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Abstract: In this paper, we define the concepts of strongly regular relation, finitely strongly regular relation,
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braic, hyperalgebraic, and quasi-hyperalgebraic lattices. The main results are as follows: (1) a binary
relation p : X — Y is strongly regular if and only if the complete lattice (D,(X), <) is a strongly algebraic
lattice; (2) a binary relation p : X — Y is finitely strongly regular if and only if (®,(X), <) is a hyperalge-
braic lattice if and only if the finite extension of p is strongly regular; and (3) a binary relationp : X — Y
is generalized finitely strongly regular if and only if (®,(X), <) is a quasi-hyperalgebraic lattice if and only
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1 Introduction

The regularity of binary relations was first characterized by Zareckii. In [1], he proved the following
remarkable result: a binary relation p on a set X is regular if and only if the complete lattice (D,(X), <)
is completely distributive, where ®,(X) = {p(A) : A € X}, p(A) = {y € X : Ja € A with (a, y) € p}. Further
criteria for regularity were given by Markowsky [2] and Schein [3] (see also [4] and [5]). Motivated by the
fundamental works of Zareckii on regular relations, in [6—-8], Xu and Liu successfully generalized the
regular relation to finitely regular relation and generalized finitely regular relation, got the relational
representations of hypercontinuous lattices and quasi-hypercontinuous lattices, and proved that a binary
relation p is finitely regular if and only if the complete lattice (®,(X), <) is a hypercontinuous lattice and p is
generalized finitely regular if and only if (D,(X), <) is a quasi-hypercontinuous lattice if and only if the
interval topology on (®,(X), <) is T>. Moreover, the discussion about the relation representation theory
of lattices has also attracted a considerable deal of attention (see [9-18]).

As a common generalization of continuous lattices, algebraic lattices play a very important role in
domain theory. The so-called strongly algebraic [19], hyperalgebraic [20,21], and quasi-hyperalgebraic
lattices [21,22] are among the most successful such generalizations, which now have been familiar objects
as algebraic lattices in domain theory. However, the relation representations of them are still lacking.
The aim of this paper is to introduce and investigate some binary relations in order to establish the theory
of relation representations of algebraic lattices.
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In this paper, we define the concepts of strongly regular relation, finitely strongly regular relation, and
generalized finitely strongly regular relation, and get the relational representations of strongly algebraic,
hyperalgebraic, and quasi-hyperalgebraic lattices. Meanwhile, several equivalent characterizations of them
are obtained. Let (X, 8, <) be a partially ordered topological space. (X, 8, <) is called totally order-discon-
nected if whenever x ¢ y there is a clopen upper set U such that x € U and y ¢ U. A compact totally order-
disconnected space is called a Priestley space. The interest in these spaces is mainly due to the celebrated
Priestley duality [23,24]. We also discuss this Priestley property about complete lattices with respect to the
interval topology. In this paper, the main results are as follows: (1) a binary relation p : X — Y is strongly
regular if and only if the complete lattice (D,(X), <) is a strongly algebraic lattice; (2) a binary relation
p: X — Y is finitely strongly regular if and only if (®,(X), <) is a hyperalgebraic lattice if and only if the
finite extension of p is strongly regular; and (3) a binary relation p : X — Y is generalized finitely strongly
regular if and only if (®,(X), <) is a quasi-hyperalgebraic lattice if and only if (D,(X), <) equipped with the
interval topology is a Priestley space.

2 Preliminaries

In this section, we recall some basic concepts needed in this paper; for other nonexplicitly stated elemen-
tary notions please refer to [6,20].

Let P be a poset with a partial order<.Forallx,y € P,A C P,letT x ={y e P: x <y}andT A = JgeaT a;
| x and | A are defined dually. A is called the upper set if T A = A and the lower set defined dually. The least
upper bound of A in P is written as VA or supA; similarly, the greatest lower bound of A is written as AA or infA.
Definean order<®? by x <% y & y < x, and write P as short for (P, <), called the order dual of P. A poset L
is called the complete lattice if for any subset A < L, VA and AA exist in L. For two complete lattices L; and L,,
the symbol L; = L, means that L, is order isomorphic to L,.

For a poset P, x ¢ P, A P. P\A ={x € P: x ¢ A}. The topology generated by the collection of sets
P\ | x (as a subbase) is called the upper topology and is denoted by v(P); the lower topology w(P) on P is
defined dually. The topology 68(P) = v(P) v w(P) is called the interval topology on P, i.e., the interval
topology is the coarsest common refinement of the upper topology v(P) and the lower topology w(P).
For any set X, let X&) = {F ¢ X : F is nonempty and finite}. Set denotes the class of all sets. The class
of all complete lattices is denoted by Com.

Let (X, 6) be a topology space and A ¢ X. The interior of A in (X, 6) is denoted by intsA. A subset U of X
is called 6-clopen if U is open and closed in (X, §). The notation (X, 6, <) is used to denote a set X endowed
with a topology 6 and a partially order <. The space (X, 6, <) is called totally order-disconnected, if given
x,y € X with x ¢ y, there exists a §-clopen upper set U such that x ¢ U and y ¢ U. A compact totally order-
disconnected space is called a Priestley space.

Fortwosets XandY,wecallp : X — Y abinaryrelationifp € X x Y. When X = Y, p is usually called
abinary relation on X. Let 8(X) denote the set of all binary relations between X and Y, and Rel = | JxcsetB(X).

Definition 2.1. [6] Letp: X — Y,7:Y — Z be two binary relations. Define

VD 1op={x,2):TFy Y, (x,y) € p,(¥,2z) € t}. The relation 7 o p: X — Z is called the composition
of p and 7.

2 p'={(y,x) e YxX:(x,y) €p}.

(3) p(A) ={y € Y: Ix € A with (x,y) € p}. We call it the image of A under a binary relation p. Instead
of p({x}), we write p(x) for short.

(4) DyX) ={p(A) : A c X}.

Clearly, (®,(X), <) is a complete lattice, in which the join operation V is the set union operator U, since
Vieip(41) = Uierp(4i) = p(UierAi) for any A; < X. But the meet operation A in (®,(X), <) is not the set union
operation N in general. For instance, let X = {x;, %} and Y = {y,, 5, y5}. Define a binary relationp : X — Y
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as follows: p(x) = {;, y,} and p() = 1y, y3}. Then p(x) N p(B) = Wi, Yo} N 1Y 13} = ). But {1} ¢ Bp(X)
since for any C ¢ X, p(C) # {y,}. Thus, {),} is not the infimum of p(x) and p(x) in (®,(X), <). In fact, it is
easy to see that p(x) A p() = @ in (P,(X), ©).

Definition 2.2. [6] Suppose p is a property about a complete lattice and s is a property about a binary
relation. Let S = {p € Rel : p has the property s} and P = {L € Com : L has the property p}. We call the
relation of s type is a representation of the complete lattices of p type, if the following two conditions
are satisfied:

(i) VocXxY,peS e (O,X),<)cP;

(i) VL € P,3p : X — Y € S such that L = (D,(X), 9).

