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Abstract: Extending our previous work we construct weakly holomorphic Hecke eigenforms whose period
polynomials correspond to elements in a basis consisting of odd and even Hecke eigenpolynomials induced
by only cusp forms. As an application of our results, we give an explicit construction of the holomorphic
parts of harmonic weak Maass forms that are good for Hecke eigenforms. Moreover, we give an explicit
construction of the Hecke-equivariant map between the space of weakly holomorphic cusp forms and two
copies of the spaces of cusp forms, and show that the map is compatible with the corresponding map on the
spaces of period polynomials.

Keywords: mock modular forms, Hecke operators, harmonic Maass forms, weakly holomorphic modular forms

MSC 2020: Primary 11F11, 11F67 Secondary 11F25

1 Introduction and statement of results

Let p be one or a prime and I'j(p) be the group generated by the congruence subgroup I)(p) and the Fricke

0o -1
involution W, = Np
P o

meromorphic with poles only at the cusps) modular forms f of weight k for In(p). For € € {+1}, let M;"**(p)

]. For any even integer k, let M (p) be the space of weakly holomorphic (i.e.,

be the subspace of M| (p) with f[xW, = &f. Each f € M,"*(p) has a Fourier development of the form
f@) =) anq",

nzngp

where the parameter g stands for exp(2miz), as usual. We set ord, f = no if ar(no) # 0. Let & be the set

consisting of values of p for which the genus of I'}(p) is zero, that is,
6={1,23,57,11,13,17,19, 23, 29, 31, 41, 47, 59, 71}.
When p € &, the space Mk!’g(p) has a canonical basis: see [1-4]. We define
mf = max{ord.fIf # 0 € My*(p)}.

When k > 2, we note that mj is given by dimS{(p). Indeed, for every integer m with -m < mg, there exists
a unique weakly holomorphic modular form fi,m € M;**(p) with Fourier expansion of the form

frm(@ =a+ Z ac(m, n)q" 1)

n>mg
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and together they form a basis for M;*(p). Indeed the basis element fi.m can be given explicitly in the form
flm = ﬂiﬁmngk’mJ,mlf( j;), where j; is the Hauptmodul for I'§(p) and F, p(x) is a monic polynomial in x of
degree D. Moreover, the Fourier coefficients af(m, n) of g" in fi,m turn out to be rational integers.
Throughout this paper, we simply write f; ,, = ﬂ;m.

As usual, we denote by S;'(p) the space of holomorphic cusp forms of weight k for [{(p). Let S, *(p) be
the subspace of Mk""( p) consisting of weakly holomorphic modular forms for I'§(p ) with zero constant term
in the Fourier expansion. We now consider Hecke operators on Si(p). For each positive integer n relatively
prime to p, the usual Hecke operator T, on S;(p) extends to Sk!’*(p). In particular, for prime indices I(#p),
the Hecke operators T; on S;>*(p) are given as follows: for f € S;"*(p),

EARP |k(8 Z)zzn:(af(ln)+lklaf(”/l))qn' @
b(mod d)

Common eigenforms of all Hecke operators T,, on S{(p) with n coprime to p are called Hecke eigenforms.
For later use, we let t = dimS;(p) and

{f,, = Y An,m)q"|n=1,2, ...,t}
m>0

be a basis of S (p) consisting of normalized Hecke eigenforms. Following [5,6] we call f € Sk!*(p) a weakly

holomorphic Hecke eigenform with respect to Sk”(p)/ Dk‘l(lej((p)) if for every Hecke operator T, with

(n, p) = 1 there is a complex number A, for which

Tof = Anf € DM (M, (p)),

where D stands for the differential operator zlmé

In the work of Bringmann et al. [5, Theorem 1.5] weakly holomorphic Hecke eigenforms are constructed in
the level 1 case by making use of harmonic weak Maass forms which are preimages of Hecke eigenforms under
the differential operator ¢, := 2iy"% originated from [7]. Thus, their construction is not explicit. In [6, Theorem

1.2], we extended it to higher level cases to the primes for which I'§(p ) has genus zero (primes up to 71 excluding
37, 43, 61, and 67). The construction was given explicitly in terms of weakly holomorphic modular forms without
relying on the theory of harmonic weak Maass forms, and we gave an explicit description of the “polar”
eigenform h, in terms of a linear combination of cuspidal eigenforms and the dual form f,, as in
(EF1)-(EF3). Here the duality is with respect to a certain pairing of functions introduced by Guerzhoy as follows.
Following [1,5,6,8,9], for f,g € Mk!’*(p), we define a pairing {f, g} originated from Bruinier and
Funke (7] by
Z af(—n)ag(n).

nk—l

{f. g} = G)

neZ,n#0
It is antisymmetric (since k is even), bilinear, and Hecke equivariant. Specifically, for any prime €(#p)
{L.f, g} =1{f, Tig}.

Moreover, D"‘1(M2’;7(( p)) is perpendicular to all of S,j’*( p), they are the only weakly holomorphic modular forms
with that property (by the Serre duality theorem), and two elements of S; (p ) are perpendicular to one another. Let

fa= 2 um,nqn )

m>—t

with u(m, n) € C be a linear combination of frps Tre which is dual to f, with respect to the pairing,

ie., {fms>fa} = 6mn, where 6, is the Kronecker delta function. Then such functions f; are unique.



