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Abstract: In this article, we introduce and study the intersection graph of graded submodules of a graded
module. Let M be a leftG-graded R-module. We define the intersection graph ofG-graded R-submodules of
M , denoted by ( )G R MΓ , , , to be a simple undirected graph whose set of vertices consists of all nontrivial
G-graded R-submodules of M , where two vertices are adjacent if their intersection is nonzero. We study
properties of these graphs, such as connectivity, diameter, and girth. We also investigate the intersection
graph of graded submodules for certain types of gradings such as faithful and strong gradings.

Keywords: graded ring, graded module, intersection graph, submodule, homogeneous

MSC 2020: 13A02, 05C25, 16W50

1 Introduction

Studies of graphs associated with algebraic structures developed remarkably in recent years. Usually, the
purpose of associating a graph with an algebraic structure is to investigate the algebraic properties using
concepts in graph theory. Zero-divisors graph, total graphs, annihilating-ideal graph, and unit graphs are
very interesting examples of graphs associated with rings, see [1–4]. For studies on graphs associated with
graded rings and graded modules, in particular, see [5,6].

Among the types of graphs associated with rings are intersection graphs. In 2009, Chakrabarty et al. [7]
introduced and studied the intersection graph of ideals of a ring R, which is an undirected simple graph,
denoted by ( )G R , whose vertices are the nontrivial left ideals of R and two vertices I and J are adjacent if
their intersection is nonzero. Inspired by their work, Akbari et al. [8] introduced the intersection graph of
submodules of a module. For a ring R with unity and a unitary left R-module M , the set of all R-submodules
of M is denoted by ( )∗S M . The intersection graph of submodules of M , denoted by ( )G M , is an undirected
simple graph defined on ( )∗S M , where two non-trivial submodules are adjacent if they have a nonzero
intersection. Since they were introduced, intersection graphs of ideal and submodules have attracted many
researchers to study their graph-theoretic properties and investigate their structures (see [9–17]). Alraqad et
al. [18] introduced and studied the intersection graph of graded ideals of a graded ring.

Motivated by all previous works, we introduce the intersection graph of graded submodules of a graded
module. Let G be a group. A ring R is said to be G-graded if there exist additive subgroups { ∣ }∈R σ Gσ such
that = ⊕ ∈R Rσ G σ and ⊆R R Rσ τ στ for all ∈σ τ G, . A left R-module M is said to be G-graded if there exist
additive subgroups Mσ of M indexed by the elements ∈σ G such that = ⊕ ∈M Mσ G σ and ⊆R M Mτ σ τσ for all

∈τ σ G, . The elements of Mσ are called homogeneous of degree σ. If ∈x M , then x can be written uniquely
as ∑

∈
xσ G σ, where xσ is the component of x in Mσ. An R-submodule N of M is called G-graded provided that

( )= ⊕ ∩∈N N Mσ G σ . We denote by ( )∗hS M the set of all nontrivial G-graded R-submodules of M .
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Definition 1.1. Let R be a G-graded ring and M be a G-graded left R-module. The intersection graph
of G-graded submodules of M , denoted by ( )G R MΓ , , , is defined to be an undirected simple graph whose
set of vertices is ( )∗hS M and two vertices N and K are adjacent if { }∩ ≠N K 0 .

We aim to study the properties of these graphs analogous to the nongraded case. In addition,
we investigate connections and relationships among ( )G Mσ , ( )G R MΓ , , , and ( )G M under certain types
of gradings.

The organization of the paper is as follows: Section 2 is devoted to the study of graph-theoretic proper-
ties of ( )G R MΓ , , . We discuss their connectivity, diameter, regularity, completeness, domination numbers,
and girth. In Section 3, we investigate the relationships between ( )G R MΓ , , and ( )G Mσ (where Mσ is
considered as a left Re-module) under some types of gradings such as faithful grading and strong grading.
This section also presents some results regarding the relationship between ( )G R MΓ , , and ( )G M when the
grading group is a linearly ordered group.

For standard terminology and notion in the graph theory, we refer the reader to the textbook [19]. For
a simple graph, Γ, the set of vertices and set of edges are denoted by ( )V Γ and ( )E Γ , respectively. The
cardinality ∣ ( )∣V Γ is referred to as the order of Γ. If ( )∈x y V, Γ are adjacent, we denote that as ↔x y.
The neighborhood of a vertex x is N( ) { ( )∣ }= ∈ ↔x y V y xΓ , and the degree of x is N( ) ∣ ( )∣=x xdeg . The
graph Γ is said to be regular if all of its vertices have the same degree. A graph is called complete (resp. null)
if any pair of its vertices are adjacent (resp. not adjacent). A complete (resp. null) graph with n vertices is
denoted by Kn (resp. Nn). A graph is said to be connected if any pair of its vertices is connected by a path.

