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Abstract: Extending our previous work we construct weakly holomorphic Hecke eigenforms whose period
polynomials correspond to elements in a basis consisting of odd and even Hecke eigenpolynomials induced
by only cusp forms. As an application of our results, we give an explicit construction of the holomorphic
parts of harmonic weak Maass forms that are good for Hecke eigenforms. Moreover, we give an explicit
construction of the Hecke-equivariant map between the space of weakly holomorphic cusp forms and two
copies of the spaces of cusp forms, and show that the map is compatible with the corresponding map on the
spaces of period polynomials.
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1 Introduction and statement of results

Let p be one or a prime and pΓ0( )+ be the group generated by the congruence subgroup pΓ0( ) and the Fricke

involution W
p

p
0 1

0p ⎜ ⎟
⎛

⎝

⎞

⎠

=

− /

. For any even integer k, let M pk ( )! be the space of weakly holomorphic (i.e.,

meromorphic with poles only at the cusps) modular forms f of weight k for pΓ0( ). For ε 1{ }∈ ± , let M pk
ε, ( )!

be the subspace of M pk ( )! with f W εfk p∣ = . Each f M pk
ε, ( )∈

! has a Fourier development of the form

f z a n q ,
n n

f
n

0

( ) ( )∑=

≥

where the parameter q stands for πizexp 2( ), as usual. We set f nord 0=∞ if a n 0f 0( ) ≠ . Let S be the set

consisting of values of p for which the genus of pΓ0( )+ is zero, that is,

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71 .S { }=

When p S∈ , the space M pk
ε, ( )! has a canonical basis: see [1–4]. We define

m f f M pmax ord 0 .k
ε

k
ε,{ ∣ ( )}≔ ≠ ∈∞

!

When k 2> , we note that mk
ε is given by S pdim k

ε( ). Indeed, for every integer m with m mk
ε

− ≤ , there exists
a unique weakly holomorphic modular form M pk m

ε
k

ε
,

,f ( )∈
! with Fourier expansion of the form

τ q a m n q,k m
ε m

n m
k
ε n

,
k
ε

f ( ) ( )∑= +
−

>

(1)
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and together they form a basis for M pk
ε, ( )! . Indeed the basis element k m

ε
,f can be given explicitly in the form

F jk m
ε

k m
ε

k m m p, , ,k
ε k

εf f ( )=
−

+

+ , where jp
+ is the Hauptmodul for pΓ0( )+ and F xk D, ( ) is a monic polynomial in x of

degree D. Moreover, the Fourier coefficients a m n,k
ε( ) of qn in k m

ε
,f turn out to be rational integers.

Throughout this paper, we simply write k m k m, ,f f≔
+ .

As usual, we denote by S pk ( )+ the space of holomorphic cusp forms of weight k for pΓ0( )+ . Let S pk
, ( )! + be

the subspace of M pk
, ( )! + consisting of weakly holomorphic modular forms for pΓ0( )+ with zero constant term

in the Fourier expansion. We now consider Hecke operators on S pk ( )+ . For each positive integer n relatively

prime to p, the usual Hecke operator Tn on S pk ( )+ extends to S pk
, ( )! + . In particular, for prime indices l p( )≠ ,

the Hecke operators Tℓ on S pk
, ( )! + are given as follows: for f S pk

, ( )∈
! + ,

T f l f a b
d

a ln l a n l q
0

.k

ad l
b d

k
n

f
k

f
n2 1

mod

1∣ ⎛
⎝

⎞
⎠

( ( ) ( ))

( )

∑ ∑= = + /ℓ

/ −

=

−

(2)

Common eigenforms of all Hecke operators Tn on S pk ( )+ with n coprime to p are called Hecke eigenforms.

For later use, we let t S pdim k ( )=
+ and

f λ n m q n t, 1, 2, ,n
m

m

0

⎧

⎨
⎩

( ) ∣
⎫

⎬
⎭

∑= = …

>

be a basis of S pk ( )+ consisting of normalized Hecke eigenforms. Following [5,6] we call f S pk
, ( )∈

! + a weakly

holomorphic Hecke eigenform with respect to S p D M pk
k

k
, 1

2
,( ) ( ( ))/

! + −

−

! + if for every Hecke operator Tn with

n p, 1( ) = there is a complex number λn for which

T f λ f D M p ,n n
k

k
1

2
,( ( ))− ∈

−

−

! +

where D stands for the differential operator πi z
1

2
d

d .

In the work of Bringmann et al. [5, Theorem 1.5]weakly holomorphic Hecke eigenforms are constructed in
the level 1 case by making use of harmonic weak Maass forms which are preimages of Hecke eigenforms under

the differential operator ξ iy2k
k

z
≔

∂

∂

originated from [7]. Thus, their construction is not explicit. In [6, Theorem
1.2], we extended it to higher level cases to the primes for which pΓ0( )+ has genus zero (primes up to 71 excluding
37, 43, 61, and 67). The constructionwas given explicitly in terms of weakly holomorphicmodular formswithout
relying on the theory of harmonic weak Maass forms, and we gave an explicit description of the “polar”
eigenform hn in terms of a linear combination of cuspidal eigenforms and the dual form fn

∗, as in
(EF1)–(EF3). Here the duality is with respect to a certain pairing of functions introduced by Guerzhoy as follows.

Following [1,5,6,8,9], for f g M p, k
, ( )∈

! + , we define a pairing f g,{ } originated from Bruinier and
Funke [7] by

f g
a n a n

n
, .

n n

f g
k

, 0
1

�

{ }
( ) ( )

∑≔

−

∈ ≠

−
(3)

It is antisymmetric (since k is even), bilinear, and Hecke equivariant. Specifically, for any prime p( )ℓ ≠

T f g f T g, , .{ } { }=ℓ ℓ

Moreover, D M pk
k

1
2

,( ( ))−

−

! + is perpendicular to all of S pk
, ( )! + , they are the only weakly holomorphic modular forms

with that property (by the Serre duality theorem), and two elements of S pk ( )+ are perpendicular to one another. Let

f μ m n q,n
m t

m( )∑=
∗

≥−

(4)

with μ m n, �( ) ∈ be a linear combination of , ,k k t,1 ,f f… , which is dual to fn with respect to the pairing,

i.e., f f δ,m n mn{ } =
∗ , where δmn is the Kronecker delta function. Then such functions fn

∗ are unique.
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Moreover, it follows from [1,9] that T fnℓ

∗ and λ n f, n( )ℓ
∗ represent the same coset in S p D M pk

k
k

, 1
2

,( ) ( ( ( ))/ ⊕
! + −

−

! +

S pk ( ))+ . Thus, we can write

T f λ n f D g a f,n n
k

n
j

t

jn j
1

,
1

( ) ( )∑= ℓ + + ℓℓ

∗ ∗ −

ℓ

=

(5)

for some g M pn k, 2
, ( )∈

ℓ −

! + and a .jn �( )ℓ ∈

Let p S∈ , t S pdim k ( )=
+ , and ℓ be a prime different from p. We then obtain from [6, Theorem 1.2]

the following assertions.
(EF1) Let i n t, 1, ,{ }∈ … with i n≠ . Let r be a prime ( p≠ ) such that λ i r λ n r, ,( ) ( )≠ and put

x n a r
λ i r λ n r, ,

.i
ni

( )
( )