DE GRUYTER Explicit construction of mock modular forms =— 315

Moreover, it follows from [1,9] that T; f; and A(n, )f;; represent the same coset in S;>*(p) /(D¥"\(M,"1(p)) ®
St (p)). Thus, we can write

t
Tofy = An, Of; + D¥g, , + Y an(0)f; (5)
j=1
for some g, , € M,>}(p) and aj(¢) € C.
Let p € &, t = dimS{(p), and ¢ be a prime different from p. We then obtain from [6, Theorem 1.2]

the following assertions.
(EF1) Leti,n € {1,...,t} with i # n. Let r be a prime (#p) such that A(i, r) # A(n, r) and put

ani(r)

4= 36 A

Then x;(n) is independent of the choice of r and the quantity a,;(r) is given by
ani(r) = {fy, T fi}
(EF2) For eachn with1 <n < t, let

t

he = Y X + f;.
i=1
i#n

Then h, is a Hecke eigenform with respect to Sk!'*(p) / Dk’l(Mz’j((p )) having the same eigenvalues as those
of f,. More explicitly one has

Ty(hy) = A(n, ©hy, + D¥X(g, o),

where g, , is the modular form defined in (5) and computed as

u(=s, n)
Sne =~ z —_le—k,sI ’

k
1<t S
se>t

where u(-, n) is the Fourier coefficient of f,;, defined in (4).
(EF3) The set

(ALl fels T, Lhel}

forms a basis for S>*(p)/D*"\(M,>}(p)), where [ f] stands for the class of f.

For T € {Ty(p), T'§(p)}, let H,_(T) be the space of harmonic weak Maass forms of weight 2 — k for T.
Following [10,11], we say that §(z) € Ho_1(To(p)) is “good” for the Hecke eigenform f¢(z) = f(-z) € Si(p)
if it satisfies the following:

(1) The principal part of § at the cusp oo belongs to Kf[g~!]. Here K; denotes the number field obtained

by adjoining to Q the Fourier coefficients of f.

(2) The principal part of § at the cusp O is constant.
(3) Wehave &3 = /-
Remark 1.1.
(i) The existence of §, which is good for a Hecke eigenform f°¢ is guaranteed by [10, Proposition 5.1].
(ii) Let § be good for a Hecke eigenform f¢ and denote t = dimS;(p) and t' = dimS;(p). Let Mg_k(p) be
the space of weakly holomorphic modular forms of weight 2 — k for Iy(p) with poles allowed only at

the cusp co. For p € {1, 2, 3, 5, 7, 13}, it follows from [12, Theorem 1.1, Theorem 1.7, and line 6 in p. 123]
that

max{ord..f|f#0 e M}  (p)}=-1-t-t,
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and for each integer m with -m < -1 - t - t/, there exists f§_, | =q™ + 0(g"") € M}_,(p) with inte-

gral Fourier coefficients. By subtracting a suitable linear combination of f"z_k n S from 3, we can take

a unique §, which is good for f¢ and * = 0(g”"™").

(iii) In [11] a direct method for relating the coefficients of f¢ and § is provided by means of p-adic coupling
and an algebraic regularized mock modular form F,. More precisely, if we let a be the coefficient of ¢!
in §*, then F, is given by

F=DN1§*—af= ) cin)g™.

n>>-oo
Moreover, F, has coefficients in Ky and
c.(8Vn)q"
lim el Loy ppeipey, 6)
W—+00 cq(2")

where ¢ is a prime number and f3, B’ are the roots of the equation X? — a;(&)X + x(&)¢~"! = (X - B)(X - B
ordered so that ordy(f) < ord,(8'), x is a trivial character modulo p, and we assume that  # 0 in the
case £ = p. We take the limit in (6) in €-adic topology.

(iv) In [13], the structure of half-integral weight weakly holomorphic Hecke eigenforms was developed, and
in [14] half-integral weight p-adic coupling was investigated.

Let f, g € M{(p). We define a regularized inner product as follows. For T > 0, we denote by 7 the
truncated fundamental domain for SLy(Z)

Fr={zeH|x|<1/2,]z] =1, and y < T}.
Moreover, we define the truncated fundamental domain for I[)(p) by

Frlo(p)) = U yFr,
yevV

where V is a fixed set of representatives of Iy(p)\SL,(Z). Now we define the regularized inner product
(f, g)™8 as the constant term in the Laurent expansion at s = 0 of the function

j f (Z)@y"‘sdx—?y-
y

Fr(To(p))

S S t,
[SLy(Z) : To(p)] T—co

As explained in [10] and [15], (f, g)™¢ exists if f or g is a holomorphic modular form. If both f and g are
holomorphic modular forms such that fg is a cusp form, then (f, g)™8 reduces to the Petersson inner

product (f, g).
In the next theorems, we give an explicit construction of D¥"'F in terms of polar eigenforms and
a canonical basis. Theorem 1.2 applies for p = 1 only, while Theorems 1.3 and 1.5 cover higher levels.

Theorem 1.2. Let 2 < k € 27, and t = dimS{(1). Then for eachn € {1,...,t},

(frs fu)"®
(fs fo) &

is equal to D', for the unique T, € H,_1(To(1)), which is good for f£ and ;; = 0(q79).

-h, +

Theorem 1.3. Let p be a prime for which Ty(p) is of genus zero, ie., p €{2,3,5,7,13}, 2< k€27,
t = dimS{(p), t' = dimS;(p), and n € {1,...,t}. Then the following assertions are true.
(i) Let A be at x t matrix whose ij-entry is given by CT(f; - f;k,t,ﬂ.), where CT(f) denotes the constant term

of the Fourier expansion of f. Then the matrix A is invertible.
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(i) Let By be the ij-entry of the matrix A, Take the unique weakly holomorphic modular form w, € M,"(p)
such that

t
Wa = 3 Bin Fokersy = 0@O.
=1
Then

Uasf* . il L v
—hy + T DR YW o+ D BT
(fus ) [ 2o ,]

is equal to D*-'§, for the unique J, € H,_(To(p)), which is good for f¢ and §}, = O(q"’t').

Remark 1.4. In Theorem 1.3, we observe from duality that mj_, = -dimS{(p) - 1. This observation makes
the existence and uniqueness of w,, much clearer.

Theorem 1.5. Let p € {1,2,3,5,7,13},2 < k € 2Z,t = dimS{(p), andn € {1,...,t}. Then the coefficients of f,
are in Kj,.

