and gravity disappears. Therefore, in our approach, gravity is a consequence of finiteness
of nature.
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Example 2. Dirac vacuum energy problem. In quantum electrodynamics, the vacuum energy should be
zero, but in the standard theory, the sum for this energy diverges, and this problem was posed by Dirac.
To get the zero value for the vacuum energy, the artificial requirement that the operators should be written
in the normal order is imposed, but this requirement does not follow the construction of the theory. In
Section 8.8 of [2], I take the standard expression for this sum; then, I explicitly calculate this sum in finite
mathematics without any assumptions, and, since all the calculations are modulo p, I obtain zero as it
should be.

Example 3. Equality of masses of particles and their antiparticles. This is a very interesting example
demonstrating the power of finite mathematics. Historically, the concept of particle—antiparticle has arisen
because the Dirac equations have solutions with positive and negative energies. However, the probabilistic
interpretation of the Dirac spinor is valid only in the approximation 1/c?, and particles and their antipar-
ticles should have the same energy sign.

The fact that standard treatment of covariant field equations (Klein-Gordon equation, Dirac equations,
Rarita-Schwinger equations and others) is not quite consistent, follows from the following observation.
Since the equations are linear, any superposition of two solutions also is a solution. However, superposi-
tions of two solutions with positive and negative energies are prohibited by superselection rules because
solutions with positive energy are treated such that they describe particles, solutions with negative energy
are treated such that they describe antiparticles, and their superposition contradicts conservation of electric
charge, baryon quantum number, etc.

A detailed discussion in [2] shows that, on the quantum level, a particle and its antiparticle should be
considered only from the point of view of irreducible representations (IRs) of the symmetry algebra. In SQT,
the algebras are such that their IRs contain either only positive energies or only negative energies. In the
first case, the objects described by IRs are called particles, and in the second one — antiparticles. Then, the
energies of antiparticles become positive after second quantization. As noted in Section 1, dS and AdS
symmetries are more general than Poincare symmetry. As explained in [2], in dS and AdS theories, the mass
of the particle is dimensionless. For definiteness, we compare the results of the AdS theory in SQT and FQT.

In SQT, the spectrum of positive energies contains the values (m;, m; + 1, m; + 2, ... c0), and for nega-
tive energies — the values (-my, -m, — 1, -m, — 2, ...—0), where m; > 0, m, > 0, m, is called the mass of
a particle and m;, is called the mass of the corresponding antiparticle. Experimentally, m; = m,, but in SQT,
IRs with positive and negative energies are fully independent of each other. The usual statement is that m; = m,
follows from the fact that local covariant equations (e.g., the Dirac equation) are CPT invariant. However,
as discussed in detail in [2], the argument x in local quantized fields does not have a physical meaning because
it is not associated with any operator. So, in fact, standard theory cannot explain why m; = m,.

For understanding this problem, the following observation from particle theory may be helpful. In the
formal case when electromagnetic and weak interactions are absent, isotopic invariance is exact, and
the proton and the neutron have equal masses simply because they are different states in the same IR of
the isotopic algebra. Therefore, the equality of the masses has nothing to do with locality.

Consider now what happens in FQT. For definiteness, we consider the case when p is odd, and the case
when p is even can be considered analogously. One starts constructing the IR as usual with the value m,
and, by acting on the states by raising operators, one gets the values m; + 1, m; + 2,.... However, now we
are moving not along the straight line but along the circle in Figure 1. When we reach the value (p - 1)/2,
then, as explained earlier, the next value is —(p - 1)/2, i.e., one can say that by adding 1 to a large positive
number (p — 1)/2, one gets a large negative number —(p — 1)/2. By continuing this process, one gets the
numbers —-(p - 1)/2+1=-(p - 3)/2,-(p - 3)/2+ 1= —(p - 5)/2, etc. The explicit calculation shows that
the procedure ends when the value —m; is reached.

Therefore, finite mathematics gives a clear proof of the experimental fact that m; = m,, and this is
analogous to the aforementioned observation that two states have equal masses if they belong to the same
IR of the symmetry algebra. In addition, finite mathematics shows that, instead of two independent IRs
in classical mathematics, one gets only one IR describing both a particle and its antiparticle. The case
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described by classical mathematics can be called degenerate because, in the formal limit p — oo, one IR in
finite mathematics splits into two IRs in classical mathematics. So, in the case p — oo, we get symmetry
breaking. This example is a beautiful illustration of Dyson’s idea [3] that theory A is more general than
theory B if the symmetry in B can be obtained from the symmetry in A by contraction. The example is fully
in the spirit of this idea because it shows that classical mathematical can be obtained from finite one by
contraction of the symmetry in the formal limit p — oo. This example also shows that the standard concept
of particle—-antiparticle is only approximate and is approximately valid only when p is very large. Conse-
quently, constructing complete quantum theory based on finite mathematics will be difficult because the
construction should be based on new principles.

Example 4. The problem of baryon asymmetry of the universe. This problem is formulated as follows.
According to the modern particle and cosmological theories, the numbers of baryons and antibaryons in
the early stages of the universe were the same. Then, since the baryon number is the conserved quantum
number, those numbers should be the same at the present stage. However, at this stage, the number of
baryons is much greater than the number of antibaryons.