In order to make sense of the s type relational representation of p type lattices, the properties p and s
need to be explicitly defined.

Definition 2.3. [1] A binary relation p : X — Y is called regular, if there is a binary relationo : ¥ — X
such thatp=p o 0o p.

In [1], Zareckii gave the regular relation representation of completely distributive lattices. Furthermore,
an intrinsic characterization of regular relations was obtained as follows.

Theorem 2.4. [6] For a binary relation p : X — X, the following two conditions are equivalent:
(1) p is regular;
(2) Y(x,y) € p, Ju, v € X such that

(@) x,v) ep,(,y) €p;

(b) Foralls,teX,if(s,v)€ep,(u,t)ep,then(s,t)€p.

Definition 2.5. [6] For a binary relation p : X — Y, define a relation p&<@) : X<@) — Y@ called the
finite extension of p, by

Y(F, G) € X&) x Y& (F, G) € pi9) & G < p(F).
For a complete lattice L, x, y € L. Define<on L by x < y< for any subset A € L, y < VA implies x < a for
some a € A. Raney [14] proved that a complete lattice L is a completely distributive iff x = v{y € L : y <« x}.

Definition 2.6. [19] A complete lattice L is called strongly algebraic, if Vx e L, x =Vv{y e L:y ay < x}.

Definition 2.7. [20, 22] Let L be a complete lattice and x, y € L. We definey < x ifand only if x € int,q) T y.
L is called hyperalgebraic, if forany x e L, x =Vv{y e L:y <y < x}.

In [22], Yang proved that a complete lattice L is hyperalgebraic if and only if for any x € L and U € v(L)
with x € U, there exists u € L such that x € int,q) Tu =T u ¢ U. As the generalization of hyperalgebraic
lattices, Yang also gave the notion of quasi-hyperalgebraic lattices.

Definition 2.8. [22] Let L be a complete lattice. L is called quasi-hyperalgebraic, if forany x € Land U € v(L)
with x € U, there exists F € L““) such that x € int,g 1 F=1F ¢ U.

3 Strongly regular relation

In this section, we define a concept of strongly regular relation and get the strongly regular relation
representation of strongly algebraic lattices. Meanwhile, we also obtain some equivalent characterizations
of strongly regular relation.
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Definition 3.1. A binary relation p : X — Y is called strongly regular, if there is a binary relation
ogcpl:Y — Xsuchthatp=pooonp.

By the definition of strongly regular relation, it is easy to obtain the following conclusion.

Remark 3.2.

(1) If a binary relation p : X — Y is strongly regular, then p is regular.

(2 Ifp: X — Y is strongly regular, then p~! : Y — X is also.

(3) Let X, Y be two sets and f a function from X to Y. Then f is strongly regular. In fact, define a binary
relationt: Y — Xas(y,x)eteoy=fx).Thentcfland fo1o f=f.

(4) Let X be a set and P(X) a power set of X. Then the binary relation €:X — P(X), x € A is strongly
regular. In fact, define a binary relation 0 : P(X) — X as (4,x) € 0 © A = {x}. Then ¢ ¢ €' and
€000 € =€,

Lemma 3.3. Let p : X — Y be a binary relation and M € ®,(X). Then for any y € M, /\yENG%(X)N a M.
Furthermore, if z € \zenea,x)N, then \zenea,co)N <4 Azenea,xoN.

Proof. Let y € M and M < (Jie;p(A;). Then 3i € I such that y € p(4;), which implies A\ycnea,x)N € p(4:).
Thus, /\ysNe(I)p(X)N <M. Therefore, ifz ¢ /\zeNsdJP(X)N, then /\zeNe(DP(X)N < Azequ)p(X)N. |

Now we give the strongly regular relation representation of strongly algebraic lattices.

Theorem 3.4. For a binary relation p : X — Y, the following three conditions are equivalent:
(1) p is strongly regular.
(2) Y(x,y) e X x Y with (x,y) € p, 3(u, v) € X x Y such that

@ (u,v)€p;

(ll) (X’ V) €p, (u’ )’) €p;

(iii) V(s,t) e Xx Y, if(s,v) e pand (u,t) € p, then (s, t) € p.
(3) (Dy(X), <) is a strongly algebraic lattice, i.e., VA € X, p(A) = |J{G € ©,(X) : G 1 G < p(A)}.
(4) VM € @y(X),y € M, 3z € M such that z € \zeneaw,x)N, ¥ € N\zenea,x)N-
(5) VM € ®y(X), M = Uyem/\venea,x)N, and Yy € M, 3z € M such that z € \zenea,00N, ¥ € Azenea,oN-

Proof.

(1) = (2) Let p be a strongly regular relation. Then there exists 0 € p~! such that p=p o 0 o p.
Y(x,y) € X x Y with (x, y) € p,3(v, u) € Y x X such that (x, v) € p, (v,u) € 6 € p}, (U, y) € p, so conditions
(i) and (ii) hold. V(s,t) e X x Y, if (s,v) e p and (u,t) e p, by (v,u) €0 and p=p o 0 - p, we have
(s, t) €p.

(2= (3) VYN = p(4) € ®,(X),y € N,3x € Asuchthat(x, y) € p. By (2), thereisa(u, v) € X x Y such that

i) w,v)€p;
(i) C,v) ep, (U, y) €p;
(iii) V(s,t) e X x Y, if (s,v) e p and (u, t) € p, then (s, t) € p.

Thus, y € p(u) € p(x). In fact, Vt € p(u), since (x,v) € p, (u,t) € p and (iii), we have that (x, t) € p,
ie., t e p(x).

Now we only need to show p(u) < p(u). Let p(u) € | iezp(4;). Then i € I such that v € p(4;) since
(u, v) € p, which implies that there exists x; € A; such that v € p(xy), i.e., (x;, v) € p. For any t € p(u), i.e.,
(u, t) € p, by (iii) (x;, t) € p, that is, t € p(x;), so p(uw) € p(x) < p(4;). Hence, p(u) <« p(w). Therefore,
p4) = UG € D(X) : G <« G < p(A)}.

(3) = (4) Let M = p(A) € Dy(X) and y € M. Since (Dy(X), <) is a strongly algebraic lattice, 3G € Dy(X)
such that y € G < G € M. Let G = p(B) = |Jpepp(b). By the definition of <, 3b € B such that G = p(b) and
p(b) ¢ U@,CO\T p(b)) = UHH € By(X) : p(b) ¢ H}. Thus, 3z € pb)\J@,CO\T p(b).
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Now we show that p(b) = /\ZENEQP(X)N. Let N € @, (X) with z e N. Assume that p(b) ¢ N, then
N € ®,(X)\T p(b). Thus, z € N ¢ [ J(D,(X)\T p(b)), which contradicts z ¢ [J(@,(X)\T p(b)). Thus, p(b) < N,
which implies p(b) ¢ /\ZENE%(X)N . The converse inclusion is always true, since z € G = p(b). Hence,
M = Uvem/\venea,x)N, and for any y € M, there is a z € M such that z € /\zenea,)N, ¥ € NAzenea,c0N-

(4) = (5) Obviously.