Let Py_, denote the space of all polynomials of degree at most k — 2. For any meromorphic function f on

the complex upper half plane §, we define the action of y = (? Z) € GL;(R) by

(flky)(2) = (dety)*/?(cz + d)*f (yz).
For p € {1, 2, 3}, a subspace Wy{_,(p) of P;_, is defined by
Wi p)={gePislg+ghiWp=0=g+ghiU+ghilU?++gh U1}

11 3 ifp=1

01 2p ifp=2,3
polynomials. Period polynomials have been investigated in relation to Eichler integrals, cusp forms via
Eichler-Shimura isomorphisms, and to special values of modular L-functions. Indeed, Eichler [16] discov-
ered relations between periods of cusp forms, and Shimura [17] extended them. Later, Manin [18] made
more explicit the connection of these relations with the Fourier coefficients, by using the Hecke operators
and continued fractions. For more discussion on the classical theory of period polynomials, one is referred
to [18-22] and [23, Chapter 12]. The period polynomials are also related to weakly holomorphic modular

with T = ( ), U=TW,, and n, = { . We call the elements of the space Wy_,(p) period

forms as follows. For each f= ) ar(n)q" € M;"*(p) we define the period polynomial for f by

n>-oo
r'(f) =r(f, z) = a(Ef — Efl-k Wp)(2), (7)
where ¢, = - (Fz(:,;kl)l and &; denotes the Eichler integral

Ef(z) = Z af(n)nl‘kq“. )

n+0

Let S"*(p) be the subspace of M,>*(p) consisting of those f € M;"*(p) with a;(0) = 0. As described in [24,
Section 4], r* gives a map from S, *(p) toW;_,(p). For p € {1, 2, 3} and even k > 2, in virtue of [5, Theorem 1.6],
[8, Theorem 1.1], [24, Theorem 1.2], and [25, Theorem 2], we have the following exact sequence:

0 — DIMPY) — S(p) —— Wi o(p) /(P22 ~ 1) — . ©)

Let p € {1, 2, 3}, n be a positive integer relatively prime to p, and k be an even integer greater than 2.
Following Knopp [19,20] we define a Hecke operator T, on the space Wi_(p). Suppose that g(z) € Wi_,(p)
and F(z) is a meromorphic function on $ satisfying

Flp_xT=F and Fl_t W, = F + q(2). (10)
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We also assume that F(z) is meromorphic in the local uniformizing variable at the cusp oo of a fundamental

region for I'(p). In such a case, F(z) is called a modular integral for q(z) of weight 2 — k. We define T, by
T(q() = Fy bk (W, - D), (11)

where

Ezz —k/2 Fl,_ a b)
nk/iz2y |2k(0 d

ad=n
b(d)

We then obtain that T;,(q(z)) € W_,(p) and it follows from [6, Theorem 1.3] the following diagram

’l"+
Syt () ——— W, (p)

V%T" lﬁ

rt
St ) —— Wi,(p)

is commutative, i.e., r* is a Hecke equivariant homomorphism. We recall the Eisenstein series

2k S B
E(z) =1- =Y oa(n)g", Gi(z) = = E(z)
By 2k

and

Gk(Z), lfp = 1

Gi(2) = Gj p(2) =
() kp() {Gk(z) + pk2Gy(pz), if p=2or 3,

where By is the kth Bernoulli number and oy_; denotes the usual divisor sum.
With the same notation as above, let p € {1,2,3} and | be a prime different from p. We set
po(z) = (/P z)¥-2 — 1. We then obtain from [6, Theorem 1.4] the following assertions.
(EP1) Ty(po) = (1 + &-Mpy and T,(r*(£y)) = ¢1-%A(n, &)r*(f,) for each n € {1,...,t}.
(EP2) For each n with 1 < n < t we define

(-m,n)
co(n) = - t(o)z" B tm),

where ¢ is the constant defined in (7) and ¢t(m) denotes the coefficient of g™ in G(z). Then we have
Ti(co(mpo + r*(h)) = €7¥A(n, ) (com)po + *(y)).
(EP3) The set
{po(2), r*(f1),-...r*(fe), co(Dpo + r*(hy), ..., co(t)Po + r*(he)}

forms a basis for Wy_,(p) consisting of Hecke eigenpolynomials. As we see, the basis in (EP3) is constructed
by using weakly holomorphic modular forms that are not holomorphic ones. Every period polynomial
decomposes into an even and an odd part. By the Eichler-Shimura isomorphism, the space of even period
polynomials consists of py and those coming from cusp forms. Also the space of odd period polynomials can
be constructed by using cusp forms. So it is natural to find a basis for the space W;_,(p) consisting of odd
and even period polynomials induced by only cusp forms that are Hecke eigenpolynomials. Although this
result is well-known from the literature [18,21,22], we state it in the next theorem and reprove it by using the
theory of harmonic weak forms because its proof will be used to prove our main results. For f € S{(p), r*(f)

denotes W and r;(f) stands for W

Theorem 1.6. With the same notations as above, let p € {1,2,3},2 < k € 27, t = dimS{{(p), and | be a prime
different from p. Then for each n € {1,...,t}, the following assertions are true.
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(i) The polynomial r*(f,, —z) belongs to the space W{_,(p) and is a Hecke eigenpolynomial with the same
eigenvalues as those of r*(fy, z), i.e.,

L (fo, =2)) = A0, Dr(fy, -2).
(ii) Both polynomials r/(f,, z) and r*(f,, z) belong to the space W{{_,(p) and are Hecke eigenpolynomials
with the same eigenvalues as those of r*(f,, +z).
(iii) The set
{po(2), rI(f),...,r(f0), r2(f1), ..., r 2 (f)}

forms a basis for W{_,(p) consisting of Hecke eigenpolynomials.