Throughout this article, all rings are associated with unity ≠1 0, and all modules are left modules.
When a ring R is G-graded, we denote that by ( )R G, . The support of ( )R G, is defined as ( ) =R Gsupp ,
{ }∈ ≠σ G R: 0σ . If ∈r R, then r can be written uniquely as∑

∈
rσ G σ, where rσ is the component of r in Rσ. It is

well known that Re is a subring of R with ∈ R1 e. An ideal I of R is said to be G-graded if ( )= ⊕ ∩∈I I Rσ G σ .
Let M be a G-graded R-module. It is known that Mσ is Re-submodule of M for all ∈σ G. Also, we write

( ) = ∪ ∈h M Mσ G σ and ( ) { }= ∈ ≠M G σ G Msupp , : 0σ . A G-graded R-submodule of M is said to be G-graded
maximal (resp. simple or minimal) if it is maximal (resp. minimal) among all proper (resp. nonzero)
G-graded R-submodules of M . We denote by ( )MGMax (resp. ( )MGMin ) the set of all nontrivial G-graded
maximal (resp. simple) R-submodules. A G-graded R-module M is called G-graded local (resp. G-graded
simple) if ∣ ( )∣ =MGMax 1 (resp. ( ) {( )}=MGMax 0 ). We say that M isG-graded left Noetherian (resp. Artinian)
if M satisfies the ascending (resp. descending) chain condition for the G-graded R-submodules of M .

2 Graph theoretic properties of G R MΓ , ,( )

We present the following well-known technical lemma in this section.

Lemma 2.1. [20, Lemma 2.1] Let R be a G-graded ring and M be a G-graded R-module.
(i) If I and J are G-graded ideals of R, then +I J and ⋂I J are G-graded ideals of R.
(ii) If N and K are G-graded R-submodules of M , then +N K and ⋂N K are G-graded R-submodules of M .
(iii) If N is aG-graded R-submodule of M , ( )∈r h R , ( )∈x h M and I is aG-graded ideal of R, then Rx, IN , and

rN are G-graded R-submodules of M . Moreover, ( ) { }= ∈ ⊆N M r R rM N: :R is a G-graded ideal of R.

The following two results from [8] classify disconnected intersection graphs of submodules.

Theorem 2.2. [8, Theorem 2.1] Let M be an R-module. Then, the graph ( )G M is disconnected if and only if M is
a direct sum of two simple R-modules.

Corollary 2.3. [8, Corollary 2.3] Let M be an R-module. Then, the graph ( )G M is disconnected if and only if it is
null graph with at least two vertices.
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Analogues to the nongraded case, next we characterize disconnected intersection graphs of graded
submodules.

Theorem 2.4. Let R be a G-graded ring and M be a G-graded R-module such that ∣ ( )∣ ≥G R MΓ , , 2. Then,
the followings are equivalent:
(1) ( )G R MΓ , , is disconnected.
(2) ( )G R MΓ , , is a null graph.
(3) Every nontrivial G-graded R-submodule of M is G-graded maximal as well as G-graded simple.
(4) M is a direct sum of two G-graded simple (or maximal) R-modules.

Proof.
( ) ( )⇒1 2 Suppose that ( )G R MΓ , , is disconnected. For a contradiction, assume N and K are two

adjacent vertices. So N , K , and ∩N K belong to the same component of ( )G R MΓ , , . Since ( )G R MΓ , ,
is disconnected, there is a vertex L that is not connected to any of the vertices N , K , and ∩N K .
If ( )∩ + ≠N K L M , then ( ) (( ) )∩ ↔ ∩ + ↔N K N K L L is a path connecting ∩N K and L, a contradiction.
So ( )∩ + =N K L M . Now let ∈a N . Then, = +a t c for some ∈ ∩t N K and ∈c L. So { }− = ∈ ∩ =a t c N L 0 ;
consequently, = ∈ ∩a t N K . This implies that = ∩N N K . Similarly, we obtain = ∩K N K . Hence, we have

=N K , a contradiction. Therefore, ( )G R MΓ , , contains no edges, and hence, it is a null graph.
( ) ( )⇔2 3 Straightforward.
( ) ( )⇒3 4 Let N and K be G-graded maximal as well as G-graded simple R-submodules of M . Then,

+ =N K M and { }∩ =N K 0 . Hence, N and K are G-graded simple R-modules and = ⊕M N K .
( ) ( )⇒4 1 Suppose = ⊕M N K , where N and K are G-graded simple R-modules. Then, N and K are

G-graded simple R-submodules. Also, they are G-graded maximal because ≅N M
K and ≅K M

N . Thus, N and

K are isolated vertices. Therefore, ( )G R MΓ , , is disconnected. □

Roshan-Shekalgourabi and Hassanzadeh-Lelekaami [6] associated a graph GM with a G-graded
R-module M , where ( ) ( )=

∗V G hS MM and two nontrivial G-graded R-submodules N and K are adjacent if
+ =N K M . Clearly, the two conceptsGM and ( )G R MΓ , , are distinct. The next theorem presents an obvious

relation between these two graphs.