( ) ( )
≔

−

Then x ni( ) is independent of the choice of r and the quantity a rni( ) is given by

a r f T f, .ni n r i( ) { }=
∗ ∗

(EF2) For each n with n t1 ≤ ≤ , let

h x n f f .n
i
i n

t

i i n
1

( )∑≔ +

=

≠

∗

Then hn is a Hecke eigenform with respect to S p D M pk
k

k
, 1

2
,( ) ( ( ))/

! + −

−

! + having the same eigenvalues as those

of fn. More explicitly one has

T h λ n h D g, ,n n
k

n
1

,( ) ( ) ( )= ℓ +ℓ

−

ℓ

where gn,ℓ
is the modular form defined in (5) and computed as

g μ s n
s

, ,n
s t

s t

k k sl,
1

1 2 ,f
( )

∑= −

−

ℓ

≤ ≤

ℓ>

− −

where μ n,( )⋅ is the Fourier coefficient of fn
∗, defined in (4).

(EF3) The set

f f h h, , , , ,t t1 1{[ ] [ ] [ ] [ ]}… …

forms a basis for S p D M pk
k

k
, 1

2
,( ) ( ( ))/

! + −

−

! + , where f[ ] stands for the class of f .
For p pΓ Γ , Γ0 0{ ( ) ( )}∈

+ , let H Γk2 ( )− be the space of harmonic weak Maass forms of weight k2 − for Γ.
Following [10,11], we say that z H pΓk2 0F( ) ( ( ))∈ − is “good” for the Hecke eigenform f z f z S p¯c

k( ) ( ) ( )≔ − ∈

if it satisfies the following:
(1) The principal part of F at the cusp ∞ belongs to K qf

1[ ]− . Here Kf denotes the number field obtained

by adjoining to � the Fourier coefficients of f .
(2) The principal part of F at the cusp 0 is constant.

(3) We have ξ k
f

f f2 ,

c

c cF
( )

=
−

.

Remark 1.1.
(i) The existence of F, which is good for a Hecke eigenform f c is guaranteed by [10, Proposition 5.1].
(ii) Let 0F be good for a Hecke eigenform f c and denote t S pdim k ( )=

+ and t S pdim k ( )′ =
− . Let M pk2 ( )

−

♯ be

the space of weakly holomorphic modular forms of weight k2 − for pΓ0( ) with poles allowed only at
the cusp ∞. For p 1, 2, 3, 5, 7, 13{ }∈ , it follows from [12, Theorem 1.1, Theorem 1.7, and line 6 in p. 123]
that

f f M p t tmax ord 0 1 ,k2{ ∣ ( )}≠ ∈ = − − − ′∞ −

♯
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and for each integer m with m t t1− ≤ − − − ′, there exists q O q M pk m
m t t

k2 , 2f ( ) ( )= + ∈
−

♯ − − − ′

−

♯ with inte-
gral Fourier coefficients. By subtracting a suitable linear combination of k m2 ,f

−

♯ ’s from 0F we can take

a unique F, which is good for f c and O q t tF ( )=
+ − − ′ .

(iii) In [11] a direct method for relating the coefficients of f c and F is provided by means of p-adic coupling
and an algebraic regularized mock modular form Fα. More precisely, if we let α be the coefficient of q1

in F+, then Fα is given by

F D αf c n q .α
k

n
α

n1F ( )∑= − =
− +

≫−∞

Moreover, Fα has coefficients in Kf and

c n q
c

f z β f zlim ,
w

n α
w n

α
w

k1 1( )

( )
( ) ( )

∑ ℓ

ℓ

= − ℓ ℓ

→+∞

≫−∞ − − (6)

where ℓ is a prime number and β β, ′ are the roots of the equation X a X χ X β X βf
k2 1( ) ( ) ( )( )− ℓ + ℓ ℓ = − − ′

−

ordered so that β βord ord( ) ( )≤ ′ℓ ℓ , χ is a trivial character modulo p, and we assume that β 0≠ in the
case pℓ = . We take the limit in (6) in ℓ-adic topology.

(iv) In [13], the structure of half-integral weight weakly holomorphic Hecke eigenforms was developed, and
in [14] half-integral weight p-adic coupling was investigated.

Let f g M p, k ( )∈
! . We define a regularized inner product as follows. For T 0> , we denote by T� the

truncated fundamental domain for SL2 �( )

z x z y T1 2, 1, and .T �� { ∣∣ ∣ ∣ ∣ }= ∈ ≤ / ≥ ≤

Moreover, we define the truncated fundamental domain for pΓ0( ) by

p γΓ ,T
γ

T0� �

�

( ( )) = ⋃

∈

where � is a fixed set of representatives of pΓ \SL0 2 �( ) ( ). Now we define the regularized inner product
f g, reg( ) as the constant term in the Laurent expansion at s 0= of the function

p
f z g z y x y

y
1

SL : Γ
lim d d .

T
p

k s

2 0
Γ

2
T 0

�
�

[ ( ) ( )]
( ) ( )

( ( ))

∫
→∞

−

As explained in [10] and [15], f g, reg( ) exists if f or g is a holomorphic modular form. If both f and g are
holomorphic modular forms such that fg is a cusp form, then f g, reg( ) reduces to the Petersson inner

product f g,( ).
In the next theorems, we give an explicit construction of Dk 1F− in terms of polar eigenforms and

a canonical basis. Theorem 1.2 applies for p 1= only, while Theorems 1.3 and 1.5 cover higher levels.

Theorem 1.2. Let k2 2�< ∈ , and t Sdim 1k ( )=
+ . Then for each n t1, ,{ }∈ … ,

h f f
f f

f,
,n

n n

n n
n

reg( )

( )
− +

∗

is equal to Dk
n

1F− for the unique H Γ 1n k2 0F ( ( ))∈ − , which is good for fn
c and O qn

tF ( )=
+ − .

Theorem 1.3. Let p be a prime for which pΓ0( ) is of genus zero, i.e., p 2, 3, 5, 7, 13{ }∈ , k2 2�< ∈ ,
t S pdim k ( )=

+ , t S pdim k ( )′ =
− , and n t1, ,{ }∈ … . Then the following assertions are true.

(i) Let A be a t t× matrix whose ij-entry is given by fCT i k t j2 ,f( )⋅
− ′+

− , where fCT( ) denotes the constant term

of the Fourier expansion of f. Then the matrix A is invertible.
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(ii) Let βij be the ij-entry of the matrix A 1− . Take the unique weakly holomorphic modular form w M pn k2
, ( )∈
−

! +

such that

w β O q .n
j

t

jn k t j
t

1
2 ,f ( )∑− =

=

− ′+

− −

Then

h f f
f f

f D w β,
,n

n n

n n
n

k
n

j

t

jn k t j

reg
1

1
2 ,f

( )

( )

⎛

⎝
⎜

⎞

⎠
⎟∑− + + +

∗

−

=

− ′+

−

is equal to Dk
n

1F− for the unique H pΓn k2 0F ( ( ))∈ − , which is good for fn
c and O qn

t tF ( )=
+ − − ′ .