For understanding this problem, one should understand the concept of particle-antiparticle. As
explained earlier, in SQT, this concept takes place because IRs describing particles and antiparticles are
such that energies in them can be either only positive or only negative but cannot have both signs.
However, as explained in Example 3, IRs in FQT necessarily contain both, positive and negative energies,
and in the formal limit p — oo, one IR in FQT splits into two IRs in SQT with positive and negative energies.

If the laws of physics are described in finite mathematics with some p, then a question arises whether
there are reasons for p to be as is or the value of p is a result of pure random circumstances. As noted earlier,
every computing device can perform mathematical operations only modulo some number p, which is
defined by the number of bits that this device can operate with. It is reasonable to believe that finite
mathematics describing physics in our universe is characterized by a characteristic p, which depends on
the current state of the universe, i.e., the universe can be treated as a computer. Therefore, it is reasonable
to believe that the number p is different at different stages of the universe.

As noted in Example 1, at the present stage of the universe, the number p is huge, and therefore, the
concepts of particles and antiparticles have a physical meaning. However, arguments given in [2] indicate
that in early stages of the universe, the value of p was much less than now. Then, in general, each object
described by IR is a superposition of particle and antiparticle (in SQT, such a situation is prohibited),
and the electric charge and baryon quantum number are not conserved. Therefore, in early stages of the
universe, SQT does not work, and the statement that at such stages the numbers of baryons and antibaryons
were the same does not have a physical meaning. Therefore, the problem of baryon asymmetry of the
universe does not arise.

Example 5. FQT gives arguments [2] that only Dirac’s singletons [15] can be true elementary particles.

Example 6. FQT gives arguments [2] that the ultimate quantum theory will be based on a ring, not on a
field, i.e., only addition, subtraction and multiplication are fundamental mathematical operations, while
division is not.

The aforementioned examples demonstrate that there are phenomena that can be explained only in
finite mathematics, because for them, it is important that p is finite and not infinitely large. So, we have
an analogy with the case that RT can explain phenomena, where c is finite while NT cannot explain such
phenomena.
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7 Conclusion

In the literature, an idea is discussed that space and time should be quantized. However, as discussed in
detail in [2], the concept of space—time has a physical meaning only on the classical level, i.e., when first
FQT is approximated by SQT in the formal limit p — oo, and then, SQT is approximated by classical theory
in the formal limit # — 0.

The problem of time is one of the most fundamental problems of quantum theory. Every physical
quantity should be described by a selfadjoined operator but, as noted by Pauli, the existence of the time
operator is a problem (see, e.g., the discussion in [2]). One of the principles of physics is that the definition
of a physical quantity is a description how this quantity should be measured, and it is not correct to say that
some quantity exists but cannot be measured. The present definition of a second is the time during which
9,192,631,770 transitions in a caesium-133 atom occur. The time cannot be measured with the absolute
accuracy because the number of transitions cannot be infinite. With this definition, one second is defined
with the accuracy 10~s, and, e.g., [16] describes efforts to measure time with the accuracy 10~°s. However,
it is not clear how to define time in early stages of the universe when atoms did not exist. So, treating time ¢
as a continuous quantity belonging to the interval (-oo, +00) can be only an approximation, which works at
some conditions. In [2], a conjecture that standard classical time ¢ manifests itself because the value of p
changes, i.e., t is a function of p has been discussed. We do not say that p changes over time because
classical time t cannot be present in quantum theory; we say that we feel ¢ because p changes. As noted
in Example 4 of the preceding section, and will be discussed in more details in a separate publication,
with such an approach, the known problem of baryon asymmetry of the universe does not arise.

Let us note that in FQT there are no infinities in principle and that is why divergences are absent in
principle. In addition, probabilistic interpretation of FQT is only approximate: It applies only to states
described by the numbers a;, b; and |lejl|, which are much less than p.

This situation is a good illustration of the famous Kronecker’s expression: “God made the natural
numbers, all else is the work of man.” In view of the aforementioned discussion, I propose to reformulate
this expression as follows: “God made only finite sets of natural numbers, all else is the work of man.” For
illustration, consider a case when some experiment is conducted N times, the first event happens n; times,
the second one - n, times, etc., such that n; + n, + ...= N. Then, the experiment is fully described by
a finite set of natural numbers. But people introduce rational numbers w; = w;(N) = n;/N and introduce
the concept of limit and define probabilities as limits of the quantities w;(N) when N — oo.

As noted in Section 1, when classical and finite mathematics are considered in the framework of
Hilbert’s approach (i.e., only as abstract sciences), then the question what mathematics is more adequate
in applications does arise. However, the aforementioned discussion shows that, if mathematics is treated
as a way of describing nature, then finite mathematics is more general (fundamental) than the classical one.
In addition, in finite mathematics there are no foundational problems because every statement can be
explicitly verified by a finite number of steps. The conclusion from the aforementioned consideration
can be formulated as follows:

Mathematics describing nature at the most fundamental level involves only a finite number of
numbers, while the concepts of limit, infinitesimals and continuity are needed only in calculations
describing nature approximately.
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