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Abstract: One of the most common challenges in multivariate statistical analysis is estimating the mean
parameters. A well-known approach of estimating the mean parameters is the maximum likelihood esti-
mator (MLE). However, the MLE becomes inefficient in the case of having large-dimensional parameter
space. A popular estimator that tackles this issue is the James-Stein estimator. Therefore, we aim to use the
shrinkage method based on the balanced loss function to construct estimators for the mean parameters of
the multivariate normal (MVN) distribution that dominates both the MLE and James-Stein estimators. Two
classes of shrinkage estimators have been established that generalized the James-Stein estimator. We study
their domination and minimaxity properties to the MLE and their performances to the James-Stein estima-
tors. The efficiency of the proposed estimators is explored through simulation studies.
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1 Introduction

Estimating the mean parameters is one of the most often encountered difficulties in multivariate statistical
analysis. Various studies have dealt with this issue in the context of MVN distribution. When the dimen-
sionality of the parameter space is greater than three, the efficiency of the MLE approach is not fulfilled.
There are certain limitations to this approach, which have been shown by Stein [1] and James and Stein [2].

A common strategy for enhancing the MLE is the shrinkage estimation approach, which reduces the
components of the MLE to zero. The shrinkage estimation approach has been used for enhancing different
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estimators, such as ordinary least squares estimator [3], and preliminary test and Stein-type shrinkage ridge
estimators in robust regression [4]. In the context of enhancing the mean of the MVN distribution, Khur-
sheed [5] studied the domination and admissibility properties of the MLE of a family of shrinkage estima-
tors. Baranchik [6] and Shinozaki [7] also studied the minimaxity of some shrinkage estimators. In addition,
several studies have examined the minimaxity and domination properties for various shrinkage estimators
under the Bayesian framework, including Efron and Morris [8,9], Berger and Strawderman [10], Benkhaled
and Hamdaoui [11], Hamdaoui et al. [12,13], and Zinodiny et al. [14]. Most of these studies have used the
quadratic loss function to compute the risk function.

This paper introduces a new class of shrinkage estimators that dominate the James-Stein estimator and
the MLE. In order to get a competitive estimator, the estimator has to be unbiased and have a good fit. This
can be done by implementing the balanced loss function in the estimation procedure of the competitive
estimator. The balanced loss function has been suggested by Zellner [15], and its performance and applica-
tions to estimators have been discussed by Sanjari Farsipour and Asgharzadeh [16], JafariJozani et al. [17],
and Selahattin and Issam [18].

Therefore, we consider the random vector Z to be normally distributed with an unknown mean vector 6
and covariance matrix 02, where g is the dimension of parameter space and I, is the g x g identity matrix.
As the main object of this paper is to propose a new estimator of 6, we estimated the unknown parameter o2
by $? ($? ~ ozxrf). Then, we construct a new class of shrinkage estimators of 8 derived from the MLE.
Specifically, the new class of shrinkage estimators is proposed by modifying the James-Stein estimator.
We consider adding a term of the form y(S%/||Z|[?)2Z to the James-Stein estimator T{’(Z, §?) = (1 — aS%/|Z|?)Z,
where a and y are real constant parameters that both depend on the integer parameters n and g. We show
that these estimators are minimax and dominating the James-Stein estimator for any values of n and gq.
The balanced loss function is implemented in the computation of the risk function to compare the
efficiency of the proposed estimators over the James-Stein estimator.

The rest of this paper is composed of the following sections: In Section 2, we establish the minimaxity
of the estimators defined by T,,(ll)(Z , 8% = (1 — aS?/|Z|?)Z. Section 3 introduces the new shrinkage estimator
class and its domination criterion over the James-Stein estimator. The efficiency of the new estimator
classes is explored through simulation studies in Section 4. Then, we conclude our work in Section 5.

2 A class of minimax shrinkage estimators

We assume here the random variable Z is following an MVN distribution with mean vector 6 and a covari-

: 2 .
ance matrix oI, where the parameters 6 and o2 are unknown. Thus, the term 'L follows a non-central chi-
o

square distribution with q degrees of freedom and non-centrality parameter A = “i—ﬂz As the aim of this

paper is to establish an effective estimator for the mean parameter 8, we consider the statistic S? (5% ~ Ozan)
as an estimate of the unknown parameter 02. Thus, for any estimator T of 8, the balanced squared error loss
function is defined as follows:

Ly(T,0) =wlT - TP + A - a)IT - 6P, O<w<1, o))

where Ty is the target estimator of 8, w is the weight given to the closeness between the estimators T and Ty,
and 1 — w is the relative weight attributed to the accuracy of the estimator T. The associated risk function
to the L,(T, 6) function is defined as follows:

Ry(T, 6) = ELu(T, )) = wE(IT - Tol*) + 1 - @)E(IT - 6]).