Remark 1.4. In Theorem 1.3, we observe from duality that m S pdim 1k
ε

k
ε

2 ( )= − −
−

. This observation makes
the existence and uniqueness of wn much clearer.

Theorem 1.5. Let p 1, 2, 3, 5, 7, 13{ }∈ , k2 2�< ∈ , t S pdim k ( )=
+ , and n t1, ,{ }∈ … . Then the coefficients of fn

∗

are in K fn.

Let Pk 2− denote the space of all polynomials of degree at most k 2− . For any meromorphic function f on

the complex upper half plane H, we define the action of γ a b
c d

GL2 �⎛
⎝

⎞
⎠

( )= ∈
+ by

f γ z γ cz d f γzdet .k
k k2( ∣ )( ) ( ) ( ) ( )= +

/ −

For p 1, 2, 3{ }∈ , a subspace W pk 2( )
−

+ of Pk 2− is defined by

W p g P g g W g g U g U g U0k k k p k k k
n

2 2 2 2 2
2

2
1p( ) ∣ ∣ ∣ ∣ ∣{ }= ∈ + = = + + + ⋯+

−

+

− − − − −

−

with T 1 1
0 1( )= , U TWp= , and n

p
p p

3 if 1
2 if 2, 3

.p
⎧
⎨⎩

=

=

=

We call the elements of the space W pk 2( )
−

+ period

polynomials. Period polynomials have been investigated in relation to Eichler integrals, cusp forms via
Eichler-Shimura isomorphisms, and to special values of modular L-functions. Indeed, Eichler [16] discov-
ered relations between periods of cusp forms, and Shimura [17] extended them. Later, Manin [18] made
more explicit the connection of these relations with the Fourier coefficients, by using the Hecke operators
and continued fractions. For more discussion on the classical theory of period polynomials, one is referred
to [18–22] and [23, Chapter 12]. The period polynomials are also related to weakly holomorphic modular

forms as follows. For each f a n q M pn f
n

k
,( ) ( )= ∑ ∈

≫−∞

! + we define the period polynomial for f by

r f r f z c W z, ,k f f k p2� �( ) ( ) ( ∣ )( )= ≔ −
+ +

− (7)

where ck
k
πi

Γ 1
2 k 1
( )

( )
= −

−

−
and f� denotes the Eichler integral

z a n n q .f
n

n

f
k n

0

1� ( ) ( )∑≔

≫−∞

≠

−

(8)

Let S pk
, ( )! + be the subspace of M pk

, ( )! + consisting of those f M pk
, ( )∈

! + with a 0 0f ( ) = . As described in [24,
Section 4], r+ gives amap from S pk

, ( )! + toW pk 2( )
−

+ . For p 1, 2, 3{ }∈ and even k 2> , in virtue of [5, Theorem 1.6],
[8, Theorem 1.1], [24, Theorem 1.2], and [25, Theorem 2], we have the following exact sequence:

D M p S p W p p z0 1 0.k
k k

r
k

k1
2

, ,
2

2( ( )) ( ) ( ) ( )⟶ ⟶ ⟶ /⟨ − ⟩ ⟶
−

−

! + ! +

−

+ −

+

(9)

Let p 1, 2, 3{ }∈ , n be a positive integer relatively prime to p, and k be an even integer greater than 2.

Following Knopp [19,20] we define a Hecke operator Tn on the space W pk 2( )
−

+ . Suppose that q z W pk 2( ) ( )∈
−

+

and F z( ) is a meromorphic function on H satisfying

F T F F W F q zand .k k p2 2∣ ∣ ( )= = +− − (10)
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We also assume that F z( ) is meromorphic in the local uniformizing variable at the cusp∞ of a fundamental

region for pΓ0( )+ . In such a case, F z( ) is called a modular integral for q z( ) of weight k2 − . We define Tn by

T q z F W 1 ,n n k p2 ( ( )) ∣ ( )= −−
(11)

where

F n F a b
d0

.n
k

ad n
b d

k
2

2∣ ⎛
⎝

⎞
⎠

( )

∑=
− /

=

−

We then obtain that T q z W pn k 2 ( ( )) ( )∈
−

+ and it follows from [6, Theorem 1.3] the following diagram

is commutative, i.e., r+ is a Hecke equivariant homomorphism. We recall the Eisenstein series

E z k
B

σ n q z B
k

E z1 2 ,
2k

k n
k

n
k

k
k

1
1 �( ) ( ) ( ) ( )∑= − = −

=

∞

−

and

z z
z p
z p pz p

, if 1
, if 2 or 3,k k p

k

k
k

k
, 2� �

�

� �
( ) ( ) ⎧

⎨⎩

( )

( ) ( )
= =

=

+ =

+ +

/

where Bk is the kth Bernoulli number and σk 1− denotes the usual divisor sum.
With the same notation as above, let p 1, 2, 3{ }∈ and l be a prime different from p. We set

p z p z 1k
0

2( ) ( )≔ −
− . We then obtain from [6, Theorem 1.4] the following assertions.

(EP1) T p p1 k
0

1
0( ) ( )= + ℓℓ

− and T r f λ n r f,n
k

n
1( ( )) ( ) ( )= ℓ ℓℓ

+ − + for each n t1, ,{ }∈ … .
(EP2) For each n with n t1 ≤ ≤ we define

c n c
t

μ m n
m

t m
0

, ,k

m

t

k0
1

1( )
( )

( )
( )∑= −

−

=

−

where ck is the constant defined in (7) and t m( ) denotes the coefficient of qm in zk� ( )+ . Then we have

T c n p r h λ n c n p r h, .n
k

n0 0
1

0 0( ( ) ( )) ( )( ( ) ( ))+ = ℓ ℓ +ℓ

+ − +

(EP3) The set

p z r f r f c p r h c t p r h, , , , 1 , ,t t0 1 0 0 1 0 0{ ( ) ( ) ( ) ( ) ( ) ( ) ( )}… + … +
+ + + +

forms a basis forW pk 2( )
−

+ consisting of Hecke eigenpolynomials. As we see, the basis in (EP3) is constructed
by using weakly holomorphic modular forms that are not holomorphic ones. Every period polynomial
decomposes into an even and an odd part. By the Eichler-Shimura isomorphism, the space of even period
polynomials consists of p0 and those coming from cusp forms. Also the space of odd period polynomials can

be constructed by using cusp forms. So it is natural to find a basis for the space W pk 2( )
−

+ consisting of odd
and even period polynomials induced by only cusp forms that are Hecke eigenpolynomials. Although this
result is well-known from the literature [18,21,22], we state it in the next theorem and reprove it by using the

theory of harmonic weak forms because its proof will be used to prove our main results. For f S pk ( )∈
+ , r f( )

−

+

denotes r f z r f z, ,
2

( ) ( )− − and r f( )
+

+ stands for r f z r f z
i

, ,
2

( ) ( )+ − .

Theorem 1.6.With the same notations as above, let p 1, 2, 3{ }∈ , k2 2�< ∈ , t S pdim k ( )=
+ , and l be a prime

different from p. Then for each n t1, ,{ }∈ … , the following assertions are true.