Corollary 2.5. Let M be aG-graded R-module. Then, ( )G R MΓ , , is disconnected if and only ifGM is a complete
graph with at least two vertices.

Proof. The result follows by Theorem 2.4 and [6, Theorem 2.2]. □

The proof of the next corollary is straightforward.

Corollary 2.6. Let M be a G-graded R-module. If ( )G R MΓ , , is connected, then every pair of G-graded
maximal R-submodules intersect nontrivially.

The distance ( )d x y, between any two vertices x y, in a graph Γ is the length of the shortest path
between them, and ( )diam Γ is the supremum of { ( )∣ ( )}∈d x y x y V, , Γ .

Theorem 2.7. Let M be a G-graded R-module. If ( )G R MΓ , , is connected, then ( ( )) ≤G R Mdiam Γ , , 2.

Proof. Suppose N and K are distinct vertices in ( )G R MΓ , , . If N and K are adjacent, then ( ) =d N K, 1. If N
and K are nonadjacent, then ( ) ≥d N K, 2. If ⊕ ≠N K M , then we have the path ↔ ⊕ ↔N N K K , and hence,

( ) =d N K, 2. If ⊕ =N K M , then either N or K is notG-graded simple, say N . Let ( ) ≠ ⊊L N0 . Thus, we have
the path ↔ ⊕ ↔N L K K , and hence, ( ) =d N K, 2. As a result, ( ) ≤d N K, 2. □
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Theorem 2.8. Let M be a G-graded Artinian R-module such that ( )G R MΓ , , is not a null graph. Then, the
followings are equivalent:
(i) ( )G R MΓ , , is regular.
(ii) ∣ ( )∣ =MGMin 1.
(iii) ( )G R MΓ , , is complete.

Proof.
( ) ( )⇒i ii Suppose ( )G R MΓ , , is regular. Assume that M contains two distinct G-graded simple R-sub-

modules N and K . Clearly, N and K are nonadjacent. By Theorem 2.7, there is a G-graded R-submodule Y
that is adjacent to both N and K . Hence, by minimality of N , we obtain ⊊N Y . This implies that
N N( ) ( )⊊N Y ; consequently, ( ) ( )>Y Ndeg deg , a contradiction. Hence, M contains a unique G-graded
simple R-submodule.

( ) ( )⇒ii iii Suppose M contains a unique G-graded simple R-submodule, say N . Since M is G-graded
Artinian, ⊆N K for all ( )∈

∗K hS M . Thus, ( )G R MΓ , , is complete.
( ) ( )⇒iii i Straightforward. □

Remark 2.9. In a G-graded R-module M , a G-graded submodule N of M is called G-graded essential if
( )∩ ≠N K 0 for all ( )∈

∗K hS M . The graded socle, ( )MGsoc , of M is the sum of all G-graded simple R-sub-
modules of M . Equivalently ( )MGsoc equals the intersection of all G-graded essential R-submodules of M ,
see [21, page 48]. So, if M is G-graded Artinian and ( )G R MΓ , , is complete, then every G-graded R-sub-
module is G-essential, and thus, by Theorem 2.8, ( ) ( )=M MGMin Gsoc .

Recall that the girth of a graph Γ, denoted by ( )g Γ , is the length of its shortest cycle. If Γ has no cycles,
then ( ) = ∞g Γ .

Theorem 2.10. If M is a G-graded R-module, then ( ( )) { }∈ ∞gr G R MΓ , , 3, .

Proof. Assume ( ( )) < ∞g G R MΓ , , and ( ( )) ≥g G R MΓ , , 4. This implies that every pair of distinct nontrivial
G-graded submodules of M with nonzero intersection should be comparable, otherwise ( )G R MΓ , , will have
a cycle of length 3, a contradiction. Since ( ( )) ≥g G R MΓ , , 4, ( )G R MΓ , , contains a path of length 3, say

↔ ↔ ↔N L K P. Since any two submodules in this path are comparable and any chain of nontrivial
G-graded submodules of length 2 induces a cycle of length 3 in ( )G R MΓ , , , the only possible two cases
are ⊆N L, ⊆K L, ⊆K P or ⊆L N , ⊆L K , ⊆P K . The first case yields ⊆ ∩K L P, and hence, ( )∩ ≠L P 0 .
Thus, ↔ ↔ ↔L K P L is a cycle of length 3 in ( )G R MΓ , , , a contradiction. In the second case, we have
( ) ≠ ⊆ ∩L N K0 , and therefore, ↔ ↔ ↔N L K N is a cycle of length 3 in ( )G R MΓ , , , which again yields
a contradiction. Therefore, ( ( )) =g G R MΓ , , 3. □

The next theorem gives a characterization of G-graded R-modules such that ( ( )) = ∞g G R MΓ , , . Recall
that a graph is called star if it has no cycles and has one vertex (the center) that is adjacent to all other
vertices.