Benkhaled et al. [19] demonstrated that the MLE of 8 is Z == T,. Then, its risk function becomes (1 — w)qo?.
This finding shows the minimaxity and inadmissibility property of T, for g > 3. Consequently, the mini-
maxity property is also achieved for any estimator that dominates the estimator Ty.
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Now, let consider the estimator

TW(Z 52)—(1—a 5 )Z—Z—(x 5 A )
e I1Z|? Iz~

where a is a real constant parameter that can be related to the values of the parameters n and q.

Proposition 2.1. The associated risk function of the estimator T’(Z, S?) given in equation (2) based on
the balanced loss function given in equation (1) is

R,(TM(Z,8%),0) =1 - w)oz[ - 2ano*(q - 2)E( 7P )] + aln(n + 2)0“E( ”21”2 ) 3)

)

) + (1 - w)qo? - 2a(1 - w)E(<Z 0, "2"2 >)E(Sz).

Proof.

2

a
1z

R/(TM(Z, $%), e):wE( -

Nea-w 6 a>
A +(1-w)El|Z-06-a A
H 12

_ 2E SZZE
= EEYD (nznz

The last equality comes from the independence between two random variables S? and || Z|*.

| (<Z v IIZII2 >):,§; [(Z G)IIZIIZ ; [( )Ilylllz)/l]

where y = 5 =Y. ,yq)t and foralli=1,...,q, ¥ = % ~ (%, 1). Then, based on Lemma 1 given in Stein

[20], we ge
q q 1 2y?
El( Z - - i
(< ||Z||2 >) Zl (ay, Iy ) Z (uyu2 ||y||4)
(g oo L )
=(@-2E (u ||2) (-2 (nzn2
Then,

RA(T(M(Z, 82, 6) = aZE((82)2)E( )+ 1 - w)go? - 2a(1 - w)E(<Z 0, ”Z”2 >)E(SZ)

I1Z|?
= azE((SZ)Z)E( I ZIIZ) + (1 - w)qo0? - 2a(1 - w)(q - 2)0215( 2P )E( %)
1
=(1- w)oz[q 2ano?(q - 2)E( Iz )] + a’n(n + 2)0“E( Iz ) O

From Proposition (2.1), the minimaxity and domination criterion of the estimator Tél)(Z , $?) to the MLE
is achieved under the following condition:

2(1 - w)g -2
n+2 '

O<ac<

Thus, the risk function R,(T{’(Z, $?), #) is minimized at the optimal a value (&) as follows:

(1-wg-2
n+?2 '

a =

)
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Then, by considering a = &, we get the James-Stein estimator

2
Tis(Z, $?) = TN(Z, $?) = (1 - a"gw)z (5)

From Proposition 2.1, the risk function of Tj5(Z, S?) is expressed as follows:

Ru(Tis(Z, $2), ) = (1 — w)go? - (g - 2)*(1 - w)zn%o%(ﬁ). 6)

Based on equation (5), the positive part of James-Stein estimator can be defined as follows:

i sz)( SZT ( Sz) %
Ti.(Z, =l1l-a—|Z=|1-a—|ZL. 2 _, 7
s 1z Iz ) e e

where (1 -a %)Jr = max (O, 1-a %), and its risk function associated with L, is shown in the following
formula:

., S4 . S
Ru(Tjs(Z, %), 0) = Ru(Tjs(Z, $), 6) + E (uzu2 - azw +2(1 - w)oX(q - )& iz qoz)fasgzl , 8)
[A]

where I > _, represents the indicating function of the set (&% > 1). Both equations (6) and (8) show that
Izi2~

Ry(Tis(Z, $%), 0) and R, (T}s(Z, S?), 0) are less than (1 — w)qo? = R,(Z, 6), which proves the domination and
minimaxity of both estimators Tjs and T}s over the MLE.

3 The improved shrinkage estimators of the James-Stein estimator

In this section, we construct a class of shrinkage estimators that has the domination property over the
James-Stein estimator Tjs(Z, S?). This class of estimators is a modified version of Tjs(Z, S?). Specifically,
we extend Tjs(Z, S?) given in equation (5) by adding the term y(S%/|Z|?)?Z, where y behaves like a in
equation (2). These new estimators are then investigated regarding their superiority to the James-Stein
estimator Tjs(Z, S?). The modified version of the James-Stein estimator is shown in the following formula:

2
1-w)g -2 322+y( Sz)z. ©)

T®
n+2 1Z|? 1Z|?