318  SoYoung Choi and Chang Heon Kim



(i) The polynomial r f z,n( )−
+ belongs to the space W pk 2( )

−

+ and is a Hecke eigenpolynomial with the same
eigenvalues as those of r f z,n( )+ , i.e.,

T r f z l λ n l r f z, , , .n
k

n
1( ( )) ( ) ( )− = −ℓ

+ − +

(ii) Both polynomials r f z,n( )
+

+ and r f z,n( )
−

+ belong to the space W pk 2( )
−

+ and are Hecke eigenpolynomials
with the same eigenvalues as those of r f z,n( )±

+ .
(iii) The set

p z r f r f r f r f, , , , , ,t t0 1 1{ ( ) ( ) ( ) ( ) ( )}… …
+

+

+

+

−

+

−

+

forms a basis for W pk 2( )
−

+ consisting of Hecke eigenpolynomials.

Since r f z W p,n k 2( ) ( )− ∈
+

−

+ , it follows from (9) that there exists g S pk
, ( )∈

! + such that

r g r f z p, mod .n 0( ) ( ) ( )≡ −
+ +

When p 1= , by utilizing harmonic weak Maass forms, Bringmann et al. [5] constructed such g . So their
construction is not explicit. In Theorem 1.8, we will provide an explicit construction of such g for all p S∈

without using harmonic weak Maass forms.

Remark 1.7. Theorem 1.6 is related to the results in [18,21]. In [22], more general level is considered by using
a cohomological approach.

Theorem 1.8. Let p S∈ , k2 2�< ∈ , and t S pdim k ( )=
+ . For each n t1, ,{ }∈ … , chooseG z H pΓ 0n k2( ) ( ( ))∈ +−

such that ξ G z f zk n n2 ( ) ( )=
−

. Let

g z D G and f f
b

h f f
b

f with b k
π

, , Γ 1
4

.n
k

n
c

n
n n

k
n

n n

k
n k k

1
reg

1g( )
( ) ( ) ( )

( )
≔ ≔ − + =

−
−

∗

−

Then the following assertions are true.
(i) The class gn[ ] is independent of the choice of Gn and uniquely determined by fn. Moreover,

we have g bn k ng[ ] [ ]= .

(ii) Let p 1, 2, 3{ }∈ . Then we have

r z r f z f f
b

c n p, , , .n n
n n

k
0 0g( ) ( )

( )
( )= − +

+ +

Remark 1.9. When p 1= , the formula in Theorem 1.8(ii) is related to the results in [23, Theorem 12.10] and
the following remark.

We define a map S p S p W p: k k k 2r ( ) ( ) ( )× →
+ +

−

+ by f g r f ir g,r( ) ( ) ( )= +
−

+

+

+ andW im0 r= . Then it is well
known that W p W pk 2 0 0( ) = ⊕ ⟨ ⟩

−

+ and therefore we can consider a map P W p W: k 2 0( ) →
−

+ , which is the
projection to the first component. When p 1= , Bringmann et al. [5] suggested the following diagram
of exact sequences
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where a map S p S p S pΦ : k k k
, ( ) ( ) ( )→ ×

! + + + is not given explicitly. So they did not show that the diagram
is commutative in the part.

In the next two theorems, we will give an explicit construction of such a Hecke-equivariant map Φ for
p 1, 2, 3{ }∈ , which makes the diagram commutative. To this end, we are in need of the following proposition.

Proposition 1.10. Let p S∈ , k2 2�< ∈ , and t S pdim k ( )=
+ . With the same notations as above, we have the

following assertions.
(i) The set f f f, , , , , , ,t t1 2 1 2g g g{[ ] [ ] [ ] [ ] [ ] [ ]}… … forms a basis for the space S p D M pk

k
k

, 1
2

,( ) ( ( ))/
! + −

−

! + .

(ii) The set f f f f f f, , , , , , ,t t t1 1 2 2 1 2g g g{[ ] [ ] [ ] [ ] [ ] [ ]}− + − + … − + … forms a basis for the space

S p Dk
k, 1( )/

! + − M pk2
,( ( ))
−

! + .

We note from Proposition 1.10 that for any F S pk
, ( )∈

! + , there exists unique constants α β,n n �∈ such that

F α f β f D g
n

n n n
n

n n
k

F
1g( )∑ ∑= − + + +

− (12)

for some g M pF k2
, ( )∈
−

! + . Now we define a map S p S p S pΦ : k k k
, ( ) ( ) ( )→ ×

! + + + by

F α f β f β fΦ 2 , ,
n

n n
n

n n
n

n n⎜ ⎟( )
⎛

⎝

⎞

⎠

∑ ∑ ∑= + (13)

where αn and βn are the coefficients appearing in (12). We then easily check that the map Φ is a linear map.

Theorem 1.11. Let p 1, 2, 3{ }∈ and k2 2�< ∈ . With the same notations as above, we have the following
assertions.
(i) The maps Φ and r are Hecke equivariant homomorphisms, i.e., for F S pk

, ( )∈
! + and f g S p, k ( )∈

+ ,

T F T T FΦ Φ( ( )) ( )( ( ))= ×ℓ ℓ ℓ

and

T f T g T f g, , .k1 r r( ) ( )ℓ = ∘
−

ℓ ℓ ℓ

(ii) D M pkerΦ k
k

1
2

,( ( ))=
−

−

! + .
(iii) P r Φ.r∘ = ∘

+

This paper is organized as follows. In Section 2, we give examples which illustrate Theorems 1.2, 1.3,
and 1.5. In Sections 3 and 4, we prove Theorems 1.6 and 1.8, respectively. Next, proofs of Theorems 1.2, 1.3,
and 1.5 are given in Section 5. Finally, in Section 6 we prove Proposition 1.10 and Theorem 1.11.

2 Examples

Example 2.1. (Cf. [6, Example 2.1] and [11, Examples in p. 6170]) Let p 1= and k 12= . In this case,

we have t Sdim 1 112( )= =
+ . Let η z( ) be the Dedekind eta function defined by η z q q1n

n
1

1
24( ) ( )= ∏ −

=

∞ .
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Using z η z SΔ 124
12( ) ( ) ( )= ∈
+ and the Hauptmodul j z E z zΔ 7441 4

3( ) ( ) ( )= / − for Γ 10( )+ one can express m12,f

( m1 1− ≤ ≤ ) as follows:

z z
q q q q q q q q q O q

z j
q q q q q O q

z j j

q
q q q q O q

Δ
24 252 1472 4830 6048 16744 84480 113643

Δ 24
1 196560 16773120 398034000 4629381120 34417656000
Δ 24 393444
1 47709536 39862705122 7552626810624 609136463852480 .