Since r*(fy, —z) € W _5(p), it follows from (9) that there exists g € S;"*(p) such that

r*(g) = r*(fa, —2z) (mod po).
When p = 1, by utilizing harmonic weak Maass forms, Bringmann et al. [5] constructed such g. So their
construction is not explicit. In Theorem 1.8, we will provide an explicit construction of such g forallp € &
without using harmonic weak Maass forms.

Remark 1.7. Theorem 1.6 is related to the results in [18,21]. In [22], more general level is considered by using
a cohomological approach.

Theorem 1.8. Letp € G,2 < k € 2Z, andt = dimS;(p). Foreachn € {1,...,t}, choose Gn(z) € H,_1(T + O(p))
such that &,_,Gn(z) = fa(2). Let

(s f) (fas f)™® . _Tk-1)
by h, + by fn  with by = Gt

8,(z) = D¥1GS and g, =

Then the following assertions are true.

(i) The class [g,] is independent of the choice of G, and uniquely determined by f,. Moreover,
we have [g,] = [bkg,].

(ii) Let p € {1, 2, 3}. Then we have

r+(gn’ Z) = r+(ﬁl’ _Z) + —CO(n)pO-

(far f)
by

Remark 1.9. When p = 1, the formula in Theorem 1.8(ii) is related to the results in [23, Theorem 12.10] and
the following remark.

We defineamapr : Sg(p) x Sf(p) - Wi_,(p) by t(f, g) =r*(f) + ir/(g) and W, = im . Then it is well
known that W{_,(p) = Wy @ (po) and therefore we can consider a map P : W,_,(p) — W, which is the
projection to the first component. When p =1, Bringmann et al. [5] suggested the following diagram
of exact sequences

SiE(p) x Sif(p) —— W
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where a map @ : S;"*(p) — S{(p) x Si(p) is not given explicitly. So they did not show that the diagram
is commutative in the part.

SiE(p) x Sif(p) —— W

[ 7

T+
St —— Wi,

In the next two theorems, we will give an explicit construction of such a Hecke-equivariant map @ for
p € {1, 2, 3}, which makes the diagram commutative. To this end, we are in need of the following proposition.

Proposition 1.10. Let p € G,2 < k € 27, and t = dimS(p). With the same notations as above, we have the
following assertions.
(i) The set{[g], [8,],---5[g,], [l [2]s-...[f:]} forms a basis for the space S;"*(p)/D*'(M,>%(p)).
(if) The set {[-g, + fil, [-9, + £l,....[-9; + fe], [AL, [f2],...,[ft]} forms a basis for the space
St (p)/D* (M5 3(p).

We note from Proposition 1.10 that for any F € S;>*(p), there exists unique constants a,, 8, € C such that

F=Yan(-g, + fo) + Y B,fu + D¥'gp (12)

for some gz € M,"}(p). Now we define a map @ : S>*(p) — S{(p) x Si(p) by
O(F) = (ZZanfn + Y Bufos Zﬂnfn), (13)

where a, and 8, are the coefficients appearing in (12). We then easily check that the map ® is a linear map.

Theorem 1.11. Let p € {1, 2,3} and 2 < k € 2Z. With the same notations as above, we have the following
assertions.
(i) The maps ® and v are Hecke equivariant homomorphisms, i.e., for F € Sk”*(p) and f, g € S§(p),

O(T(F)) = (Te x T)(D(F))
and
0k (T f, Tg) = T = x(f, 8).
(i) ker® = DM, %(p)).
(iii) Port =1t o @.

This paper is organized as follows. In Section 2, we give examples which illustrate Theorems 1.2, 1.3,
and 1.5. In Sections 3 and 4, we prove Theorems 1.6 and 1.8, respectively. Next, proofs of Theorems 1.2, 1.3,
and 1.5 are given in Section 5. Finally, in Section 6 we prove Proposition 1.10 and Theorem 1.11.

2 Examples

Example 2.1. (Cf. [6, Example 2.1] and [11, Examples in p. 6170]) Let p =1 and k = 12. In this case,
we have t = dimS}(1) = 1. Let n(z) be the Dedekind eta function defined by n(z) = qi]‘[ﬁil(l -qmM.
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Using A(z) = n(z)* € S;5(1) and the Hauptmodul j,(z) = E4(2)>/A(z) - 744 for T§(1) one can express f, ,,
(-1 <m < 1) as follows:

fi2,-1(2) = A(z)

=q - 242 + 252¢° — 1472q" + 48305 — 6048q° — 1674447 + 84480q8 — 113643¢° + 0(q"°)
fao2) = AG, +24)

—1 + 19656042 + 16773120¢° + 398034000 + 46293811204 + 3441765600046 + 0(q")
f1(2) =G + 24j; — 393444)

1, 4770953642 + 39862705122 + 7552626810624q"* + 6091364638524804° + 0(q®).
q

It is immediate from the definitions of f;, f;', h; that
fi = fipq and hy = f = fpy . (14)
Then one has from Remark 1.1(iii) and Theorem 1.2,

F;X = —h1 = _f12,1 = _q_l - zalz(ly n)qn’

n=2

and if we take l = 3 and w = 1 in (6), by using the Sturm bound one verifies that

=Y ap(1, 3n)g"

n=1
—ap(l, 3)
27947672851540608 P+ 340389905850815087232 P+ 652352555863500246844416 ,
39862705122 39862705122 39862705122
= A (mod 39).