2 Y (
y,]S(Z’ SZ) = T]S(Z, SZ) + Y(W) Z=17-

Proposition 3.1. The associated risk function of the estimator T}E,Z}S(Z, $?) given in equation (9) based on
the balanced loss function given in equation (1) is

RATK(Z, $), ) = Ru(Ts(Z, 59, 6) + 2yn(n + 2)(1 - w)aZ[(q - %]E(ﬁ)
Y (10)
+yn(n + 2)(n + 4)(n + 6)02E(”y%),

where y = % = ...,yq)t and y; = % ~ N(%, 1)fori =1...,q.

2
]+ a- w)E[

Proof.

R(T(Z, 57, 6) = wE[

@, ) ( Sl )2 s S\ z-0|
Tis(Z,S%) +y Z-7 Tis(Z, S +y( )Z—
o 1ZI2 o 1ZI2




DE GRUYTER A study of minimax shrinkage estimators = 5

— 2\ _ 2 2 (82)4 2\ _ (52)2
= wE(”T]s(Z, S ) Z“ + y ("2"2)3) + 2(1)(<T]5(Z, S ) Z, y(||Z||2)ZZ

(SZ) _ (S )2
(- w)E(“TJs(Z’ 9= OF +v* oz * 2<T’S(Z =8y azpy >)

(1 _ w)(q _ 2) 2 3
<||Z||2)3) oy FEE (

1-w)g-2) 8 , (5 >)
Z, Z) |,
nv2 2RV zRpe

= Ry(T;s(Z, $2), 6) + y*E((SH“)E
= Ru(Ts(Z, $), 0) + y*E(( ))( (||Z||2)2)

+2(1 - w)E(<Z -0-

where the last equality is obtained as a result of the independence between the two random variables S?
and | Z|?. Thus,

@ ) ) 4 A-w)g-2
w(T ]5(Z §%), 0) = Ry(Ty;s(Z, $%), 0) + y°E((0 Xn) )E( "Z"6) w +2

1
E((0%’))E| ——
(@% (IIZII“)
(1-wi(g-2)

B 3
L 2y w)E((UXn)Z)ZE((Z o) - P )

i=1

Then, by making the transformation y = = = (y,, . .,yq)f, where y; = % ~ (%, 1) fori=1,...,q, and

using Lemma 1 given in Stein [20], we get

iE((Z"_ ||Z|]-’*):%i (( i)uyﬁ"): %i (aay ||yyf|4)
:%é (yl“ ||;l||6)‘i( VE (||y1||4)'

Thus,

RAT{S(Z, $2), ) = Ro(Tis(Z, 2, 0) + y?a%n(n + D(n + 4)(n + 6)E( Iy ll"’)

— 2yw(1 - a))(q 2)02n(n + 4)E( ) + 2)’(1 - a))azn(n + 2)(q 4)E( " "4)

Iyl

-2y(1 - w)*(q - 2)o’n(n + 4)E( b ”4)

= Ry(Tjs(Z, $7), 6) + y?o’n(n + 2)(n + 4)(n + 6)E( I ||6)

+ 2yn(n + 2)(1 - w)oZ[(q _y-la-2n+4) E( ) O
n+2 Iyl*

Theorem 3.1. Under the balanced loss function L, the estimator T;,Z}S(Z , $2) with q > 6 and

_21-w)g-6)
m+Hn+6)°

dominates the James-Stein estimator Tjs(Z, S).

Proof. According to Proposition 3.1, we have

E( 35
R (T)Szj)s(z’ $%),0)=R,(T;s(Z, §%), ) + y’a’n(n + 2)(n + 4)(n + 6) EE Ilylll ;E()fl“)
73

n+?2

+ 2y0(1 — w)n(n + 2)[((1 -4) - w (”,V"4)
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e

+2y0%(1 - wn(n + 2[(g - 4) - (g - 2)]E(IIV#).

<R,(Tis(Z, $?), 0) + y?0’n(n + 2)(n + 4)(n + 6)

Following Lemma 2 given in the study by Benkhaled et al. [19], we obtain

1 q
E( ”y"(,) _EWYE®) _ r(s-4+1)

1) E(I) T a4y g6
B(ge) FW (")
Then,
Ru(TE(Z, ), 0) = RulTis(Z, $2), 0) + yro2 L 20+ ) + 6)E(%)
’ (q-6) Iyl
(11)
- 4y0?(1 — w)n(n + 2)E(L4).
Iyl
The right side of the aforementioned inequality is minimized at the optimal value of y as follows:
~ 201 -w)gq-6)
== 7 12
L A TS (12)
Then, by replacing y by ¥ in equation (11), we obtain
— w)? _
Ro(T(Z, $), 0) < Ru(Tis(Z, 82, 0) - 42 L= DA DG=6) _ p 17 52). p), O

n+4)(n+6)