12, 1
2 3 4 5 6 7 8 9 10

12,0 1
2 3 4 5 6 7

12,1 1
2

1

2 3 4 5 6

f

f

f

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

=

= − + − + − − + − +

= +

= + + + + + +

= + −

= + + + + +

−

It is immediate from the definitions of f f h, ,1 1 1
∗ that

f h fand .1 12, 1 1 1 12,1f f= = =
−

∗ (14)

Then one has from Remark 1.1(iii) and Theorem 1.2,

F h q a n q1, ,α
n

n
1 12,1

1

2
12f ( )∑= − = − = − −

−

=

∞

and if we take l 3= and w 1= in (6), by using the Sturm bound one verifies that

a n q
a

q q q q

1, 3
1, 3
27947672851540608

39862705122
340389905850815087232

39862705122
652352555863500246844416

39862705122
Δ mod 3 .

n
n

1 12

12

2 3 4

10

( )

( )

( )

∑−

−

= + + + + ⋯

≡

=

∞

Example 2.2. Let p 5= and k 10= . In this case, one has t Sdim 5 110( )= =
+ and t Sdim 5 210( )′ = =

− .
Let z η z η zΔ 55

4( ) ( ( ) ( ))=
+ be the unique cusp form in S 54 ( )+ and E z6( ) be the normalized Eisenstein series

of weight six. We also let j z5 ( )+ be the Hauptmodul for Γ 50( )+ , given by

j z η z
η z

η z
η z5

6 5 5 .5

6
3

6

⎜ ⎟ ⎜ ⎟( ) ⎛

⎝

( )

( )
⎞

⎠

⎛

⎝

( )

( )
⎞

⎠
= + +

+

One then computes that

E q q q q q q q q q

E j j
q

q q q q

q q
q q q q q

j
q q

q q q q q

E
q q q

q q q q q

Δ 8 114 448 625 912 4242 7680 6687 ,

Δ 8 90 1 192 14511 370176 5152500 ,

Δ 1 8 44 192 726 2472 7768 22880 ,

Δ 8 1 114 1672 14511 94848 515774 2454144 10533315 ,

Δ 1 2 120 1740 14855 96200 520532 2469320 10578425 ,

10, 1 5 6
2 3 4 5 6 7 8 9

10,1 5 6 5
2

5
2 3 4 5

8,2 5
2

2
2 3 4 5

8,3 5
2

5 3
2 3 4 5

8,3 5
3

4 3 2
2 3 4 5

f

f

f

f

f

( )

( )

( ) ( )

( )

= = − − − − + + + − + ⋯

= + − = − − − − − ⋯

= = + + + + + + + + ⋯

= − = + + + + + + + + ⋯

= = + − − − − − − − + ⋯

−

+ +

+ + + +

−

+ −

−

+ − +

−

− + − −

where E E E W6
1

1 5 6 6 6 53 ( ∣ )= +
+

+

and E E E W4
1

1 5 4 4 4 52 ( ∣ )= −
−

−

. We then obtain that

f h f w β β, , and 2 ,1 10, 1 1 1 10,1 1 11 8,3 11 8,2f f f f= = = = +
−

∗

− −

where β f11
1

CT
1

2501 8,3f( )
= = −

⋅
−

−
. Then one has from Remark 1.1(iii) and Theorem 1.3(ii),

F h D w β f c n q4
25

,α
n

α
n

1
9

1 11 8,3 1
3

f( ) ( )∑= − + + + =
−

−

=−

∞
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and if we take l 3= and w 1= in (6), by using the Sturm bound one verifies that

c n q
c

q
q q q q q

f

3
3
6561

6308
18528264

1577
808269273

1577
68622811200

1577
533626633125

1577
2832551189208

1577

mod 3 .

n α
n

α

1

2 3 4 5 6

1
8

( )

( )

( )

∑

= − − + + − +

− ⋯

≡

=−

∞

Example 2.3. (Cf. [1, Example 2.10]) Let p 5= and k 12= . In this case, t Sdim 5 312( )= =
+ and the space S 512( )+

is spanned by

z z q q q q
z z j z q q q q
z z j z j z q q q q

Δ 12 54 88 ,
Δ 12 44 288 306 ,
Δ 12 178 2608 65 23472 .

12, 3 5
3 3 4 5 6

12, 2 5
3

5
2 4 5 6

12, 1 5
3

5
2

5
4 5 6

f

f

f

( ) ( )

( ) ( ) ( ( ) )

( ) ( ) ( ( ) ( ) )

= = − + − + ⋯

= + = + − + + ⋯

= + − = + − + + ⋯

−

+

−

+ +

−

+ + +

It then follows from [1, Example 2.10] that the Hecke eigenforms are given by

f

f

f

24 252 ,

10 6 151 110 32 151 ,

10 6 151 110 32 151 ,

1 12, 1 12, 2 12, 3

2 12, 1 12, 2 12, 3

3 12, 1 12, 2 12, 3

f f f

f f f

f f f

( ) ( )

( ) ( )

= − +

= + − + + − +

= + − − + − −

− − −

− − −

− − −

so that K f1 �= and K K 151f f2 3 �( )= = . Now utilizing [6, Theorem 1.2(i)] one finds that

f

f

f

17
131

16384
655

531441
1310

,

3 2869 43 151
19781

512 2416 181 151
98905

177147 453 7 151
395620

,

3 2869 43 151
19781

512 2416 181 151
98905

177147 453 7 151
395620

,

1 12,1 12,2 12,3

2 12,1 12,2 12,3

3 12,1 12,2 12,3

f f f

f f f

f f f

( ) ( ) ( )

( ) ( ) ( )

= − +

=

+

+

+

+

− +

=

−

+

−

+

− −

∗

∗

∗

so that K Kf fi i=∗ for each i 1, 2, 3{ }∈ , as expected from Theorem 1.5.

3 Proof of Theorem 1.6

We recall that every H pΓk2 0� ( ( ))∈ − has a canonical decomposition [23, Section 4.2]

z z z ,� � �( ) ( ) ( )= +
− +

where �− (respectively, � +) is nonholomorphic (respectively, holomorphic) on the complex upper-half
plane � . The holomorphic part � + has a Fourier expansion

z a n q q e .
n

n n πiz2� �( ) ( ) ( )∑= ≔
+

≫−∞

+

Then we call � + a mock modular form if 0� ≠
− . We define

H p H p WΓ Γ .k k k p2 0 2 0 2� � �( ( )) { ( ( ))∣ ∣ }≔ ∈ =−

+

− −

For each H pΓk2 0� ( ( ))∈ −

+ we define the Wp-mock modular period function for � + by

W z b W z, ; ,p k k p
1

2� � � �( ) ( ∣ )( )≔ −
+ − + +

−
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where bk
k
π

Γ 1
4 k 1
( )

( )
=

−

−
. Let Lk be the Maass lowering operator Lk defined by

L iy
τ

iy
x

i
y

2
¯

.k
2 2

⎜ ⎟
⎛

⎝

⎞

⎠
≔ −

∂

∂

= −

∂

∂

+

∂

∂

Then for k 2≥ the differential operator ξ y Lk
k

k2 2≔
−

−

− defines antilinear maps

ξ H p S p: Γ Γ .k k k2 2 0 0( ( )) ( ( ))→
− −

+ +

Lemma 3.1. Choose G H pΓ 0n k2 ( ( ))∈ +− such that ξ G fk n n2 ( ) =
−

. We then have
(i) ξ G f fk n

c
n
c

n2 ( ) = =
−

and

(ii) G H pΓn
c

k2 0( ( ))∈ −

+ .