Example 2.2. Let p =5 and k = 10. In this case, one has t = dimS;j(5) =1 and t' = dimS;,(5) = 2.
Let Ai(z) = (n(z)n(5z))* be the unique cusp form in S;(5) and E4(z) be the normalized Eisenstein series
of weight six. We also let j;(z) be the Hauptmodul for I'4(5), given by

Loy (@Y N
Jji (2) = (7](52)) +6+5 ( @) ) .

fo1 = DiES = q — 87 — 114q° — 448q" — 625¢° + 912q° + 4242q7 + 76808 — 6687¢° + -

One then computes that

]

foq = ALE(ji? + 8jF - 90) = L 102¢? - 1451147 - 3701764" - 515250045 — ---
’ q

fo, =(A2= iz + 8 + 44 +192q + 726q° + 2472q° + 7768q* + 22880¢° + -+ ,
' q q

fg3 = (A;)‘Z(j; -8) = ig + % + 1672 + 14511q + 94848q* + 515774q° + 2454144q* + 10533315¢° + --- ,
' q q
- INET 2 120 2 3 4 5
flgs = (ADE, = St5-—- 1740 - 14855q — 96200g“ — 520532q° — 2469320q" — 10578425 + --- ,
’ q q q
where E{ = %53(156 + Eg |¢Ws) and Ej = ﬁ(m — E, |4Ws). We then obtain that
fi=tho-1» Mm=fi=Ho:, and wi=B,fgs;+2B,f,,,
B 1 1 ..
where B, = TG oy ~ 0" Then one has from Remark 1.1(iii) and Theorem 1.3(ii),

[ee]

_ 4
Ex = _hl + Dg(Wl + Bu f_g,g,) + 2_5f1 = Z Ca(n)qn’
n=-3
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and if we take l = 3 and w = 1 in (6), by using the Sturm bound one verifies that

Y ca3m)g"

ca(3)
_ 6561 _ 18528264 P+ 808269273 P+ 68622811200 g - 533626633125q5 N 2832551189208
6308q 1577 1577 1577 1577 1577
= f; (mod 39).

Example 2.3. (Cf. [1, Example 2.10]) Let p = 5 and k = 12. In this case, t = dimS;5(5) = 3 and the space S;5(5)
is spanned by

fo5(2) = A(2)? = @® — 12q* + 54¢° — 88¢° + - ,

o 2(2) = Ai2P(ji (2) + 12) = @2 + 44q" - 288¢° + 306¢° + -+ ,

fio,1(2) = AS(2)°(d (2)? + 12jF (2) — 178) = q + 2608¢" — 65¢° + 23472q° + -+ .

It then follows from [1, Example 2.10] that the Hecke eigenforms are given by

fi= "t — 24§15 + 252fp 5,
fo= f12,71 + (-10 + 64/151 )flz,fz + (-110 + 324/151 )fuﬁ3 y
fz= flz,—l + (-10 - 64/151 )flz,—z + (-110 - 324151 )f12,73 s

so that Ky = Q and Kf, = K5 = Q(+/151). Now utilizing [6, Theorem 1.2(i)] one finds that

poo M7 16384, 534l
1= 37t 655 122 1310 123’
. 3(2869 + 434/151) 512(2416 + 1814/151) 177147(-453 + 7+/151)
fi= fl1 + 122t fi2,3 5
19781 98905 395620
. 3(2869 - 434151) 512(2416 — 181J/151) 177147(~453 — 7/151)
fi= fia1 + fia,0 + fi2,3 5
19781 98905 395620

so that Ky = Ky, for each i € {1, 2, 3}, as expected from Theorem 1.5.

3 Proof of Theorem 1.6

We recall that every ¥ € H, y(Io(p)) has a canonical decomposition [23, Section 4.2]
F(z) = F(z2) + FH(z),

where ¥ (respectively, ") is nonholomorphic (respectively, holomorphic) on the complex upper-half
plane H. The holomorphic part ¥+ has a Fourier expansion

FHz) = ) ap(mg® (q"=e¥™).

n>-0o
Then we call #+ a mock modular form if ¥ # 0. We define
Hy 1 (To(p)) = {F € Ho-k(To(PD|F -1 Wy = 3.
For each ¥ € H,_(T'}(p)) we define the Wj,-mock modular period function for ¥+ by
P(F*, Wys 2) = b (F* = F L Wp)(2),
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where by, = (r:’;)"klf Let Ly be the Maass lowering operator L, defined by
Ly = —2iyzi_ = —iy? 9 + ii .
ot ox ay

Then for k > 2 the differential operator &, , = y™* L,  defines antilinear maps

&t HporTo(p)) — Si(T'o(p)).

Lemma 3.1. Choose G, € H,_i(I' + O(p)) such that &,_,(Gy) = f,. We then have
(1) ‘fz_k(Grf) = frf = fn and
(ii) Gy € Hy 1(To(p))-

Proof.
(i) For simplicity, we let G = G,. If we write the Fourier expansion of G as

G=G"+ Y cz(mI(k -1, -4mmy)q™,
n<oo
#0

then
G = (G + ) csmI(k - 1, -4mny)q",
n<oo
#0
so that

& (GS) = Y (4mm)Ieg(n)gn.

n>0

— 323

Since &,_(G(2)) = fu(2) = ¥, ,(4m)k1c5(n)q", we must have &,_(G°) = f;. Moreover since f, € R[[g]]

(see [26, p.263]), we readily have f = f;.
(i) To show that G¢ € H, (T{(p)), we first easily check that
GC |,.xy = G¢ forall y € Ty(p).
Second, we obtain that
Do i(GO) = =4 0 &4 (G) = =§(fp) = 0.

Third, the growth condition is immediate from that of G. Thus, the assertion is proved.

Lemma 3.2. With the same notations as above, we have
r+(fn1 _Z) =Ck - [P(GJ(—Z-'), Wp; Z),

_ I(k-1)
@mi)k-1°

where ¢ =
Proof. By Theorem 1.5 in [8] we have P(G;, W,; z) = ¢ 'r*(f, 2). Thus, we obtain that
r*(fa, —2) = ¢k - P(G;, Wp; -2).

Since P(G;}, Wy; z) is, by definition, b (G — G |-« W,)(z), we compute that

[P(Gr:—’ Wp; _Z) = [P(G;(—Z), va; Z)-

Combining (15) and (16), we obtain the assertion.