Theorem 2.11. Let M be a G-graded Noetherian R-module such that ( )G R MΓ , , is not a null graph with
∣ ( )∣ ≥G R MΓ , , 2. If ( ( )) = ∞g G R MΓ , , , then M is a G-graded local module and ( )G R MΓ , , is a star graph
whose center is the unique G-graded maximal R-submodule of M .

Proof. By Theorem 2.4, ( )G R MΓ , , is connected. Suppose that N1 and N2 are two distinct G-graded maximal
R-submodules of M . By Theorem 2.7, ( ) ≤d N N, 21 2 . If ( )∩ ≠N N 01 2 , then ( )↔ ∩ ↔ ↔N N N N N1 1 2 2 1 is
a 3-cycle, a contradiction. So ( )∩ =N N 01 2 . Since N1 and N2 are G-graded maximal R-submodules,
we obtain = ⊕M N N1 2. Thus, ( )G R MΓ , , is null, which contradicts the assumption that ( )G R MΓ , , is not
null. Therefore, M is G-graded local module. Let N be the G-graded maximal submodule of M . It is easy to
see that every proper graded submodule of a G-graded Noetherian module is contained in a G-graded
maximal submodule. So ( )∩ = ≠N K K 0 for all ( )∈

∗K hS M . However, since ( )G R MΓ , , has no cycles,
we conclude that ( )G R MΓ , , is a star graph. □
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A subgraph ϒ of a graph Γ is called an induced subgraph if any edge in Γ that joins two vertices in ϒ is
in ϒ. A complete induced subgraph of a graph Γ is called a clique, and the order of the largest clique in Γ,
denoted by ( )ω Γ , is the clique number of Γ.

Lemma 2.12. Let M be a G-graded R-module. If ( ( )) < ∞ω G R MΓ , , , then M is G-graded Artinian and
G-graded Noetherian.

Proof. Members of any ascending or descending chain of G-graded R-submodules form a clique in
( )G R MΓ , , , and hence, the chain is finite. □

Corollary 2.13. Let M be a G-graded R-module. If ( )G R MΓ , , is connected, then ∣ ( )∣ ( ( ))≤M ω G R MGMax Γ , , .

Proof. If ( )G R MΓ , , is connected, then by Corollary 2.6, ( )MGMax is a clique, and thus, ∣ ( )∣ ≤MGMax
( ( ))ω G R MΓ , , . □

A subset D of the set of vertices of a graph Γ is called a dominating set in Γ if every vertex of Γ is in D or
adjacent to a vertex in D. The domination number of Γ, denoted by ( )γ Γ , is the minimum cardinality of a
dominating set in Γ. In the next theorem, we determine the domination number of ( )G R MΓ , , . In this result,
we use the notion of graded decomposable modules. A G-graded R-module M is called G-graded decom-
posable, if it is a direct sum of two nontrivial G-graded R-submodules. If M is not G-graded decomposable,
then it is called G-graded indecomposable.

Theorem 2.14. Let M be a G-graded R-module that contains a G-graded maximal submodule. Then,
( ( )) ≤γ G R MΓ , , 2. Furthermore, if M is G-graded indecomposable, then ( ( )) =γ G R MΓ , , 1.

Proof. Let N be a G-graded maximal R-submodule of M . If there exists ( )∈
∗K hS M such that ( )∩ =N K 0 ,

then + =N K M, and hence, = ⊕M N K . So the set { }N K, is a dominating set, and thus, ( ( )) ≤γ G R MΓ , , 2.
This proves the first part.

If M is G-graded indecomposable, then ( )∩ ≠N K 0 for all ( )∈
∗K hS M . Consequently, { }N is a dom-

inating set, and hence, ( ( )) =γ G R MΓ , , 1. □

3 Intersection graph of types of gradings

In this section, we study some relationships between ( )G R MΓ , , and ( )G Mσ and between ( )G R MΓ , , and
( )G M . It is well known that if M is aG-graded R-module, then Mσ is an Re-module for each ∈σ G. So ( )G Mσ

here represents the intersection graph of Re-submodules of Mσ. We also note that if Nσ is an Re-submodule
of Mσ, then RNσ is a G-graded R-submodule of M and ∩ =RN M Nσ σ σ.