Proof.
(i) For simplicity, we let G Gn= . If we write the Fourier expansion of G as

G G c n k πny qΓ 1, 4 ,
n

G
n

0

( ) ( )∑= + − −
+

≪∞

≠

−

then

G G c n k πny qΓ 1, 4 ,c c
n

G
n

0

( ) ( ) ( )∑= + − −
+

≪∞

≠

−

so that

ξ G πn c n q4 .k
c

n

k
G

n
2

0

1( ) ( ) ( )∑=
−

>

− −

Since ξ G z f z πn c n q4k n n
k

G
n

2 0
1( ( )) ( ) ( ) ( )= = ∑

− >

− − , we must have ξ G fk
c

n
c

2 ( ) =
−

. Moreover since f qn �[[ ]]∈

(see [26, p.263]), we readily have f fn
c

n= .

(ii) To show that G H pΓc
k2 0( ( ))∈ −

+ , we first easily check that

G γ G γ pfor all Γ .c
k

c
2 0∣ ( )= ∈−

+

Second, we obtain that

G ξ ξ G ξ fΔ 0.k
c

k k
c

k n
c

2 2( ) ( ) ( )= − ∘ = − =− −

Third, the growth condition is immediate from that of G. Thus, the assertion is proved. □

Lemma 3.2. With the same notations as above, we have

r f z c G z W z, ¯ , ; ,n k n p�( ) ( ( ) )− = ⋅ −
+ +

where ck
k
πi

Γ 1
2 k 1
( )

( )
= −

−

−
.

Proof. By Theorem 1.5 in [8] we have G W z c r f z, ; , ¯n p k n
1�( ) ( )=

+ − + . Thus, we obtain that

r f z c G W z, , ; ¯ .n k n p�( ) ( )− = ⋅ −
+ + (15)

Since G W z, ;n p�( )+ is, by definition, b G G W zk n n k p
1

2( ∣ )( )−
− + +

− , we compute that

G W z G z W z, ; ¯ ¯ , ; .n p n p� �( ) ( ( ) )− = −
+ + (16)

Combining (15) and (16), we obtain the assertion. □

Lemma 3.3. With the same notations as above, we write the Fourier expansion of Gn
+ as

G z c m q .n
m

G
m

n
( ) ( )∑=

+

≫−∞

+
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We then have

r f z
r D G z c c p

b
W p,

, 0
n

k
n
c

G k

k
k

1
0

2
n( )

( ( ) ) ( )
( )− =

− ⋅

∈
+

+ − +

−

+ (17)

and

T r f z
l r T D G l c c p

b
,

1 0
.n

k k
n
c k

G k

k

1 1 1
0n( ( ))

( ( ( ))) ( ) ( )
− =

− + ⋅

ℓ

+

− +

ℓ

− − +

(18)

Proof. For simplicity, we let G Gn= and a c 0G( )=
+ . Note that D G S pk c

k
1 ,( ) ( )∈

− ! + has Fourier expansion

D G n c n qk c

n

k
G

n1

0

1( ) ( )∑=
−

≠

− +

and

c n q G z a¯ .D G
n

G
n

0
k c1� ( ) ( )( ) ∑= = − −

≠

+ +
−

Thus, we come up with

b G z W z W a a W

c r D G z a p
¯ , ;

, .
k p D G D G k p k p

k
k c

1
2 2

1 1
0

k c k c1 1� � �( ( ) ) ∣ ∣

( ( ) )

( ) ( )⋅ − = − + −

= ⋅ − ⋅

− +

− −

− + −

− −

Then (17) is immediate from the above equation and Lemma 3.2. Applying the Hecke operatorTℓ to (17) and
then employing the fact that T r r Tk1

∘ = ∘ ℓℓ

+ + −

ℓ with (EP1) we obtain (18). □

In what follows, we will simply denote G Gn= and λ λ n,( )= ℓℓ . It then follows from [27, Theorem 7.10]
that

ξ T G λ ξ G λ f .k
c k

k
c k

n2
1

2
1( ( )) ( )= ℓ = ℓ

− ℓ

−

ℓ −

−

ℓ

Thus, we have

T G λ Gc k c1 h( ) = ℓ +ℓ

−

ℓ ℓ
(19)

for some M pk2
,h ( )∈ℓ −

! + . Comparing the constant terms of holomorphic parts in both sides of (19)we obtain that

c c λ c c0 0 0 0 ,G
k

G
k

l G
1 1

h( ) ( ) ( ) ( )+ ℓ = ℓ +
+ − + − +

ℓ
(20)

where c 0h ( )
ℓ

denotes the constant term of hℓ. Now, applying Dk 1− to both sides of (19) we obtain that

D T G λ D G D .k c k k c k1 1 1 1 h( ( )) ( ) ( )= ℓ +
−

ℓ

−

ℓ

− −

ℓ
(21)

Meanwhile, we compute that

T D G T n c n q

n c n n c n q

D c n c n q

D T G .

k c

n

k
G

n

n

k
G

k
k

G
n

k k

n
G

k
G

n

k k c

1 1

1 1
1

1 1 1

1 1

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

( ( ))
⎛

⎝

( )
⎞

⎠

⎛

⎝
( ) ( ) ⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝
⎜

⎛

⎝

⎛

⎝
( ) ⎛

⎝
⎞
⎠

⎞

⎠

⎞

⎠

⎞

⎠
⎟

( ( ))

∑

∑

∑

=

= ℓ ℓ + ℓ

ℓ ℓ

= ℓ ℓ + ℓ

ℓ

= ℓ

ℓ

−

ℓ

− +

− + −

−

+

− − + − +

− −

ℓ

(22)

Therefore, we find that

λ D G D T D G ,k k c k k k c1 1 1 1 1h( ) ( ) ( ( ))ℓ + = ℓ
−

ℓ

− −

ℓ

−

ℓ

− (23)
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which gives rise to

r T D G r D λ r D G
r D λ b r f z a c p, by 17 ,

k c k k k c

k k
k n k

1 1 1 1

1 1
0

h

h

( ( ( ))) ( ( )) ( ( ))

( ( )) ( ( ) ) ( )

= ℓ +

= ℓ + − + ⋅

+

ℓ

− − + −

ℓ ℓ

+ −

− + −

ℓ ℓ

+

where a c 0G( )=
+ . Thus, we obtain that

b T r f z r T D G a c p
r D λ b r f z a c p a c p

r D λ b r f z λ a c p a c p
c c p λ b r f z λ a c p a c p

λ b r f z

, 1 by 18
, 1

, 1
0 , 1 by 8, p. 3373 line 9

, by 20 .

k n
k k c k

k
k k k

k n k
k

k
k k

k n
k

k
k

k

k
k

l k n
k

k
k

k
k

k n

1 1 1
0

1 1 1
0

1
0

1 1 1
0

1
0

0
1 1

0
1

0
1

h

h

h

( ( )) ( ( ( ))) ( ) ( )

( ( ( )) ( ( ) )) ( )

( ( )) ( ) ( )

( ) ( ) ( )

( )

− = ℓ − + ℓ ⋅ ⋅

= ℓ ℓ + − + ⋅ − + ℓ ⋅ ⋅

= + ℓ − + ℓ ⋅ − + ℓ ⋅ ⋅

= + ℓ − + ℓ ⋅ − + ℓ ⋅ ⋅ [ ]

= ℓ − ( )