4 Simulation results

We conduct here a simulation study for comparing the efficiency of the proposed estimators T{"(Z, S?)

and Tyﬁ?}s(Z , §%) to the estimators Tjs(Z, S?), Tjs(Z, S*) and the MLE. We consider here a = % in the

estimator TS)(Z , $2). This comparison is done based on the risk ratio of these estimators to the MLE. Thus,
RoT(Z,5),0)  Ruls2,5,0) Ro(T35280) o

> >

the risk ratios of these estimators are denoted as follows:

Ru(Z,0) ’  Ru(Z,0) Ru(Z,6)
+ 2 2
W. We consider here all estimators to be functions of A = %.

Figures 1-5, show the curve of the risk ratios for simulated values of A in the interval (1, 30) and for
relatively low and high values of n, g, and w. The risk ratio of the MLE is represented by the horizontal line
at the value of one. The gap between the curves of estimators indicates the gain magnitude of the estimator.
We observed that the curves of all risk ratios for the different sets of nn, g, and w values are entirely located
below 1, which indicate the domination of these estimators to the MLE Z. Consequently, these estimators
are considered minimax.

Among these estimators, the positive-part James-Stein estimator (T,*S) was the more efficient estimator
for values of A less than approximately 10. It means that Tjs; dominates all the considered estimators.
Also, we note that the estimator T%S(Z , $?) dominates the James-Stein estimator Tjs for the various values

of n, g, and w. We also observe a larger gain of the estimator Tyﬁ?}S(Z, $?) for low values of w. The gain

of the estimators T%S(Z , §%), Tjs(Z, §%), and Tj5(Z, $?) was very similar in a specific period of A values, which
depend on the combination of the values of the n and gq. To study this similarity, we conduct simulation
studies for all combinations of the selected values of n and g for different sets of values of A and w.
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037y 5 10 15 20 25 30
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RoTZ,59,0) RuTis2,59,6) RolTi)s@5D) R(T}5(2,52),6)

Figure 1: Curves of the risk ratios: forn=6,g=8,and w = 0.1.
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Figure 2: Curves of the risk ratios: forn=20,qg =8,and w = 0.1.

Rw(Z,6) Rw(Z,8) ’ Ru(Z,0) Ru(Z,6)

Tables 1-4 show the results of the risk ratios of the estimators T{’(Z, S?), T}%S(Z , $?), and Tj5(Z, S?). Each
cell of the tables represents the risk ratio of these estimators in order. We observe a strong relationship
between the gain of the risk ratios and the values of w and A. The gain of all risk ratios was large with small
values of A and w and tended to vanish with the increase of A and w values. Also, the difference in the gain
of risk ratios was observed in small values of A. This difference indicated the domination of an estimator to
another. Thus, the estimator Tyﬁ?}S(Z , §%) dominated both estimators T)(Z, $?) and Tjs(Z, S?) for small values