Theorem 3.1. Let M be aG-graded R-module. If for some ∈σ G, ( )G Mσ is connected with at least two vertices,
then ( )G R MΓ , , is connected, and hence, ( )G M is connected.

Proof. Since ( )G Mσ is connected, it must contain an edge. Let Nσ, Kσ be two adjacent vertices in ( )G Mσ .
Then, RNσ and RKσ are vertices in ( )G R MΓ , , . Moreover, ∩ =RN M Nσ σ σ and ∩ =RK M Kσ σ σ, and so,

≠RN RKσ σ. In addition, we have { } ≠ ∩ ⊆ ∩N K RN RK0 σ σ σ σ. Therefore, ( )G R MΓ , , is not null, and hence,
it is connected. The last part follows from Corollary 2.3 because ( )G R MΓ , , is a subgraph of ( )G M . □

Remark 3.2. The converse of Theorem 3.1 needs not to be true in general. Let �=R 6 with trivial�-grading;
that is, �=R0 6, and =R 0k , for all ≠k 0, and choose � [ ]=M x6 as Z6-module with grading �=M xk

k
6 ,

≥k 0, and =M 0k , <k 0. The �-graded �6-submodules �6 and � �+ x6 6 are adjacent in � � �( [ ])xΓ , ,6 6 ,
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and by Theorem 2.4, we have � � �( [ ])xΓ , ,6 6 is connected. On the other hand, for each ≥k 0, ⟨ ⟩x2 k and
⟨ ⟩x3 k are the only �6-submodules of � xk

6 , and their intersection is ( )0 . So �( )G xk
6 is disconnected for

all ≥k 0.

A G-graded R-module M is said to be left σ-faithful for some ∈σ G, if { }≠−R x 0στ τ1 for every ∈τ G,
and every nonzero ∈x Mτ τ. If M is left σ-faithful for all ∈σ G, then it is called left faithful.

Lemma 3.3. [21, Proposition 2.6.3] A G-graded R-module M is σ-faithful for some ∈σ G if and only if
{ }∩ ≠N M 0σ for all ( )∈

∗N hS M .

Let M be a G-graded R-module. Define the simple graph ( )G R MΓ , ,σ on ( )∗hS M , where N and K are
adjacent only if { }∩ ∩ ≠N K M 0σ . We will call this graph the σ-intersection graph of G-graded R-modules
of M . It is clear that if { }∩ ∩ ≠N K M 0σ , then { }∩ ≠N K 0 . So ( )G R MΓ , ,σ is a subgraph of ( )G R MΓ , , .

Theorem 3.4. Let M be aG-graded R-module such that ( )G R MΓ , , is not null graph. Then, M is σ-faithful for
some ∈σ G if and only if the map ( ) ( )⟶ϕ G R M G R M: Γ , , Γ , ,σ σ defined by ( ) =ϕ N N is a graph
isomorphism.

Proof. Suppose M is σ-faithful for some ∈σ G. Clearly, ϕ is a set bijection. Let ( )∈
∗N K hS M, such that

{ }∩ ≠N K 0 . Since M is σ-faithful, by Lemma 3.3, { }∩ ∩ ≠N K M 0σ , which implies that N and K are
adjacent in ( )G R MΓ , ,σ . Therefore, ϕσ is a graph isomorphism. For the converse, suppose that there exists

( )∈
∗N hS M such that { }∩ =N M 0σ . Then, N is an isolated vertex in ( )G R MΓ , ,σ , which implies that N is

an isolated vertex in ( )G R MΓ , , because ϕσ is an isomorphism. So ( )G R MΓ , , is null, a contradiction.
Then, { }∩ ≠N M 0σ for all ( )∈

∗N hS M . Hence, by Lemma 3.3, M is σ-faithful. □

Theorem 3.5. Let M be a σ-faithful G-graded R-module. If =RM Mσ , then the following assertions hold:
(i) ( )G R MΓ , , is connected if and only if ( )G Mσ is connected.
(ii) ( ( )) ( ( ))=γ G R M γ G MΓ , , σ .
(iii) ( ( )) < ∞ω G R MΓ , , if and only if ( ( )) < ∞ω G Mσ , and for each ( )∈

∗N S Mσ σ , the set { ( )= ∈
∗β N hS MNσ

∣ }∩ =N M Nσ σ is finite.