ℓ

+ − +

ℓ

− −

− − + −

ℓ ℓ

+ −

+ −

ℓ

−

ℓ

+ −

ℓ

−

− + −

ℓ

−

−

ℓ

+

ℓ

This proves Theorem 1.6(i). Theorem 1.6(ii) is an immediate consequence of Theorem 1.6(i). Now it remains
to prove Theorem 1.6(iii). Since we know that W p tdim 2 1k 2( ) = +

−

+ , it suffices to show that the set

p z r f r f r f r f, , , , , ,t t0 1 1{ ( ) ( ) ( ) ( ) ( )}… …
+

+

+

+

−

+

−

+

is linearly independent. Suppose that

a r f b r f cp 0
n

t

n n
n

t

n n
1 1

0( ) ( )∑ ∑+ + =

=

+

+

=

−

+ (24)

for some a b c, ,n n �∈ . Thus, we have

b r f a r f cp .
n

t

n n
n

t

n n
1 1

0( ) ( )∑ ∑= − −

=

−

+

=

+

+

Since the left side of the above equation is an odd polynomial while the right side is even, we must have

b r f a r f cp0 .
n

t

n n
n

t

n n
1 1

0( ) ( )∑ ∑= = − −

=

−

+

=

+

+

It follows from [28, Theorem 1.1 and Remark 1.3] that the maps r
+

+ and r
−

+ are injective and the image of r
+

+

does not contain p0⟨ ⟩. Thus, we have c a f b f0 n n n n n n= = ∑ = ∑ and therefore c a b0 0n n= = = = for

all n t1, , .{ }∈ …

4 Proof of Theorem 1.8

(i) Suppose that H H pΓn k2 0( ( ))∈ −

+ such that

ξ H f ξ G .k n n k n2 2= =
− −

Thus, we see that H G Mn n k2
,

− ∈
−

! + and therefore D H D G D Mk
n

k
n

k
k

1 1 1
2

,( ) ( ) ( )− ∈
− − −

−

! + . We then have D Hk
n

1[ ( )] =
−

gn[ ], which implies that the class gn[ ] is independent of the choice of Gn and uniquely determined by fn.
Since gn belongs to the space S pk

, ( )! + we can write gn as

g a f b f D vn
m

t

m
n

m
m

t

m
n

m
k

n
1 1

1( ) ( )
∑ ∑= + +

=

∗

=

−

for some a b,m
n

m
n �( ) ( )

∈ , and v M pn k2
, ( )∈
−

! + . We observe from [8, Theorem 1.1] that

D v f f S p, 0 for every .k
n k

1 ,{ } ( )= ∈
− ! + (25)
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For each m t1, ,{ }∈ … , pairing with fm yields

g f a f f b f f D v f

a D v f f f δ f f

a

, , , , since our pairing is bilinear

, since , and , 0

by 25 .

n m
j

t

j
n

j m
j

t

j
n

j m
k

n m

m
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m
n
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1

{ } { } { } { }

{ } { } { }

( ) ( )

( )

( )

∑ ∑= + +

= + = =

= ( )

=

∗

=

−

− ∗

Similarly, pairing with fm
∗ we obtain that

g f b, .n m m
n{ } ( )

= −
∗

Moreover, one has

a g f f g f D G
f ξ G
f f

f f m n
f f m n

, , ,
, by 5, 1.16  or 8, Lemma 2.2  or 29, Theorem 3.1
, by Lemma 3.1 i

, 0, if ,
, , if .

m
n

n m m n m
k

n
c

m k n
c

m n

m n
n n

1

2
reg

reg

{ } { } { }

( )

( )

( ) ⎧
⎨⎩ ( )

( )
= = − = −

= − [ ( )] [ ] [ ]

= − ( )

= − =

≠

− =

−

−

Similarly, one finds that

b f g f f, , .m
n

m n m n
reg{ } ( )( )

= =
∗ ∗

Thus, gn can be rewritten as

g a f b f D v

a h x n f b f D v

a h b f b a x n f D v .

n n
n

n
m

t

m
n

m
k

n

n
n

n
i
i n

t

i i
m

t

m
n

m
k

n

n
n

n n
n

n
i
i n

t

i
n

n
n

i i
k

n

1

1

1 1

1

1

1

( ( ) )

( ( ))

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

∑

∑ ∑

∑

= + +

= − + +

= + + − +

∗

=

−

=

≠

=

−

=

≠

−

(26)

Now let

C b a x n f .n
i
i n

t

i
n

n
n

i i
1
( ( ))( ) ( )

∑≔ −

=

≠

(27)

Then for each prime l with l pgcd , 1( ) = , we observe that

T C T g a h b f D v
λ n g a h b f D E E M p
λ n C D E E M p

EF2, for some , by 23  and
, ˜ for some ˜ .

n n n
n

n n
n

n
k

n

n n
n

n n
n

n
k

k

n
k

k

1

1
2

,

1
2

,

( ) ( )

( )( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

= − − −

= ℓ − − + ∈ ( )

= ℓ + ∈

ℓ ℓ

−

−

−

! +

−

−

! +

This implies that

D E T C λ n l C S p D M p˜ , 0 ,k
n n k

k
k

1 1
2

,( ) ( ) ( ) { }= − ∈ ∩ =
−

ℓ

+ −

−

! +

and therefore

T C λ n l C l l p, for each prime with gcd , 1.n n( ) ( )= =ℓ

Thus, by multiplicity one theorem has C fn n∈ ⟨ ⟩, which together with (27) yields that

C f f f f f, , , , , 0 .n n n n t1 1 1 { }∈ ⟨ ⟩ ∩ ⟨ … … ⟩ =− +
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It then follows from (26) that

g a h b f D v .n n
n

n n
n

n
k

n
1( ) ( )

= + +
−

Thus, we have

g f f h f f f D v b D v, , ,n n n n n n n
k

n k n
k

n
reg 1 1g( ) ( )= − + + = +

∗ − − (28)

which means that g bn k ng[ ] [ ]= .
(ii) We obtain from (17) that

b r f z c c p r g a r h b r f c c p, 0 0 ,k n G k n n
n

n n
n

n k v0 0n n( ) ( ) ( ) ( ) ( ) ( )( ) ( )
⋅ − + ⋅ = = + + ⋅ ⋅

+ + + + + (29)

where c 0vn( ) stands for the constant term in the Fourier expansion of vn. Thus, we have an equality

A b r f z a r h c n p b r f c c a c n c c p B, 0 0 ,n k n n
n

n n
n

n k v n
n

G k n0 0 0 0n n
( ) ( ( ) ( ) ) ( ) ( ) ( ) ( )( ) ( ) ( )

( )≔ ⋅ − − + − = ⋅ − − ≕
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where c n0( ) is the constant appeared in (EP2). Applying Tℓ and utilizing (EP1) and (EP2) we obtain that

λ n A B, 1 .k
n

k
n

1 1( ) ( )ℓ ℓ = + ℓ
− − (30)

Now choose a prime l different from p such that λ n, 1k k1 1( )ℓ ℓ ≠ + ℓ
− − . Indeed, if there is no such ℓ, then we

have λ n, 1k 1( )ℓ = ℓ +
− for all ℓ, which contradicts a well-known estimate λ n, 2 k 1

2∣ ( )∣ℓ ≤ ℓ
− (see [26, (15)]).