(5) = (1) Define a relationo : Y — X by

(v, x) €0 oy €px) = \yenea,aN.

Obviously o € p71.

Next we will prove that p=p o 0 o p. V(x,y) € p, y € p(x), by (5), p(x) = Uvem/\venea,c0oN, and
3z € p(x) such that z,y € Azenea,x)N. By Lemma 3.3, Azenvea,x)N 9 Azenea,x)N. Let Azenea,xyN = p(C) =
Uececp(c). Then3c € Csuch that \zenea,x)N = p(c). Thus, z € p(c) = /\zenea,x)N. Follows from the definition
of o, it is that (z,c¢) € 0. Note that (x,z) ep and (c,y) € p, we have that (x,y)ep e oo p.
Hence,p S p o 0o p.V(x,y) €p o 0o p,then3(p, q) € X x Y such that(x, q) € p,(q, p) € 0 and(p, y) € p.
Since (g, p) € 0, q € p(p) = Ngenea,x)N. Thus, y € p(p) = N\genea,c0N € p(x), i.e., (x,y) € p. Therefore,
p is strongly regular. O

Theorem 3.5. Let L be a complete lattice. Then the following conditions are equivalent:
(1) L is a strongly algebraic lattice, i.e., Vx € L,x=V{z € L:z «z < x}.
(2) There is a strongly regular relation p : X — X such that L = (D,(X), ©).
(3) The relation £ on L is strongly regular, i.e., ¥x,y € L with x £y, 3u, v € L such that
(@) utv;
() uty,xtv;
(iii) Vs,teL,ifutt,s ¢v,thens £t.
(4) Vx,y € L with x £y, 3u,v € L such that
(@) utv;
(@ uty,xtv;
(iiiy VzeL,u<zorz<v.
(5) Vx,y € L with x £y, 3u,v € L such that
(@ x¢lv,y¢Tu
() lvuTu=L,lvnTu=a.

Proof.

(1) = (2) Let X =L. Define a binary relation p: X — X, (x,y) ep oy <y <x and a relation
0:X — X, u,v)eg e u<v and v=u. Obviously, g < p7'. We claim that p=p o 0 o p. In fact,
for any (x,y) € p, i.e., y «y <x. Since L is strongly algebraic, 3z € L such that y <y <z <z <x.
By the definition of p and o, we have (x,z) € p, (z,2) € 0, and (z,y) € p. Hence, (x,y) € p o 0 ° p.
For any (x,y) € p o 0 ° p, Ju € L such that (x,u) € p, (u,u) € 0, and (u,y) ep. Theny «y<u<u<x,
which implies y <« y < x. So (x, y) € p. All the above show that p =p - 0 - p, i.e., p is strongly regular.

Now we only need to verify L = (D,(X)<). V p(A) € (X)), p(A) ={yeL:3acA,(a,y) ep}={yel:
JaecAy<y<at=Uaealy e L:yay<a}={yelL:y<y<VA} Define two functions f : L — (®,(X), <),
fX)=px)={yeL:y<y<x}and g: (PyX), <) - L, g(p(4)) = vp(4) = VA. Since L is strongly alge-
braic, it is easy to see that f o g = idg,x) and g o f = id;. Hence, L = (©y(X), ©).

(2) = (1) By Theorem 3.4.

(1) = (3) Vx, y € L with x £ y. Since L is a strongly algebraic lattice, thereisau € L such thatu <« u < x
withu £ y. Let v = sup(L\T ). Then it is easy to see thatu £ v,u ¢ y,and x ¢v.Vs,t e L,ifu ¢ t,s ¢ v,
then t € L\T u. Thus, t < v which implies s £ t (otherwise, s < v, a contradiction). This proof shows that ¢
is strongly regular.

(3) = (4) Vx,y € L with x £ y. By (4), 3u, v € L such that

(i) utv;
(i) uty,xtv;
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(iii) Vs,teL,ifu¢t,s £v,thens ¢t.
VzeL,lets=t=2z.Thenu < z or z < v. Thus, condition (5) holds.
(4) & (5) & (1) see [25]. O

From the above theorem, we can obtain the following corollary.

Corollary 3.6. Let L be a complete lattice. If L is strongly algebraic, then L° is strongly algebraic.

4 Finitely strongly regular relation

In this section, we define a concept of finitely strongly regular relation and obtain the finitely strongly
regular relation representation of hyperalgebraic lattices, prove that p is finitely strongly regular if and only
if (®,(X), <) is a hyperalgebraic lattice if and only if the finite extension p<® of p is strongly regular.

Definition 4.1. A binary relation p : X — Y is called finitely strongly regular, if V(x,y) € X x Y with
x, ¥) € p, Huy, Uy, ...,u} € X< and {vy, v, ...,Vpn} € YO such that
@ {vi, va, sV} € p(un, W, -y Unds
(i) y e plu, up, ...,und), and (x,v) e p (j=1,2, ...,m);
(iii) V{sy, S2, ...,Sm} € XC9 t e Y, ift € p({uy, U, ..., uyD), s,v)ep(j=1,2,...,m), then3dk € {1,2, ...,m}
such that (s, t) € p.

Remark 4.2.
(1) It is easy to observe that if the relation p is strongly regular, then p is finitely strongly regular.
(2) Condition (iii) of Definition 4.1 is equivalent to the following condition:

(iii") VS € X< te ¥V, ift e puy, uz, ... n}), Vi, V2, ..., Vb € p(S), then t € p(S).

(3) Let p: X — Y be a binary relation satisfying conditions (i) and (iii) of Definition 4.1. Then for
any S ¢ X,

{Vl’ V2, ---!Vm} < p(S) < p({ula U, ---’un}) < P(S)-

LetU = {uy, uy, ...,uz}, V= {vi, v3, ...,Vn}. ThenU € X<®), V ¢ Y@, By Definition 4.1, it is easy to obtain
the following lemma.

Lemma 4.3. Let p : X — Y be a binary relation. Then the following conditions are equivalent:
(1) p:X — Y is finitely strongly regular.
(2 Y(x,y) e X x Y with (x,y) € p, 3(U, V) € XE9 x Y« gych that

(1) V< pU);

@)y € p(U), V < p(x);

3)VS e X teY,ift e plU),Vcp(S), thent € p(S).