Proof.
(i) The “if” part is Theorem 3.1. For the “only if” part, assume ( )G R MΓ , , is connected and let Nσ Kand σ

be two distinct vertices in ( )G Mσ . If { }∩ ≠RN RK 0σ σ , then by Theorem 3.4, { }∩ ∩ ≠RN RK M 0σ σ σ .
So we have { }∩ = ∩ ∩ ∩ = ∩ ∩ ≠N K RN M RK M RN RK M 0σ σ σ σ σ σ σ σ σ , and hence, ↔N Kσ σ is a path.
Assume { }∩ =RN RK 0σ σ . By Theorem 2.7, there is ( )∈

∗Y hS M such that { }∩ ≠RN Y 0σ and { }∩ ≠RK Y 0σ .
Then, { }∩ ∩ ≠RN Y M 0σ σ and { }∩ ∩ ≠RK Y M 0σ σ . Since ϕσ is a graph isomorphism, ( )∩ ∩N Y Mσ σ and

( )∩ ∩K Y Mσ σ are nontrivial. Moreover, ∩ ≠Y M Mσ σ because =RM Mσ . Hence, we obtain a path connecting
Nσ and Kσ in ( )G M . Therefore, ( )G M is connected.

(ii) Let ( )⊆
∗S S Mσ be a minimal dominating set in ( )G Mσ , and let S { ∣ }= ∈RN N Sσ σ . Clearly, S∣ ∣ ∣ ∣= S .

Let ( )∈
∗K hS M such that S∉K . By Lemma 3.3, we have { }∩ ≠K M 0σ , and hence, { }∩ ∩ ≠K M N 0σ σ for

some ∈N Sσ . So we have S∈RNσ and K is adjacent to RNσ in ( )G R MΓ , , . Hence,S is a dominating set in
( )G R MΓ , , . Therefore, ( ( )) ( ( ))≤γ G R M γ G MΓ , , σ . Now assumeS is a minimal dominating set in ( )G R MΓ , , ,
and let S{ ∣ }= ∩ ∈S N M Nσ . Let ( )∈

∗K S Mσ σ such that ∉K Sσ . If S∈RKσ , then S∩ ∈RK Mσ σ . We have
( ) ( )∩ ∩ = ≠K RK M K 0σ σ σ σ . So Kσ is adjacent to S∩ ∈RK Mσ σ . Now assume S∉RKσ . So there exists
S∈N such that ( )∩ ≠RK N 0σ . Hence, by Theorem 3.4, we obtain ( ) ( )≠ ∩ ∩ ⊆ ∩ ∩RK N M K N M0 σ σ σ σ .

Thus, ( ) ( )∩ ∩ ≠K N M 0σ σ , and so S is a dominating set in ( )G Mσ . So S( ( )) ∣ ∣ ∣ ∣ ( ( ))≤ ≤ =γ G M S γ G R MΓ , ,σ .
(iii) Suppose ( ( )) < ∞ω G R MΓ , , . Let ( )∈

∗N S Mσ σ . Since all elements of βNσ
contain Nσ, βNσ

is a clique in

( )G R MΓ , , . Hence, ∣ ∣ ( ( ))≤ < ∞β ω G R MΓ , ,Nσ
. Let C be a clique in ( )G Mσ . Then, ∪ ∈ βN C Nσ σ

is a clique in

( )G R MΓ , , . Thus, ∪ ∈ βN C Nσ σ
is finite, which yields C itself is finite. Therefore, ( ( )) < ∞ω G Mσ .

For the converse, suppose that ( ( )) < ∞ω G Mσ , and for each ( )∈
∗N S Mσ σ , the set βNσ

is finite. Let D be a

clique in ( )G R MΓ , , . Let Λ be the set of all ( )∈
∗N S Mσ σ such that ∩D βNσ

is nonempty. Clearly, the collection
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∣{ }∩ ∈D β N ΛN σσ
is a partition of D. So ( )= ∪ ∩∈D D βN NΛσ σ

. We note that, by the assumption for the converse,

∩D βNσ
isfinite for all ∈N Λσ . Let ∈N K, Λσ σ . Then, there are ∈N K D, such that = ∩N N Mσ σ and = ∩K K Mσ σ.

Since D be a clique, ( )∩ ≠N K 0 . In addition, because the grading is σ-faithful, by Lemma 3.3, we obtain that
( ) ( )≠ ∩ ∩ = ∩N K M N K0 σ σ σ. So Λ is a clique in ( )G Mσ , and hence, it is finite. This implies that =D

( )∪ ∩∈ D βN NΛσ σ
is finite. We just proved that every clique in ( )G R MΓ , , is finite. Therefore, ( ( )) < ∞ω G R MΓ , , .

□

Corollary 3.6. Let M be a σ-faithful G-graded R-module such that =RM Mσ . Then, Mσ is a direct sum of two
simple Re-modules if and only if M is a direct sum of two G-graded simple R-modules.

Proof. The proof follows directly from Theorems 2.2, 2.4, and Part (i) of Theorem 3.5. □

A grading ( )R G, is called strong (resp. first strong) if ∈ −R R1 σ σ 1 for all ∈σ G (resp. ( )∈σ R Gsupp , ) (see
[22,23]). In what follows, the symbol ≤ means “a subgroup of,” while the symbol ≅ means “isomorphic to.”