For such ℓ, since A Bn n= , we obtain from (30) that A B 0n n= = , which renders

b r f z a r h c n p b r f, 0k n n
n
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n
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+ + +
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c c a c n c c p0 0 0.k v n
n

G k0 0n n
( ) ( ) ( )( )

( )⋅ − − =
+ (31)

Combining (29) and (31) we obtain the assertion.

5 Proofs of Theorems 1.2, 1.3, and 1.5

Proof of Theorem 1.2. We recall that ξ k
G

f f
f

f f2 , ,
n
c

n n

n
c

n n( ) ( )( ) =
−

. It follows from (28) that

D G f f h f f f D v, ,k
n
c

n n n n n n
k

n
1 reg 1( ) ( ) ( )= − + +

− ∗ −
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, ( )∈
−
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1
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whose principal part is equal to f K qprin n f
1

n( ) [ ]− ∈
∗ − . Here prin( )⋅ means the principal part at the cusp ∞

except for the constant term. Let n
G

f f
v

f f, ,
n
c
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n
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F

( ) ( )
≔ − . As mentioned in Remark 1.1(ii), let Q H Γ 1k2 0( ( ))∈ − ,

which is good for fn
c with Q O q t( )=

+ − . Since ξ Q 0k n2 F( )− =
−

, we obtain Q M 1n k2F ( )− ∈
−

! . Moreover, we

observe Q Q O qn n
tF F ( )− = − ∈

+ + − since the order at ∞ of the holomorphic part of a harmonic weak Maass

form of weight k2 − is the same as the order of the pole of its image under Dk 1− . But it follows from
[2, Remark 3.8] that
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!
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n
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−

h fn
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,
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− +

∗

, as desired. □
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Proof of Theorem 1.3. (i) Let Q Qn= be good for fn
c. Write Q Q Q W Q Q W

2 2
p p∣ ∣

( ) ( )= +
+ −

. Since ξ Qk2 ( )
−
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Q Q W f
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c
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∣
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∣
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for some v M pn k2
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! + . We then obtain that
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D
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Now we find
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where the first equality follows from the residue theorem because the residue of the meromorphic 1-form
d f vm n( ) is given by f vCT m n( ). Utilizing Remark 1.1(ii)we can takeQ such thatQ O q t t( )=

+ − − ′ . Thus, we can write
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2
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which proves the assertion.
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Comparing this with the identities in [6, (20)–(22)] we obtain
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We recall from (28) that
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n
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whose principal part is equal to
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Now we investigate the principal part of nF at the cusp 0. To this end, we consider
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whose principal part is equal to that of p f p f 0k
n

z
p

k
n

z
p( )( ) ( )− + =

− ∗ − ∗ by (35). This means that the principal part

of nF at the cusp 0 is constant. As mentioned in Remark 1.1(ii) and in the proof of the assertion (i),
let Q H pk2 ( )∈ − , which is good for fn

c with Q O q t t( )=
+ − − ′ . Since ξ Q 0k n2 F( )− =

−
and the principal part of Q nF−

at the cusp 0 is constant, we obtain Q M pn k2F ( )− ∈
−

♯ . Moreover, we observe Q QnF− = −
+ O qn

t tF ( )∈
+ − − ′ .

But it follows from [12] that

f f M p t tmax ord 0 1 ,k2{ ∣ ( )}≠ ∈ = − − − ′∞ −

♯

which forces Q nF− to be zero. Thus, KCT n fnF( ) ∈
+ and hence nF is good for fn

c. Now the assertion follows from
(36). □

Proof of Theorem 1.5. First we prove that h K qprin n f
1

n( ) [ ]∈
− . In the case of p 1= , this immediately follows

from Theorem 1.2. Now let p 2, 3, 5, 7, 13{ }∈ . We adopt the same notation as in Theorem 1.3. SinceQ is good,
Q K qprin f

1
n( ) [ ]∈

− and Q Wp∣ has constant principal part. Meanwhile (33) implies that
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We note from (34) that β b Kjn jn fn= ∈ . Thus, by (36) we obtain that

h D w K qprin prin .n
k

n f
1 1

n( ) ( ) [ ]− + ∈
− − (37)

Since β Kjn fn∈ and f k m2 ,−

− has rational Fourier coefficients, the definition of wn implies that

w K qprin .n f
1

n( ) [ ]∈
− (38)
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By (37) and (38) one has h K qprin n f
1

n( ) [ ]∈
− . Observing that h fprin prinn n( ) ( )=

∗ , we obtain that
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Since f μ m n,n m
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k m1 ,f( )= ∑ −
∗

=
, it then follows from (39) that μ m n K, fn( )− ∈ for each n t1,{ }∈ … and hence

every coefficient of fn
∗ is contained in K fn. □

6 Proofs of Proposition 1.10 and Theorem 1.11

Proof of Proposition 1.10. The assertion follows immediately from the statement (EF3) and the relation
between nG and hn. □

Proof of Theorem 1.11. (i) It follows from (12) that
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Combining (40) and (41) we obtain that
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, , as desired.
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(ii) Given F S pk
, ( )∈

! + , by (12) we can write

F α f β f D g g D M p, for some .
n

n n n
n

n n
k

F F
k

k
1 1

2
,g( ) ( )∑ ∑= − + + + ∈

− −

−

! +

(42)

We then observe from (13) that

F α f β f β f

β α n t
F D g

Φ 0, 0 2 0 and 0

0 for all 1, 2, ,
,

n
n n

n
n n

n
n n

n n
k

F
1

( ) ( )

{ }

∑ ∑ ∑= ⇔ + = =

⇔ = = ∈ …

⇔ =
−

which proves the assertion.
(iii) First we note that

r f z r f z ir f z
r f z r f z r f z

r f z r f z ir f z

, , 2 ,
, , 2 ,

, , , .

n n n

n n n

n n n

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

− + =

− − + =

= +

+ +

+

+

+ +

−

+

+

−

+

+

+

Now we compute that

P r F P r α f β f D g

P α r f z r f z β r f z ap a

P α r f z β r f z ir f z ap

α r f z β r f z ir f z

, , , for some by Theorem 1.8 ii

2 , , ,

2 , , , .

n
n n n

n
n n

k
F

n
n n n

n
n n

n
n n

n
n n n

n
n n

n
n n n

1

0

0

g

�

⎜ ⎟
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⎛

⎝
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⎞

⎠

⎛

⎝

( ( ) ( )) ( )
⎞

⎠

⎛

⎝

( ) ( ( ) ( ))
⎞

⎠

( ) ( ( ) ( ))
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−

+

−

+

+

+

−

+
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+

+

Meanwhile,

F α f β f β f α r f z β r f z i β r f zΦ 2 , 2 , , , .
n

n n
n

n n
n

n n
n

n n
n

n n
n
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⎛

⎝

⎞

⎠

( ) ( ) ( )∑ ∑ ∑ ∑ ∑ ∑∘ = + = + +
−

+

−

+

+

+

Thus, we have P r F FΦr( ) ( )∘ = ∘
+ . □
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