Now we give the finitely strongly regular relation representation of hyperalgebraic lattices.
Theorem 4.4. For a binary relation p : X — Y, then the following conditions are equivalent:

(1) p is finitely strongly regular.
(2) The finite extension p<®) of p : X<®) — Y9 js strongly regular.
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(3) W(F,G) € X&) x YO G ¢ p(F) = (U, V) € X&9 x Y9 gych that
(i) V< p(U);
(ii) G <p(U),V < p(F);
(i) V(S, T) € X< x Y@ if V ¢ p(S) and T < p(U), then T < p(S).
(4) (Urerp(F)<® : 7 c X<®} <) is a strongly algebraic lattice.
(5) (D(X), <) is a hyperalgebraic lattice.

Proof.
(1) = (2) Define a relation § : Y@ — x(<w) by

(G,F)eb o Gcp(F), and ¥(S, T) € X&) x Y& if G c p(S),Fn p(T) #+ @, then T n p(S) + &.

Then
(@) 6 ¢ (p(<‘”))*1,
(b) p(<“’) o8 o p(<w) c p(<lu).

For any (H, W) € p“® o § o p<¥), there exists (G, F) € Y9 x X< gych that (H, G) € p“®, (G, F) € 8,
and (F, W) € p&<¥), that is, G < p(H), (G,F) € 8, and W < p(F). Yw € W, let S=H and T = {w}. Then
G cp(S)and F n p(T) + @.ThenT n p(S) #+ & since (G, F) € 6. Hence, w € p(S), it follows that W ¢ p(H),
i.e., (H, W) € p<®),

(c) p(<w) gp(<w) o8 o p(<w).

For any (H, W) € p® and w € W, 3h(w) € H such that (h(w), w) € p. Since p is finitely strongly regular,
by Lemma 4.3, 3U(w) € X9 and V(w) € Y% satisfy the following conditions:

(1) V(w) < p(UW));

) w e p(UWw)), V(w) < p(h(w));

(3) VS e X&) te Y, ift € p(UWw)), V(w) € p(S), then t € p(S).

Let F = UwewUW), G = UwewV(w). Then (F, G) € X&) x Y&, G € p(F), G < Uwewp(hy) € p(H), and
W ¢ p(F). By Definition 2.5, (H, G) € p““) and (F, W) € p<“), Now we have to verify (G, F) € 8. Clearly,
(G, F) € p<®,V¥(S, T) € X0 x Y& if G ¢ p(S), Fn p (T) + &, then there exist wo € W and t, € T such
thatty € p(U(wp)),andVw € W,V (w) < p(S). Thus, V(wy) € p(S).By3°,ty € p(S), whichimpliesT n p(S) + @.
Thus, (G, F) € 8. Hence, (H, W) € p&<®) o § o p(<®),

By (a), (b), and (c), we have that § < (<)) and p®) = p<® o § o p(<¥) j.e., p<¥) is strongly regular.

(2) = (3) By Theorem 3.4 and Definition 2.5.

(2) © (4) Let 0 = p&<®), Then by Theorem 3.4, ¢ is strongly regular & (O,(X&9), €) = (Urerp (F):
F < X6, ) = (Urerp(F)<® : F ¢ X<, ©) is a strongly algebraic lattice.

(3) = (5) Let L = (Dy(X), ). For any M = p(A) € L, y € M, there is a x € A such that y € p(x), by (3),
there exists (U, V) € X< x Y(<®) sych that

i) Vcp);

(i) y € p(U), V < p(x);
({ii) V(S, T) € X&) x Y@ if V ¢ p(S) and T € p(U), then T < p(S).

LetV={v,v,...,vnpand N; = (N € L : vj ¢ N} (j = 1, 2,...,m) (N; may be an empty set). Now we have to
verify p(U) < p(U) € M. Since V ¢ p(x) < p(A) =M and V ¢ p(U), we have M € L\ |{N;, N,...,N,} and
p(U) € L\|{N}, N3, ...,Np}. VN = p(B) € L\|[{N}, No,...,Nyp}, V. € N = p(B). Let S = B, T = p(U), by the condi-
tion (iii), p(U) € p(S) = p(B) = N. Thus, N € T p(U). This proves that p(U) € L\ [{N}, N,,...,Np} € T p(U).
Thus, M € int,q) T p(U) = T p(U) withy € p(U).Hencee M = ({GeL: G<G<M}=\/{GeL:G<G<Mj}
i.e., L = (@,(X), <) is a hyperalgebraic lattice.
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(5) = (1) Let L = (®,(X), ©). V(x,y) € p, ie., y € p(x), since L is a hyperalgebraic lattice, there is
a N=p(A) e L such that y € N < N ¢ p(x). Since N <N, 3IM;, Ms,..., My, € L&® such that y € p(x) ¢
TN=L\|{M, My, ...,Mp}.Vj €{1,2, ...,m}, by N ¢ M;, 3v; € N but v; ¢ M,. It follows that thereisa u; € A
such that v; € p(;). Also, since y € p(A), Ju € A such that y € p(u).

Let U= {u, w, Uy, ...,up}t € XED, V= {v, v5, ...,vn} € Y9, Then it is easy to see that (U, V) satisfies
the following conditions:
(@) VcpU);
() y € p(U), V c p(x).

Now we check that (U, V) satisfies condition (c) of Lemma 4.3. VS € X6®, t ¢ Y, if V ¢ p(S), t € p(U), then
Vj€{l,2,...,m}, 3s; € S such that v; € p(sj). Let So = {s1, S2,...,Sm}. Then Sy € S and p(So) = JjL10(s)) €
L\[{M, M>,...,My,} = T N. Note that U < A, thus p(U) < p(A) = N € p(Sp). Since t € p(U), Tk € {1, 2,...,m}
such that t € p(sx) € p(So) € p(S). Therefore, p is finitely strongly regular. (|

Theorem 4.5. Let L be a complete lattice. Then the following conditions are equivalent:
(1) L is a hyperalgebraic lattice, i.e., Vx € L,x=Vv{yeL:y <y < x}.
(2 Vx,yeLwithx ¢£y,3u €L, and{v, vy, ...,Vn} € L®) such that
M utv(=12,..,m);
(i uty,x£v(j=12,...,m);
(iil) V{s1, S2y..sSm} € L and t e L, ifu ¢ t,s; £V (j=1,2,...,m), then 3k € {1, 2,...,m} such that
Sk $_ t.
() Vx,yeLwithx £y,3u €L, and {vi, v5,...,Vm} € LY such that
@Hutv(=12,..,m);
@ uty,xtv(i=1,2,...,m;
(iii) Vze L,u <z or z < v for some k € {1, 2,...,m}.
(%) Vx,y e Lwithx £y, 3u e L, and F € L% such that
(@ x¢|Fy¢Tu
() |Fulu=L,|FnTu=a.
(5) Vx,y e Lwithx £y,3u € L suchthat x € int,qyTu="TucL\|y.
(6) Vx,y € L with x £y, Ju(L)-closed subset C and u € L such that
(@ x¢Cyé¢Tu
() CuTu=L,CNnTu=a.
(7) The relation £ on L is finitely strongly regular.
(8) The finite extension <) of £ : L<®) — [(<¥) js strongly regular.
9) (Urer(I\T Vv F)<9) 1 F ¢ L9}, C) is a strongly algebraic lattice.
(10) There is a finitely strongly regular relation p : X — X such that L = (Dy(X), ©).