Lemma 3.3. With the same notations as above, we write the Fourier expansion of G, as

Gi@) = ) cg(magm.

m>-00o

(15)

(16)
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We then have

r*(D¥(Gy), z) - ¢ (0)ck - Po
by

r(fa, -2) = e Wi ,(p) (17)

and

I (LD 1(G))) — (1 + I')cg (O)cx - po

18
™ (18)

T (fo, -2)) =

Proof. For simplicity, we let G = G, and a = c{(0). Note that D¥"'(G¢) € Sk!’*(p) has Fourier expansion

Dk—l(Gc) — Z nk—lmqn

n+0

and

Epigey = Y ceq" = G'(-2) - a.
n%0

Thus, we come up with
b' - P(G'(-2), Wp; 2) = Epkigey — Eprigeyla-k Wy + a — ala-k Wy
=ct- r'(DYGY), z) - a - po.
Then (17) is immediate from the above equation and Lemma 3.2. Applying the Hecke operator T; to (17) and
then employing the fact that T; o r* = r* o €-kT, with (EP1) we obtain (18). O
In what follows, we will simply denote G = G, and A, = A(n, ). It then follows from [27, Theorem 7.10]
that
& W(T(G)) = €7 A, 1 (GO) = € A f
Thus, we have
Ty(GS) = &7kA,GE + by (19)
for someh, € M,"}(p). Comparing the constant terms of holomorphic parts in both sides of (19) we obtain that
c&(0) + €kct(0) = e A,cd(0) + ¢y, (0), (20)
where ¢;,(0) denotes the constant term of h,. Now, applying D¥~! to both sides of (19) we obtain that
D*YT(G)) = € *AD¥1(G) + D¥"'(hy). 21)

Meanwhile, we compute that
T,(D*(G)) = Te(zn"‘lcé(n)Q"]
n

k-
= Z((n{i)k‘lcg(ne) + ek-l(%) 1c5(%))q"

el o+

— ek—le—l(E(Gc))_

(22)

(a5}

Therefore, we find that

EHADRI(G) + D) = € KFT(DR(G), @)



DE GRUYTER Explicit construction of mock modular forms =— 325

which gives rise to

P(HDF(G) = I (D (b)) + Aer (D 1(G)
= -1t (DR1(hy)) + Ae(bir*(fo, —2) + a - ckpo) by (17),

where a = ¢£(0). Thus, we obtain that

biTi(r*(f, —2)) = €4 (T(D*Y(G) - 1 + €Ma - ¢ - po by (18)
= 2K (DR (b)) + A(bir (o —2) + @ - ko)) — (1 + €78)a - ¢ - po
=7 (DK (he)) + € Aebir*(fo, —2) + €% Aea - cepo — (1 + €79)a - ¢ - po
= CkCp(0)po + K ber*(fy, —2) + €% a - ckpo — 1 + €K)a - ¢ - po by [8, p. 3373 line 9]
= 8 byt (fr, —2) by (20).

This proves Theorem 1.6(i). Theorem 1.6(ii) is an immediate consequence of Theorem 1.6(i). Now it remains
to prove Theorem 1.6(iii). Since we know that dim W}{_,(p) = 2t + 1, it suffices to show that the set

{Po(@), I (A1), 5D, r2(f0)s s P2 (f)}

is linearly independent. Suppose that

t t
Zanr:(fn) + anrj(fn) +Cpo =0 (24)

n=1 n=1

for some ay, by, ¢ € C. Thus, we have

t t
Y bar(f) = = Y awr{(f) - cpo.

n=1 n=1

Since the left side of the above equation is an odd polynomial while the right side is even, we must have

t t
Y bar(f) =0 ==Y anr{(fu) - cpo.

n=1 n=1
It follows from [28, Theorem 1.1 and Remark 1.3] that the maps r; and r* are injective and the image of r;f
does not contain (po). Thus, we have ¢ =0 =} a,f, =) b.f, and therefore ¢ =0 =a, = b, =0 for
alln e {,...,t}.

4 Proof of Theorem 1.8

(i) Suppose that H, € H,_((T§(p)) such that

ngan = fn = ‘fszGn-

Thus, we see that H, — G, € M,"} and therefore D*"'(H,) - D*"Y(G,) € D*"%(M,"}). We then have [D¥"'(H,)] =
[g,], which implies that the class [g,] is independent of the choice of G, and uniquely determined by f,.
Since g, belongs to the space S;"*(p) we can write g, as

t t

g = Y alhn+ Y bW + D,

m=1 m=1
for some a’, b € C, and v, € M;"}(p). We observe from [8, Theorem 1.1] that

{D*"lv,, f} = 0 forevery f € S;"*(p). (25)
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For each m € {1,...,t}, pairing with f;, yields

t

t
{8 fn} = Zaj("){ fisfud + Zb]-(”){ fis fin} + {D* 'y, fin}  since our pairing is bilinear
j=1 j=1

=a(" + {D* W, f} since {f}, fu} = 8w and {f;, fu} = 0
=a{" by (25).

Similarly, pairing with f,, we obtain that
{8y f} = —bY-
Moreover, one has

al = {8y, fin} = ~{fons 8} = ~1fin, DK1GS}
=~(fin» &_1G5)™8 by [5, (1.16)] or [8, Lemma 2.2] or [29, Theorem 3.1]
= ~(fms fu)"® by Lemma 3.1(i)

0, if m#n,
=—fm, f) = {_(fn,fn), ifm=n.