of A. However, as the values of A and w increased, the difference in the gain of these estimators became
negligible (i.e., no improvement of the proposed estimators over the James-Stein estimator). The other
parameters n and g have also an influence on the gain of the estimators. The gain of the estimators was
large for large values of n and g under fixed values of w. Specifically, the increase of g had significant
influence on the gain than the increase of n values. This means that having large values of n, g, and A with
value of w close to zero leads to a larger gain of the estimators, which leads to a significant improvement.
Thus, we conclude that the improvement of the considered estimators is clearly affected by the values of
the parameters n, g, w, and A.
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Figure 4: Curves of the risk ratios: Rz B
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(2) 2
Table 1: Values of the risk ratios: R“’<Tij((§::)2)’e), RM(ZT(?;?'G)’ d RM(;Z’gi')s ) at various values of A and w, andn = 6,and g = 8
A w
0.0 0.1 0.2 0.7 0.9
1.2418 0.6362 0.6726 0.7090 0.8909 0.9636
0.5150 0.5635 0.6120 0.8545 0.9515
0.4824 0.5371 0.5911 0.8516 0.9512
5.0019 0.7501 0.7751 0.8001 0.9250 0.9750
0.6668 0.7001 0.7334 0.9000 0.9667
0.6502 0.6867 0.7228 0.8985 0.9665
10.4311 0.8326 0.8494 0.8661 0.9498 0.9833
0.7769 0.7992 0.8215 0.9330 0.9777
0.7694 0.7932 0.8167 0.9324 0.9776
20.0000 0.8962 0.9066 0.9170 0.9689 0.9896
0.8616 0.8755 0.8893 0.9585 0.9865
0.8589 0.8733 0.8876 0.9582 0.9861
(2) 2
Table 2: Values of the risk ratios: R”(Téj((;’;)z)’ 9), R“’(gi(é’;?’e), R”(;szfz;s ) at various values of A and w, and n = 6, g = 12
A (7]
0.0 0.1 0.2 0.7 0.9
1.2418 0.5758 0.6182 0.6606 0.8727 0.9576
0.4343 0.4909 0.5475 0.8303 0.9434
0.4049 0.4671 0.5286 0.8276 0.9431
5.0019 0.6738 0.7064 0.7390 0.9021 0.9674
0.5651 0.6086 0.6521 0.8695 0.9565
0.5468 0.5938 0.6404 0.8679 0.9563
10.4311 0.7585 0.7827 0.8068 0.9276 0.9758
0.6781 0.7102 0.7424 0.9034 0.9678
0.6678 0.7020 0.7359 0.9025 0.9677
20.0000 0.8363 0.8527 0.8690 0.9509 0.9836
0.7817 0.8036 0.8254 0.9345 0.9782
0.7770 0.7998 0.8224 0.9341 0.9781
(2) 2
Table 3: Values of the risk ratios: R“’(Téj((j::)z)’e), R“(Zi(é‘j;)’ 9), d Rw(;il'gif ) at various values of A and w and n = 20, g = 8
A (7]
0.0 0.1 0.2 0.7 0.9
1.2418 0.5591 0.6032 0.6473 0.8677 0.9559
0.4121 0.4709 0.5297 0.8236 0.9412
0.3753 0.4411 0.5062 0.8203 0.9408
5.0019 0.6971 0.7274 0.7577 0.9091 0.9697
0.5961 0.6365 0.6769 0.8788 0.9596
0.5763 0.6204 0.6642 0.8770 0.9594
10.4311 0.7971 0.8174 0.8377 0.9391 0.9797
0.7295 0.7566 0.7836 0.9188 0.9729
0.7203 0.7491 0.7777 0.9180 0.9729
20.0000 0.8742 0.8868 0.8994 0.9623 0.9874
0.8323 0.8490 0.8658 0.9497 0.9832

0.8288 0.8463 0.8636 0.9494 0.9832




10 —— Abdelkader Benkhaled et al. DE GRUYTER

. . . RUTPZ,59,0) RulTys(Z,5?),0) Ru(T25(2,57) . B

Tal:lle 4.1\/2alues of the risk ratios: ;w(z,e) TRz d V0] at various values of A and w, and n = 20

andq =

A W
0.0 0.1 0.2 0.7 0.9

1.2418 0.4858 0.5372 0.5886 0.8457 0.9486
0.3144 0.3829 0.4515 0.7943 0.9314
0.2854 0.3595 0.4330 0.7917 0.9311

5.0019 0.6046 0.6442 0.6837 0.8814 0.9605
0.4728 0.5255 0.5783 0.8418 0.9473
0.4540 0.5103 0.5662 0.8402 0.9471

10.4311 0.7073 0.7366 0.7659 0.9122 0.9707
0.6098 0.6488 0.6878 0.8829 0.9610
0.5988 0.6399 0.6808 0.8819 0.9609

20.0000 0.8016 0.8214 0.8413 0.9405 0.9801
0.7354 0.7619 0.7884 0.9206 0.9735
0.7303 0.7577 0.7851 0.9202 0.9735

5 Conclusion

In this paper, we constructed a new class of shrinkage estimator that dominate the James-Stein estimator
for the estimation of the mean 6 of the MVN distribution Z ~ Ny(6, 0°I;), where ¢ is unknown. We imple-
mented the balanced square function in the form of the risk function of the estimators for the purpose of
comparing the efficiency of two estimators. We started establishing a class of the minimaxity property for
the estimator defined by T{"(Z, $2) = (1 - aS?/|Z|?)Z. We found then the minimum risk of this class that
resulted in the James-Stein estimator. Then, we constructed a new class of shrinkage estimator that is a
modified version of the James-Stein estimator. Mainly, a term y(S%/|Z||?)’Z was added to the James-Stein
estimator. The efficiency of the constructed estimator was explored by simulation studies under various
values of the model parameters, and it has been shown that the constructed estimators beat the James-Stein
estimator under the balanced loss function.

An extension of this work is to implement the similar procedures of this paper in the Bayesian frame-
work and explore possible shrinkage estimators for the mean parameters of the MVN distribution, such as
the ridge estimators.
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