Proof.

(1) & (4) & (5) See Lemma 2.2 of [22].

(1) = (2) Vx, y € L with x £ y. Since L is a hyperalgebraic lattice, there exists u € L such thatu < u < x
with u £ y. By the definition of <, we have that x € int,y, T u =T u < L\| y. Hence, there exists a finite
set F = {n, v3,...,Vn} € L such thatu € L\| F € int,) T u, which impliesx e L\| F=Tu cL\|y.Sou ¢
(G=12,....m,usty,andx £v; (j=1,2,...,m).

Now we only need to show that u and F = {vy, v,,...,Vy,} satisfy condition (iii) of (2). Let {sy, S5, ...,Sm} €
L<® and t € L with u ¢ t,s; ¢v; for all j=1,2,..., m. Assume that for any j € {1, 2,...,m}, s; < t, then
t € L\| F; otherwise, there exists a j, € {1, 2,...,m} such that ¢ < vj,,» and then s; <v;, a contradiction.
This implies t € L\| F € T u, a contradiction. Hence, there exists k € {1, 2,...,m} such that s; £ t.

(2) = (3) We only need to show condition (iii) of (3). Vze L. Lett=z and 5=z (j=1,2,...,m).
By condition (iii) of (2), u <t =z or z < v, for some k € {1, 2,...,m}.

B)= W) VxelL,ifyeLwithx £y, by (3),3u € L and {v, v5,...,Vm} € L&? such that
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M uty(j=1,2,..,m);
i) uty,xtv(i=12,...,m;
(iii) Yz € L,u < z, or z < vy for some k € {1, 2,...,m}.

Let F = {vi, Vs,...,Vm} € L&®), Then it is easy to see that x e Tu=L\| F. Thus, u <u<x and u £y.
Hence, x ={y € L : y <y < x}, i.e., L is a hyperalgebraic lattice.
(5) = (6) Let C = L\int ) T u. Then C is v(L)-closed and satisfies condition (6) with u.
(6) = (5) Vx,y € L with x £y, by (6), 3 v(L)-closed subset C and u € L such that
(@ x¢C,y¢ Tu
b) Culu=L,CnTu=a.

By condition (b), Tu=L\C e uv(L), and it follows from condition (a) that x € L\C = int,q) Tu =
TuclL\|ly.
(2) = (7) Vx,y € L with x ¢ y, by (2), there exist u € L and {v, v, ...,Vn} € LE® such that
Dutv(=12..,m);
(i) ugy,x £v(j=1,2,...,m);
(iii) V{si, Sz, ...,Sm} € L andt € L,ifu ¢ t,s; £ v; (j =1,2, ...,m), then3k € {1, 2, ...,m} such that s, ¢ t.

Letu; =u (i=1,2...,n). Then it is easy to see that {u, Uy, ...,u,} and {v, v,, ...,V,} satisfy condition (7).
(7) © (8) © (9) By Theorem 4.4.
(7)=> (10)LetX=Landp= ¢ : X — X.ThenL = (® 4 (X), 9).
(10) = (1) Using Theorem 4.4. O

5 Generalized finitely strongly regular relation

In this section, we define a concept of generalized finitely strongly regular relation and get the generalized
finitely strongly regular representation of quasi-hyperalgebraic lattices, prove that p is generalized finitely
strongly regular if and only if (D,(X), ©) is a quasi-hyperalgebraic lattice if and only if (D,(X), <) with
respect to the interval topology is a Priestley space. Meanwhile, some equivalent characterizations of quasi-
hyperalgebraic lattices are obtained.

Definition 5.1. A binary relation p : X — Y is called generalized finitely strongly regular, if V(x, y) € p,
there exist {F, B5,...,F} € X<9) <9 and {y;: i=1,2,...,n; j = 1,2,...,m} € Y@ such that
(i) Vie{l,2,...,n} {vir, Vias .. s Vimy € p(F);
(i) Vie{1,2,...,n}, y € p(F), and 3¢ € ]'[;.":1{1, 2,...,n} such that {(x, vy, (X, Vz22), ..., Vemm)} € 3
(iii) V{si, S2,...,5m} € X<, {ty, ty,...,t,} € YO, and ¢ € H;":l{l, 2,..,n}, if tepF)(i=1,2,..,n) and
1081, Vpyn)s (825 Vip2)2)5 - -+ »(Sm» Vpemym)} € P, then 3(k, 1) € {1, 2,...,m} x {1, 2, ...,n} such that (s, ;) € p.

Obviously, the condition 3¢ ¢ ]_[;": 111, 2,...,n} such that {(x, V1)), (X, Ve2)2)s .- (X, Vemym)} € p is equiv-

alent to x € p_l({VU', Vyj,...,Vpip) for any j € {1, 2,...,m}. So we obtain the following equivalent characteriza-
tions of generalized finitely strongly regular relations.

Proposition 5.2. Let p : X — Y be a binary relation. Then the following conditions are equivalent:

(1) p is generalized finitely strongly regular.

(2) VY(x,y) € p, there exist{F;, F,..., B} € (XC)<® and{v; :i=1,2,...,n;j = 1,2,...,m} € YE9 such that
(@ Vie{l,2,...,n}, {vi, Vio, ..., Vim} € p(F);
(b) Vie{l,2,...,n}, y € p(F), and 3k € {1, 2,...,n} such that p(F;) < p(x);
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(©) ViSi, Soy.vesSmp € XE, {ty, b, ..., ta} € YEO, if ti € p(F) (i = 1,2,...,n) and sj € p'({wyj, Vaj, ..., Vigi})
(j=1,2,...,m), then A(k, 1) € {1, 2,...,m} x {1, 2,...,n} such that (s, t;) € p.
() V(x,y) € p, there exist {F}, B, ...,F} € X< <9 and{v;: i=1,2,...,n; j =1,2,...,m} € Y such that
(@) Vie{l,2,...,n}, Vi, Vizs..., Vim} < p(F2);
(b) Vie{l,2,...,n}, y € p(F), and 3k € {1, 2,...,n} such that {vii, V2, ..., Vim} S p(x);
(©) Visi, S2y.eesSmp € XEO, {ti, b, ..., ta} € YEO, if ti € p(F) (i = 1,2,...,n) and sj € p ({wyj, Vaj, ..., Vigi})
(j=1,2,....m), then A(k, 1) € {1, 2,...,m} x {1, 2,...,n} such that (s, t;) € p.
(4) Y(x,y) € p, there exist {F}, F, ...,F;} € (XSS and {Gy, G, ...,Gp} € (YEY<9) sych that
(@ V(@,j)e{l,2,...,n} x{1,2,....,m}, p(F)  Gj + &;
(b) Vie{l,2,...,n},y € p(F), and x € p™(G;) (j = 1, 2,...,m);
(©) Visi, Soy ..., Sm} € X {ty, by, ..., bt} € YE,iftie p(F) (1= 1,2,...,n)andsj € p(G)) (j=1,2,...,m),
thenA(k, 1) € {1, 2,...,m} x {1, 2,...,n} such that (sy, t;) € p.