Similarly, one finds that
br(nn) = {fr)pkv gn} = (fr’p;’ ﬁl)reg'

Thus, g, can be rewritten as

t
8= alfs + ¥ B + DF M,

m=1
t t
= a{"(hy = Y X)) + Y byf + DKy 26)
i=1 m=1
i+n
t
= a{hy + bV + Y (b - a{Px(n)f; + DKy
i=1
i#n
Now let
t
Coi= Y (b = aPxi(n)f;. 27)
i=1

i#n
Then for each prime I with gcd(l, p) = 1, we observe that
Tu(Cn) = Te(8y — @{"hn — b"fy ~ D*"vy)
= A(n, 0)(g, — ahy, — b{"f,) + D*'E for some E € M,-%(p), by (23) and (EF2)
= A(n, 0)C, + D¥'E for some E € M, }(p).
This implies that
D'E = TiCy - A(n, DGy € Sf(p) N DX'M;23(p) = {0},
and therefore
T.C, = A(n, 1)C,, for each prime [ with gcd(l, p) = 1.
Thus, by multiplicity one theorem has C, € {f,), which together with (27) yields that
Coe ) 0 s faots frarsooofe) = {0
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It then follows from (26) that
8, = a{Phy + b{f, + D¥ v,
Thus, we have
8n = ~(fus fidhn + (f, )% + D" = big,, + D*" My, (28)

which means that [g,] = [bg,].
(ii) We obtain from (17) that

by - 1*(fa, =2) + ¢§,(0)ck - Po = 1*(8,) = ay"r*(hy) + bPr*(fo) + ¢ - ¢,(0)- po, (29)
where ¢, (0) stands for the constant term in the Fourier expansion of v,. Thus, we have an equality
An = b - 1*(fr, =2) = @ (r* () + Co(mPpo) = BVr*(f) = (i - €,(0) = aVco(n) — ¢£,(0)ck)po =: Bn,
where co(n) is the constant appeared in (EP2). Applying TAE and utilizing (EP1) and (EP2) we obtain that
e-kA(n, ©)A, = (1 + 9B, (30)

Now choose a prime ! different from p such that ¢!-*A(n, £) # 1 + €1-%. Indeed, if there is no such ¢, then we
have A(n, £) = ¢! + 1 for all ¢, which contradicts a well-known estimate |A(n, ¢)| < 20" (see [26, (15)]).
For such ¢, since A, = B,, we obtain from (30) that A, = B,, = 0, which renders

by - 1*(fa, =2) = @(r*(hy) + co(Mpo) = bPr(f) = 0
and
(k- €4,(0) = a{Pco(n) — ¢§,(0)c)po = O. 31

Combining (29) and (31) we obtain the assertion.

5 Proofs of Theorems 1.2, 1.3, and 1.5

Proof of Theorem 1.2. We recall that {2_,((%) =7 ff ’ff). It follows from (28) that

DYYG) = =(fu, fdhn + (fr, f)™8fu + DXy
for some v, € lej((l). Thus, we obtain that

Dk_l( Gy 2 ) _ gy g

Furf) s f) b ™

whose principal part is equal to prin(—f,) € Ks[g!]. Here prin(-) means the principal part at the cusp co

Gi w . . .
Goby " Ty As mentioned in Remark 1.1(ii), let Q € H,_;(Ix(1)),

which is good for f; with Q* = O(g™). Since &, ,(Q — F») = 0, we obtain Q - F;, € M, _(1). Moreover, we
observe Q - §, = Q" — F; € 0(q™Y) since the order at co of the holomorphic part of a harmonic weak Maass

except for the constant term. Let §, =

form of weight 2 — k is the same as the order of the pole of its image under D!, But it follows from
[2, Remark 3.8] that

max{orde.f |f # 0 € My_ (1)} = -1 - ¢,

which forces Q — 3, to be zero. Thus, CT(3;) € K, and therefore 3, is good for f¢ and D*'(3,) =

_ (fasfu)™e8 :
h, + ) f,, as desired. O
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Proof of Theorem 1.3. (i) Let Q = Q, be good for f:. Write Q = (Q+QZ| W") + (Q Q|Wp) Since &,_,(Q)

= {H(Qw ! W”) = Ji_ we obtain & Ql L € M,"3(p). It then follows from Theorem 1.8 that

2 (Fusf)’
[Dk—l(Q + Q|va)] _ [_hn + (f;’fn)mgfn:l,
2 (fus )

so that

Dk_l(Q+QIWp) INCATS PRI

2 (fas f)

for some v, € M,>%(p). We then obtain that

prin(D’”(%)) = prin(Dkl(W)) = —prin(f;;) + prin(D¥"1(vy)),

which renders

prin(D“(% - vn)) = —prin(f}). (32

Now we find

_Qw, _Qw,
m(m(%)) - m(m(% _ v)) = {fonr £2} (by (32)) = s

where the first equality follows from the residue theorem because the residue of the meromorphic 1-form

d(fuWy) is given by CT( f,W4,). Utilizing Remark 1.1(ii) we can take Q such that Q* = O(g~*""). Thus, we can write

Q-QW, &,
fp = Z{bjn f3_x¢,; for some by, € C. (33)
j=
Then we have
t
ZCT(fm E—k,t’ﬂ')bj" = Opns (34)

j=1
which proves the assertion.
(ii) We write
t t
Dk=1f w, — Zﬁjn fakrsi| = Za,-nq"' + 0(1) for some a;, € C

j=1 i=1

so that

t
CT| fonf Wi - Zﬁin Fa ot Z)l(m i) k 1
j=1 ' i=1 ( )
Meanwhile, by the residue theorem the left-hand side of the above identity reduces to
t
_CT[fm Zﬁln fz—k,t’+j] = —6mn.
j=1

Comparing this with the identities in [6, (20)—(22)] we obtain

t
prin(D“[wn - Y5 f;k,m]) = prin(f;). (35)

j=1
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We recall from (28) that

DY Y(Gy) = ~(fus fdhn + (f, )" %f + DMy

for some v, € M,"%(p). Now we let

S SR
) Uf) T g
We then have &,_, 5, = % and
* reg t
e, = —hy + LIV el SR 36)
(fas fo) i i

whose principal part is equal to

t
prin(—f;f) * prin[Dk_{Wn + ZnB]'n fz-k,t’+j)] = O(Qﬂ‘it’)-

j=1

Now we investigate the principal part of §, at the cusp 0. To this end, we consider