Lemma 3.7. [23, Fact 2.5] A grading ( )R G, is first strong if and only if ( )= ≤H R G Gsupp , and ( )R H, is
strong.

Lemma 3.8. Let ( )R G, be first strong grading and M be a G-graded R-module. If ( ) ( )⊆M G R Gsupp , supp , ,
then ( ) ( )≅G R M G MΓ , , σ for all ( )∈σ M Gsupp , .

Proof. Fix ( )∈σ M Gsupp , . We claim that if N is G-graded R-submodule of M , then ( )= ∩N R N Mσ .
Let ≠ ∈ ∩x N M0 τ for some ∈τ G. Now ( ) ( )∈ ⊆σ τ M G R G, supp , supp , . Thus, since ( ) ≤R G Gsupp , ,

( )∈
−τσ R Gsupp ,1 . So =− −R R Rτσ στ e1 1 . This implies that = ∑

=
rs1 i

n
i i1 for some ∈ −r Ri τσ 1 and ∈ −s Ri στ 1. Hence,

= ∑
=

x rs xi
n

i i1 . Since ∈x Mτ and ∈ −s Ri στ 1, ∈ ⊆−s x R M Mi στ τ σ1 , for all i. Also ∈s x Ni because N is an
R-submodule. So ( )∈ ∩x R N Mσ . Hence, ( )∩ ⊆ ∩N M R N Mτ σ for all ( )∈τ M Gsupp , . This implies that

( ) ( ) ( )∩ ⊆ = ⊕ ∩ ⊆ ∩∈R N M N N M R N Mσ τ G τ σ . Hence, ( )= ∩N R N Mσ . From the claim, we conclude that
( )= ∩ =M R M M RMσ σ and { }∩ ≠N M 0σ for all ( )∈

∗N hS M . Therefore, the correspondence → ∩N N Mσ
yields an isomorphism between ( )G R MΓ , , and ( )G Mσ . □

Corollary 3.9. Let ( )R G, be strong grading and M be a G-graded R-module. Then, ( ) ( )≅G R M G MΓ , , σ for
all ∈σ G.

Example 3.10. Let A be a ring, and consider the ring ( )=R M A3 and the left R-module ( )=
×

M M A3 1 with
�2-gradings given by

⎡

⎣

⎢
⎤

⎦

⎥
⎡

⎣

⎢
⎤

⎦

⎥

⎡

⎣

⎢
⎤

⎦

⎥
⎡

⎣

⎢
⎤

⎦

⎥

= =

= =

R
A A
A A

A
R

A
A

A A

M
A
A M

A

0
0

0 0
,

0 0
0 0

0
.

0
,

0
0 .

0 1

0 1

Clearly, �( )R, 2 is strong. So by Corollary 3.9, �( ( ) ( )) ( )≅
×

G M A M A G M, ,2 3 3 1 1 . The nontrivial R0-sub-
modules of M1 are given as follows:

⎧

⎨
⎩

⎡

⎣

⎢
⎤

⎦

⎥∣ ( )
⎫

⎬
⎭

∈
∗

I
I I A

0
0 .

Hence, �( ( ) ( )) ( ) ( )≅ ≅
×

G M A M A G M G A, ,2 3 3 1 1 , where A is considered as left A-module.
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For the remainder of this section, we focus on the relationships between the graph-theoretic properties
of ( )G R MΓ , , and ( )G M when the grading group is a linearly ordered group. For details on rings and
modules graded by linearly ordered group, see [21, Chapter 5].

A linearly ordered group is a group G equipped with a total ordered relation ≤ such that for all
∈α β δ G, , , ≤α β implies ≤αδ βδ and ≤δα δβ.

Suppose that M is G-graded R-module where G is a linearly ordered group. Then, any ∈x M can be
written uniquely as = + + …+x x x xσ σ σn1 2 , with < <⋯<σ σ σn1 2 . We call xσn the homogeneous components
of x of highest degree. For each R-submodule N of M , the G-graded R-submodule generated by the homo-
geneous components of the highest degrees of all elements of N is denoted by N~; that is, y is one of
the generators of N~ if and only if there exists = + + …+ ∈x x x x Nσ σ σn1 2 , with < <⋯<σ σ σn1 2 and =x yσn .
We have the following result from [21, Lemma 5.3.1, Corollary 5.3.3]

Lemma 3.11. Let M be aG-graded R-module, whereG is linearly ordered group and N and K are submodules
of M . Then,
(i) =N N~ if and only if N is G-graded R-submodule.
(ii) { }=N~ 0 if and only if { }=N 0 .
(iii) If ⊆N K , then ⊆N K~ ~.
(iv) If ( )M Gsupp , is well ordered subset of G and ⊆N K , then =N K if and only if =N K~ ~

Theorem 3.12. Let M be a G-graded R-module, where G is linearly ordered group. If ( )M Gsupp , is well
ordered subset of G, then ( )G R MΓ , , is connected if and only if ( )G M is connected.