Proof.

(1) = (2) We only need to prove condition (b). Assume that for any i € {1, 2, ...,n}, p(F) ¢ p(x), then
there is a t; € p(F)\p(x). By condition (ii) of Definition 5.1, 3¢ € ]'[;.”= A1, 2,...,n} such that {(x, veqy),
(X Ve@2)s -+ (X, Vegmym)} € p. Let s; =8, =...= sy, = x. From condition (iii) of Definition 5.1, it is follows
that 3l € {1, 2,...,n} such that (x, ¢;) € p, i.e., t; € p(x), contradicting to the assumption that ¢; ¢ p(x) for
anyi € {1, 2,...,n}. Hence, condition (2) holds.

(2) = (3) Obviously.

3)=> (W) Vj €{1,2,...,m}, let G; = {wj, vy, ..., Wy;}. Then v; € p(F) N G;. Thus, condition (a) of (4) holds.
It follows from condition (b) of (3) that x € p~(vy) (j = 1, 2,...,m). Hence, condition (4) holds.

(4) = (1) By condition (a) of (4), V(i, j) € {1, 2,...,n} x {1, 2,...,m}, p(F)(\G; # @. Then 3v; € p(F) ) Gj,
ie, Vie{l,2,...,n}, {Vi, Vizy...,Vim} € p(F). Meanwhile, Vj € {1, 2,...,m}, let t; =vy; € p(F1), t, = vy € p(F>), ...,
tn = Vyj € p(F,). By condition (b) of (4), x € pY(G)){j = 1, 2,...,m}. Lets; = s, =...= s,y = x. Then by condition
(c)of (4),3(k, 1) € {1, 2,...,m} x {1, 2,...,n} such that (s, ;) € p, thatis, x € p~1(t;) = p71(viy) € p1(vij, Vajy ..., Viy).
Hence, condition (ii) of Definition 5.1 holds.

Finally, we verify condition (iii) of Definition 5.1. V{sy, Sy, ...,Sm} € X9, {t;, b, ..., t,} € YEQ if t; € p(F)
(i=1,2,...,n)ands; € p*l{vlj, Vyj, ..., Vit ( = 1, 2,...,m). Note that v; € Gj, we have that {vy;, vy,..., Wy} € G;j.
Hence, sj € p'(Gj) (j = 1, 2,...,m). By condition (c) of (4), 3(k,1) € {1,2, ...,m} x {1, 2, ...,n} such that
(sk, t;) € p. Therefore, p is generalized finitely strongly regular. O

Now we give the generalized finitely strongly regular relation representation of quasi-hyperalgebraic
lattices.

Theorem 5.3. For a binary relation p : X — Y, the following conditions are equivalent:
(1) p is generalized finitely strongly regular.

(2) (D,(X), ©) is a quasi-hyperalgebraic lattice.

(3) (®y(X), ©) equipped with the interval topology is a Priestley space.

(4) (Dy(X), <) equipped with the interval topology is totally order-disconnected.

Proof. Let L = (®,(X), ©).

(1) = ) Yp(A) € L, U e u(l), if p(A) € U, then FH{p(4), p(42),...,p(A)} € L<® such that p(A) €
L\ [{p(A), p(A2),....p(A)} € U, that is, Vi€ {1, 2,...,n}, p(A) ¢ p(4;). It follows that there exist x; € A
and y; € Y such that (x;, y;) € p, y; ¢ p(4;). Since p is generalized finitely strongly regular, by Proposition 5.2
(4), HFy, By ..., Fny} € XCED {Gy, Giay ..., Gimn} € (YED)<) such that
(@ Yk, D efl,2,...,n(D} x {1, 2,...,m@D}, p(Fx) N Gy #+ ;
(b) Vk € {1,2,...,n(D)}, y; € p(Fy), and x; € pY(Gy)(I = 1, 2,...,m(D));
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(c) Vs, sz, ...,Sm(i)} € X&) {t, b, ~--stn(i)} e Y& if te e p(Fp)k =1, 2,...,n()) and s; € p_l(Gn)(l =1,2,...,
m(i)), then3(g, h) € {1, 2,...,m(@)} x {1, 2,...,n(i)} such that (s, ty) € p.
Vie{l,2,...,n},le€{1,2,...,m(@)}, let Ny = | J{M € L : Gy n M = &} (N3 may be an empty set). Then for

anyi € {1, 2, --- ,n}, we have the following results:

1° p(A) e L\|{Ny: 1 =1,2,...,m(D}. Vl € {1, 2,...,m(i)}, since x; € A and x; € p~1(Gy), p(A) N Gy + D.
Hence, p(A) ¢ Ny, that is, p(A) € L\[{Ny : L =1, 2,...,m(i)}.

2° L\|{Ny:1=1,2,...,m@)} < Hp(Fy) : k =1,2,...,n(i)}. Assumed that there exists p(B) € L\ |[{Ny :
l=1,2, .- ,m(i)} such that p(B) ¢ T{p(Fx) : k=1,2, --- ,n(i)}, then for each k € {1, 2,...,n(i)}, choose
ty € p(Fa)\p(B). V1l € {1, 2 ..., m(i)}, by the definition of N; and p(B) € L\|{N; : [ = 1, 2, --- ,m(i)}, we have
that Gy N p(B) # @. Thus, there exist w; € Gy n p(B) and s; € B such that (s, w)) € p, i.e., 5 € p1(Gy).
By the above condition (c), 3(g, h) € {1, 2,...,m(@)} x {1, 2,...,n(i)} such that (s, t;) € p. Hence, thep
(sg) < p(B), which contradicts t, ¢ p(B). Therefore, L\ |[{Ny: [ =1, 2,...,m({)} € T{p(Fi) : k=1, 2,...,n(i)}.

3° Mp(Fy) : k=1,2,...,n(0)} < L\[{Ny : 1 = 1, 2,...,m(i)}. For any p(C) € T{p(Fx) : k=1, 2,...,n(i)},
there exists a h € {1, 2,...,n(i)} such that p(Fy) < p(C). By condition (c) of above, VI € {1, 2,...,m(i)},
@ + p(Fp) N Gy € p(C) N Gy. By the definition of Ny, p(C) € L\[{Ny : [ = 1, 2,...,m(i)},

4o Mp(Fy) 1 k=1,2,...,n(0)} < L\| p(4;). Vp(D) € T{p(Fy) : k =1,2,...,n(i)}, Tk € {1, 2,...,n(i)} such
that p(Fy,) € p(D). By condition (b) of above, y; € p(Fy,) < p(D). Note that y; ¢ p(4;), so p(D) € L\| p(4;).
Hence, T{p(Fix) : k=1, 2,...,n({)} < L| p(A4)).