Dk{‘gn |2kWp(1/(;/§ \/;)]

1/Jp

0
= DMl Wp( ) by Bol’s identity

o 7
- (fa, f)™8 Ip O - YN/ s, I\Np 0O
= (_hn + an) ) Wz{ 0 \/17) + Dk 1(Wn)|kW1{ 0 \/17) + DX 1[j=21ﬁjn fz-k,t’ﬂ'] |kWp( 0 Jﬁ)

. Ie; t
k| _p, E) s fu)® n(i)) | pr1gw, (i) T D (i)
\/ﬁ ( (p ' (fns f1) J p * \/ﬁ (W) p }Z::lﬁlnfsz,t +j P

whose principal part is equal to that of \/p~* (— ,’,‘(%)) + P (;) = 0 by (35). This means that the principal part

of 3, at the cusp O is constant. As mentioned in Remark 1.1(ii) and in the proof of the assertion (i),
let Q € H, 4(p), which is good for f¢ with Q* = 0(g*™"). Since &, ,(Q - ) = 0 and the principal part of Q - F,
at the cusp 0 is constant, we obtain Q — F, € Mﬁfk(p). Moreover, we observe Q — §, = Q*—F; € O(q’t’t/).
But it follows from [12] that

max{ord.f|f#0 e M} ,(p)}=-1-t-t,
which forces Q - 3, to be zero. Thus, CT(F}) € K¢, and hence §, is good for f;;. Now the assertion follows from

(36). O

Proof of Theorem 1.5. First we prove that prin(h,) € K¢[g']. In the case of p = 1, this immediately follows
from Theorem 1.2. Now let p € {2, 3, 5, 7, 13}. We adopt the same notation as in Theorem 1.3. Since Q is good,
prin(Q) € Kg[g'] and Q|W, has constant principal part. Meanwhile (33) implies that

- QW ¢ " )
prin(%) = prin(%) = Y bug "7+ 0(q7") € Kg[q'] since my_ = -1 -t by [3].

j=1
We note from (34) that Bjn = bj, € Kp,. Thus, by (36) we obtain that

—prin(h,) + prin(D*~'wy) € Kz [g7]. (37)

Since B;, € Ky, and f;_; , has rational Fourier coefficients, the definition of w, implies that

prin(w,) € Kg[g']. (38)
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By (37) and (38) one has prin(hy,) € Kg[g™!]. Observing that prin(h,) = prin(f,), we obtain that

prin(f;) € Kz[q™']. (39)
Since f; = Zﬁnzly(—m, )y m» it then follows from (39) that u(-m, n) € Ky, for each n € {1,... t} and hence
every coefficient of f, is contained in K, O

6 Proofs of Proposition 1.10 and Theorem 1.11

Proof of Proposition 1.10. The assertion follows immediately from the statement (EF3) and the relation
between &,, and h,,. O

Proof of Theorem 1.11. (i) It follows from (12) that
T(F) = Y on(-To(g,) + Acfy) + Y BAcSn + Te(D*'gp), (40)

for some gy € MZ’;}{(p). Meanwhile, we know from (21) and (22) that

IFT(DF1GY) = DFYT(GY)) = €A D*Y(Gy) + D*"1(by)
for some b, € M, 3(p). Thus, we find that

T(g,) = Aeg, + D¥1(ek"1ny). (41)
Combining (40) and (41) we obtain that

T(F) = Y ahe(~g, + ) + Y BAefo + DK'H

for some H € M, %(p). It then follows from the definition of the map @ that

O(T(F)) = (2Zan/ufn + Y BAek Zﬁ,/ufn) = (T x T)(D(F)).

Next for f, g € S¢(p) we write f= ) a,f, and g = ), b, f, for some ay, b, € C. We then have

Towf,g)=Te t(zanfn, ann)

= ﬁ[r*(Zan fn) + ir:(an f))
= Zanﬁ(rf(fn» + ianﬁ(r:(fn))

= Zan{’,1 kA(n, ©)r +(f,,) + le e-kA(n, 0)r{(f,) by Theorem 1.6(ii)

- zanel kAT ) + sz BT f)

_ el-k[r*(ﬂ(;a"f”)) +i [Te(zbf)]]

= kN f) + ir}(Tg))
= (T, f, Tig), as desired.
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(ii) Given F € Sk!’*(p), by (12) we can write

F=Yay(-g, + f) + Y B.Ju + D¥"'gg, forsome g € D"'M, 7 (p). 42)
n n

We then observe from (13) that
OF)=(0,0) & 2 anfu+ Y B, fu=0and DB, f=0

e B,=ay=0forall nefl,?2,...,t}
& F=DkKlg,

which proves the assertion.
(iii) First we note that

r+(fn, _Z) + r+(fn’ Z) = Zir:(frla Z)
- r+(fna _Z) + r+(fn’ Z) = 2r_+(fn,z)
r'(fa, 2) = rX(fa, 2) + [ (fa, 2).

Now we compute that

Pori(F)=P- f*(zan(—gn +f) + Y Bufa+ DklgF)

n

- P(Zan(—r’f(fn, —2) + r'(fo, 2) + Y Brt(fun 2) + apo) for some a € C by Theorem 1.8(ii)

- P(Zanzrm, 2) 4 YR (for 2) + ir(f 2)) + apo)
= D an2r*(fo, 2) + Y By (r (o, 2) + i} (fo, 2)).

Meanwhile,
t o O(F) = t(ZZanfn + D Bufos Zﬁnfn) =2) anr (for 2) + Y Bur X (for 2) + 1) Bori(fo, 2).
Thus, we have P o r*(F) = v o ®(F). O
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