Proof. If ( )G R MΓ , , is connected, then ( )G M is not null graph, and therefore, it is connected. For the
converse, assume that ( )G M is connected and let N and K be adjacent vertices of ( )G M . Hence,

{ }∩ ≠N K 0 . Let = ∩J N K . Since ≠N K , either ⊊J N or ⊊J K . Without loss of generality, assume
⊊J N . Then, by parts (ii)–(iv) of Lemma 3.11, we have { } ≠ ⊊J K0 ~ ~. So ( )G R MΓ , , is not null, and hence,

it is connected. □

Theorem 3.13. Let M be a G-graded R-module, where G is a linearly ordered group and ( )M Gsupp , is well
ordered subset of G. If M is local or not Noetherian, then ( ( )) ( ( ))=g G R M g G MΓ , , .

Proof. Clearly, if ( ( )) = ∞g G M , then ( ( )) = ∞g G R MΓ , , . Assume that ( ( )) < ∞g G M , it follows from [11,
Theorem 2.5] that ( ( )) =g G M 3. If M is not Noetherian, then there are three nontrivial R-submodules N1, N2,
and N3 such that ⊊ ⊊N N N1 2 3. Then, by part (iv) of Lemma 3.11, we obtain that ⊊ ⊊N N N~ ~ ~1 2 3 . Hence,

↔ ↔ ↔N N N N~ ~ ~ ~1 2 3 1 is a 3-cycle in ( )G R MΓ , , . Now suppose that M is Noetherian and local with maximal
R-submodule N . This implies that ⊆K N for all ( )∈

∗K S M . Since ( )G M is not a star graph, there are two
distinct R-submodules ( ) { }∈ ⧹

∗K L S M N, such that { }∩ ≠K L 0 . Without the loss of generality, we may
assume that ∩ ⊊K L K . So we have { } ≠ ∩ ⊊ ⊊K L K N0 . Again by part (iv) of Lemma 3.11, we obtain
the 3-cycle ( ) ( )∩ ↔ ↔ ↔ ∩K L K N K L~ ~ ~ ~ in ( )G R MΓ , , . Therefore, ( ( )) =g G R MΓ , , 3. □

The length of an R-module M over R, denoted by ( )ℓ M , is the supremum of the lengths of chains of
R-submodules of M .

Theorem 3.14. Let M be a G-graded R-module, where G is a linearly ordered group and ( )R Gsupp , is well
ordered subset of G. If ( ( )) ( ( ))≠g G M g G R MΓ , , , then the following assertions hold
(i) ( ( )) =g G M 3 and ( ( )) = ∞g G R MΓ , , .
(ii) M is G-graded local but not local.
(iii) The length of M over R is ( )ℓ =M 3.
(iv) For every maximal R-submodule K , =K N~ ,where N is the uniqueG-graded maximal R-submodule of M .
(v) If ( ) { }=Mrad 0 , then ( ( )) ∣ ( )∣=ω G M MMax . Otherwise, ( ( )) ∣ ( )∣= +ω G M MMax 1. ( ( )Mrad is the inter-

section of all maximal R-submodules of M .)
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Proof.
(i) Follows directly from the fact that ( )G R MΓ , , is a subgraph of ( )G M .
(ii) Since ( ( )) = ∞g G R MΓ , , , it follows from Theorem 2.11 that M is G-graded local, and since

( ( )) ( ( ))≠g G M g G R MΓ , , , by Theorem 3.13, M is not local.
(iii) Since M is not local, ( )ℓ ≥M 3. Assume there are three R-submodules N1, N2, and N3 such that

⊊ ⊊N N N1 2 3. Then, bypart (iv) of Lemma3.11,we obtain that ⊊ ⊊N N N~ ~ ~1 2 3 ; consequently, ( ( )) =g G R MΓ , , 3,
a contradiction. So ( )ℓ =M 3.

(iv) Let K be a maximal R-submodule of M . Since ( )G M is connected, K is not simple. So there is
a nontrivial R-submodule ⊊L K . So ⊊L K~ ~. Also ( )G R MΓ , , is a star graph, and hence, =K N~ .

(v) Since ( )G M is connected, ( )MMax is a clique in ( )G M . Now from part (iii), we obtain that every
R-submodule is either maximal or simple. Moreover, ( ) ( )∉M Mrad Max because M is not local. Therefore,
if ( ) { }=Mrad 0 , then ( )MMax is clique of maximum size, otherwise ( ) { ( )}∪M MMax rad is clique of maximum
size. □
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