From the above 1°, 2°, 3°, and 4°, it follows that p(A) € (L (L\[{Ny:1=1,2,....m(D}) = (LT
PED : k= 1,2,...,n@} € @\ pAD) = L\L{p(A), p4y), ....pA} < U.

Let 7 = {UL1p(Fpa) = pPUL1pEp)) = @ € [Tyl 2,...,n( and V = NLEL\ Ny : 1= 1,2,...,n(D}) =
IN{{Ny:i=1,2,...,n;1=1,2,...,n()}. Then F € L&, V ¢ u(L) and p(A) € V = 1 F < U. Hence, p(A) €
intyqy TF =17F < U.Therefore, L = (D,(X), <) is a quasi-hyperalgebraic lattice.

(2) © (3) See Theorem 2.1 of [22].

(3) = (4) Obviously.

@)=V, y) ep,ie,yepx),letM, = J{N € L : y ¢ N} (M, may be an empty set). Then p(x) ¢ M,.
Since (L) is totally order-disconnected, there exist {p(4,), p(4y),...,p(Amn)}, {P(BY), p(B), ...,p(By)} € LE®
such that p(x) € L\ [{p(41), p(A2),...,p(An)} = T{p(B1), p(Ba),...,p(Bx)} € L\| M,. Hence, V(i, j) € {1, 2,...,n}
x{1,2,...,m}, p(By) ¢ p(4;), which implies 3v; € p(B)\p(4;). Vi € {1, 2,...,n}, since {vyy, Viz, ..., Vim} < p(By),
there exists F; ¢ Bi(<’”) such that {vy, vz, ...,Vim} € p(F). Hence, condition (a) of Proposition 5.2(2) holds.

Now we show condition (b) of Proposition 5.2 (2). Since p(x) € T{p(B1), p(B2),-..,p(Bn)}, 3k € {1, 2,...,n}
such that p(By) < p(x). Thus, p(F) € p(x). Vi€ {1,2,...,n}, j € {1, 2,...,m}, from v; € p(F) and v; ¢ p(4)),
it follows that p(F) ¢ p(4)). Hence, p(F) € L\{p(A), p(Ay), ....p(An)} = 40(B1), p(By), ..,p(B)} < L\ M.
By the definition of M,, y € p(F) for anyi € {1, 2,...,n}.

Finally, we show condition (c) of Proposition 5.2 (2). V{51, S2,...,Sm} € X9, {t, t5,...,t,} € YEO, Jet
tiep(F)(=1,2,..,n and s; € p‘l({vlj, VajseosViy) (J = 1,2,...,m). Then Vj € {1, 2,...,m}, & # {vy, v3j,...,
Vit N P(Sj) € {vij, Vojs ... 5 Vit N Pp({S1, S2,...,Sm}). Note that for any i €1, 2,...,n},j €{1,2,...,m}, v; ¢ p(4)),
so p({s1, Szs-.-»Sm}) € L\|{p(A1), p(42),...,p(An)} = T{p(B1), p(B2),...,p(By)}. Hence, 3l € {1, 2,...,n} such
that p(B)) < p({s1, S2,...,Sm}), Which implies t; € p(F) < p(B) < p({s1, S2,...,Sm}). Therefore, 3k € {1, 2,...,m}
such that (s, ;) € p.

By Proposition 5.2, p is generalized finitely strongly regular. O

Lemma 5.4. Let L be a complete lattice and F € L9, If intyqy 1 F=1F, then 3G € L“®) such that
TF=I\|G.

Proof. Since int,gyTF=1F and F is a finite set, there exists {Gj:j=1,2,...,m} ¢ L) such that
TF =L\l G). Let G = {rnp({1, 2,...,m}) : @ € H;"zlGj}. Then J7%,(L\| G;) = L\N}%41] Gj = L\| G. Hence,
1F=1I\|G. O



302 — Shuzhen Luo and Xiaoquan Xu DE GRUYTER

The following theorem gives some equivalent characterizations of complete lattices that are Priestley
spaces with respect to the interval topology.

Theorem 5.5. Let L be a complete lattice. Then the following conditions are equivalent:
(1) L is a quasi-hyperalgebraic lattice, i.e., Vx € L, U € v(L) with x € U, 3F € L“?) such that x € int w(L)
TF=1TFcU.
2) (w(L), ©) is a hyperalgebraic lattice.
(3) V(x,y) € L with x £y, 3wy, Ua,...,Un}, V1, Vay ..., Vin} € L&D satisfying the following conditions:
() VvG4,j)efl,2,...,n} x{1,2,...,m}, u; £ v;
(i) uyty (i=12,...,m),x£v(j=1,2,...,m);
(ii)) ViS1, SasevesSmbs {is by ovs bt} € LS9 ifu; £ (1, j € {1, 2,...,m}), si £ vi(Q, j € {1, 2,...,m}), then3(k, I)
€{1,2,....,m} x {1, 2,...,n} such that sy £ t,.
(%) Y(x,y) € Lwithx £y, Hu, w,...,Un}, {1, Vo, ..., Vm} € LW satisfying the following conditions:
(i) V(G,j) e{l,2,...,n} x{1,2,...,m}, u; £ v;
(i) ity (i=12,...,m),x£v(j=12,...,m);
(iii) Vz € L, uy < z for some k € {1, 2,...,n} or z < v, for somel € {1, 2,...,m}.
(5) Vx,y € L with x ¢y, 3F, G € L% such that
) x¢lG y¢TF;
(i) |]GuTF=Land | GNnTF=a.
(6) Vx,y € L with x £y, Ju(L)-closed subset C and F € L<®) such that
(i) x¢C,y¢TF;
(i) CUTF=LandCn 1F = @.
(7) Vx,y € L withx £y, 3F € L&® such that x € int,q) TF=1FcL\|y.
(8) Vx,y e Lwithx ¢y, 3G e L9 and w(L)-closed subset B such that
(i) x¢ |G, y¢B;
(i) |[GuUB=Land | GNnB=g@.
(9) Vx,y € Lwithx £y, 3G € L) such thaty € int ) | G=| G < L\ x.
(10) Vx,y € L with x £y, Ju(L)-closed subset C and w(L)-closed subset B such that
(i) x¢C,y¢B;
(i) CuB=LandCn B = @.
(11) The relation £ on L is generalized finitely strongly regular, i.e.,¥(x,y) € L withx £y, 3{F, F,...,E} €
XN and {v; 1 i=1,2,...,n;j = 1,2,...,m} € Y such that
(a) Vie {1’ 2,...,1’1}, {Vil’ Vi2:~~-’Vim} < 4{— (E) = UueFi(L\T u) = L\ﬂueFiT u;
(b) Vie{l,2,..,n},y € ¢ (F) =L\ uerT u, and 3k € {1, 2,...,n} such that £(F,) € ¢ (x) = L\T x;
(€) V{S1, S2s.vvsSmbs {ts by vt} € YO if tie ¢ (F)(d,j€{1,2,...,n}) and s; € £ (v, vajy ..., Vis})
(i,jef1,2,...,m}), then A(k, 1) € {1, 2,...,m} x {1, 2,...,n} such that s; £ t,.
(12) (L, 6(L)) is a Priestley space.
(13) There is a generalized finitely strongly regular relation p : X — X such that L = (Dy(X), <).

Proof.

1) e 2,0 12 see [22].

(1) = (3) Vx,y € L with x £y, that is, x € L\| y € v(L). Since L is quasi-hyperalgebraic, there exists
F={u, uy,...,us} € L such that x € int,q) TF=TFcL\|y. Since Fe L% and int,q 1 F=1F,
by Lemma 5.4, 3G = {w;, Vs,...,Vm} € L& such that T F = L\| G. Hence, x e L\| G=TF c L\] y.

Now we show that F = {u, up,...,u,} and G = {v;, v5,...,V,} satisfy condition (3). Obviously, V(i, j) €
{1,2,...,n} x {1,2,....m}, w; £ vj, u; £y and x £ . V{Sy, So,...,Sm} € L&Y, {t, b, ..., ta} € L9, if u; £ (i, j €
{1,2,...,n}), si £v(i,j €{1,2,...,m}), then we have ;¢ TF (i=1,2,...,n) and ;¢ | G (j=1,2,...,m).
Thus, for any je({l,2,...,m}, s; € L\| G. Assume that V(i,j) € {1,2,...,n} x {1, 2,...,m}, s;< ¢, then
t; € L\| G = T F, which contradicts t; ¢ TF (i =1, 2,...,n). Hence, 3(k,1) € {1,2,...,m} x {1, 2,...,n} such
that s; £ t.
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(3) = (4) We only need to verify condition (iii) of (4).Vz e L,letsj=z=t; (i=1,2,...,n;5j = 1,2,...,m).
By (3)(iii), it is easy to see that condition (iii) of (4) holds.

(4) = (5) Let F = {uy, Uy,...,uy} and G = {v, v5,...,V}. Then F, G € L&, From (4), we can obtain that
F, G satisfy condition (5).

(5)= (6) Let C = | G. Then | G is vu(L)-closed, and satisfies condition (6) with T F.

(6) = (7) Obviously.

(7) = (8) Vx,ye with x £y, by (7), 3F € L“® such that x € intyy TF=TF<L\|y. Let B=TF.
Then B is w(L)-closed. Since F € L&<® and int, 1 F = 1 F, by Lemma 5.4, 3G € L% such that F = L\| G.
Hence, B = T F and G satisfy condition (8).

(8)= (9) Trivial.

(9)= (10) LetC = | G, B =L\| G. Then C is v(L)-closed and B is w(L)-closed satisfying condition (10).

(10) = (1) Vx € L, U € u(L) with x € U, 3{y,, y5,...,y,} € L““) such that x € L\|{y,, },,...,¥,} € U. Then
x ¢y for any i € {1, 2,...,n}. By (10), 3 u(L)-closed subset C; and w(L)-closed set B; such that x € L\C; =
B; ¢ L\| ;. Then MLi(L\C) = L\UL1 G = NiBi € Mm@\ ) = L\{y, Y5 -..5¥,} € U. Since B; is a 6(L)-
clopen upper set, there exist {Gi, G,,...,Gp} € L&® such that B;=T1G; for all i € {1,2...,n}. Let F =
{\/Liai : a; € G}. Then Fe L~ and x €1 F=\B; = L\UL,Ci € v(L). Hence, x e int,gy 1 F=TFcL\|
V> Vo -.-» ¥ € U. Therefore, L is a quasi-hyperalgebraic lattice.

(3)= (11) Vx,y € L with x £ y, by (3), Iy, Uy, ..., Un}, {1, V2, ..., Vm} € L9 satisfying

i) va,j) ef1,2,...,n} x{1,2,...,m}, u; £ v;3
(i) £y (i=12...,m,x£vi(j=1,2,...,m);
(iii) V{S1, S2s-+-sSmbs {t, by ovta} € L9, if w; £ (1,5 € {1, 2,...,n}), s;i £ Vj(i,j € {1, 2,...,m}), then 3(k, ) €

{1,2,...,m} x {1, 2,...,n} such that s; £ t,.

Vie{l,2,...,n},je{l,2,...,m}, let ;= {w}, vij=vyy =...= Vyj = v;. By (i), Vi € {1, 2,...,n}, {Vi, Vio, ..., Vim} =
{1, Vay o5V} € L\T w; = ¢ (F). Now we verify condition (b) of (11). By (ii), Vi € {1, 2,...,n},y eLl\T u; = ¢ (F).
Letsi=s;=..=sp=x,t=b=...= b =x. Then V(k,I) € {1, 2,...,m} x {1, 2,...,n}, s < t,. Note that s; =

x £V (j=1,2,...,m), by (iii), 3k € {1, 2,...,n} such thatuy < & = x, thatis, £(F) = L\T ux € L\T x = £ (x).
Obviously, condition (c) of (11) holds. Therefore, condition (11) holds.

(11)= 3) Vx,y € Lwithx ¢y, by (11), H{F, B,...,F} € X)) <D and{y;:i=1,2,...,n;j=1,2,...,m}
¢ Y<) gatisfying conditions (a),(b) and (c). Let u; = v F, v =AL ;. Then it is easy to see that V(i, j) €
1,2,..,n x{1,2,....m},u; £vj,andu; £y (i=1, 2,...,n). By (b), 3k € {1, 2,...,n} such that w; < x. Thus,
x £v; (j=1,2,...,m) (otherwise, u; < v;, for some j, € {1, 2,...,m}, a contradiction). Finally, we show that
condition (iii) of (3). V{s1, Sa, ..., Sm}, {ti, & .o tu} € LS9, if w; £ G, € {1, 2,...,n}), si £ vi(i,j € {1, 2,...,m}).
Thentje ¢(F) =L\Tu(i,j€{1,2,...,n}) ands; € £ "({wyj, vyj,...,Vs}) = L\(L1l v = L\| vj(i, j € {1, 2,...,m}).
By (c), A(k, 1) € {1,2,...,m} x {1, 2,...,n} such that sy £ ;. Therefore, condition (3) holds.

(11) > (13) Let X =L and p = £ on L. Then L = (® 4 (X), <). By Theorem 5.3, p is generalized finitely
strongly regular.

(13) = (1) Using Theorem 5.3. O
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