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Abstract: First, this work provides an overview of some of the Hahn-Banach type theorems. Of note, some of
these extension results for linear operators found recent applications to isotonicity of convex operators on a
convex cone. Next, the work investigates applications of the Krein-Milman theorem to representation theory
and elements of Choquet theory. A sandwich theorem of intercalating an affine function h between f and g,
where f and —g are convex, f < g on a finite-simplicial set, is recalled. Its recent topological version is also
noted. Here, the novelty is that a finite-simplicial set may be unbounded in any locally convex topology on
the domain space. Third, the paper summarizes and comments on recently published applications of a
Hahn-Banach extension result for positive linear operators, combined with polynomial approximation on
unbounded subsets, to the Markov moment problem. Some applications to concrete spaces are detailed as
well. Finally, this work provides a characterization of a finite-dimensional convex bounded subset in terms
of the property that any convex function defined on that subset is bounded below. This last property
remains valid for a large class of convex operators.
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1 Introduction

This work generally provides commentary on old and new aspects and applications of Hahn-Banach type
results in representations related to the Choquet theory (such as sandwich results on finite-simplicial sets),
the Markov moment problem and polynomial approximation on unbounded subsets, and characterization
of finite-dimensional convex bounded subsets. All vector spaces appearing in the sequel are real vector
spaces. One of the main consequences of the Hahn-Banach theorem is that on a Hausdorff locally convex
space X, there are many enough linear continuous functionals, which separate the points of X. On the other
hand, recent results require other consequences of a more general Hahn-Banach type theorem. Main such
results are stated and discussed in the following sections and accompanied by applications. Versions in the
framework of ordered topological vector spaces with normal cones are also emphasized, since concrete
spaces have natural such structures. The assumption on order completeness of Y is motivated by applica-
tions of Hahn-Banach type results for extension of linear operators from a subspace of X to Y; usually, this
extension preserves a sandwich condition defined by means of a dominating convex operator and a
dominated concave operator. Generally, these operators are defined on arbitrary convex subsets of a real
linear space X. When there is already a given linear order relation on X, the concave operator mentioned
earlier is usually defined on X, and eventually might be null. When this is the case, the result is the
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positivity of the linear extension, while the convex dominating constraint controls the continuity and
determines or evaluates the norm of the linear extension. Such constraints on the extension are motivated
by concrete problems mentioned in the Abstract.

In Section 2, this work reviews almost all important versions and applications [1-10] of the Hahn-
Banach theorem, starting with its geometric form [1] and going to the general forms stated and proved in
[8-10]. Such results have found recent applications to the isotonicity of convex operators on convex cones
[11]. If X, Y are ordered vector spaces, an operator P : X, — Y is called isotone if it is monotone increasing:

0 < X3 < % in X implies P(x) < P(x).

A similar definition works for isotone operators defined on the entire space X (for example, if X is
a vector lattice, then P : X —» X, P(x) :=x*=xV 0, x € X, is sublinear and isotone on X).

In Section 3, this work reviews elements of representations, Choquet’s theory, and related results. This
part is covered by references [2,3,12-14]. The first part of Section 3 is dedicated to the important notion of a
barycenter of a probability measure on a compact convex subset K in a locally convex space X. Any point of
such a subset is the barycenter of a probability measure u on K, for which only the behavior on the extreme
points of K matters. When K is metrizable, the representing measure u is supported by the extreme points of
K (Choquet’s theorem). Conversely, any probability measure on an arbitrary compact convex subset K has a
unique barycenter. This is unique because linear continuous functionals on X separate the points of X. All
locally convex spaces involved in this work are assumed to be Hausdorff. To conclude this third part, the
recent topological version [14] of one of the results of [13] on sandwich theorems over finite-simplicial sets
is especially noted. Notably, a convex subset C of the real vector space X is called finite-simplicial if for any
finite-dimensional compact subset K ¢ C, there exists a finite-dimensional simplex S, such that K < S, ¢ C.
For example, in R", n > 2, any convex cone C having a base that is a simplex is an unbounded finite-
simplicial set. According to Theorem 3.12, on such a subset, the following result holds (see also [13],
Corollary 3.5 for the proof).

Let X be an arbitrary vector space, C a finite-simplicial subset, f : C — R a convex function, g : C - R
a concave function such that f < g on C. Then, there exists an affine functionh : C —» R such that f<h< g.

Notably, in the aforementioned statement, the dominating function is concave, while the dominated
one is convex. This differentiates this particular result from the usual Hahn-Banach type theorems based on
the separation of convex subsets. Theorem 3.13 provides a topological version of this result (see [14], pp. 9
and 10 for the proof).

Section 4 is devoted to another field of applications of Hahn-Banach theorems and other results in
Analysis and Functional Analysis, namely, to the classical moment problem. Being given a sequence
(jent, n € {1, 2, ...} of real numbers and a closed subset F ¢ R", find a positive regular Borel measure
(or a positive Radon measure) u on F such that

Itfd;u =¥ J = Goeourfy) €N, =t )
F
This is an inverse problem, because the measure u is not known. Finding y means characterizing its

existence such that the aforementioned moment conditions are satisfied, studying its uniqueness (called
determinacy) and eventually constructing it. All these should be done starting from the known moments

Yps j € N, This is a full moment problem since it involves all the moments Ithdy, j € N" of the measure pu.

If we require only

Itfdy =Y J €40, Lod), k= 1,1,
F

for some fixed natural number d, we have a truncated moment problem. For n = 1, the moment problem is
called one dimensional, while for n > 2, we have a multidimensional moment problem. The references
[15-24] concern various aspects of the moment problem. If an upper boundedness condition on y is
required, we have a Markov moment problem. Such a condition usually controls the norm of the linear
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positive continuous functional defined by the measure u on a function space containing polynomials and
compactly supported continuous real-valued function on F. Usually, such a space is a Banach lattice (for
example, an L? space, 1 < p < 00). The interested reader can find more information on Banach lattices in
specialized monographs (see [25] and a part of [26]). For the present work, results from [1,11,26] on this topic
are sufficient. For more details, see the introductory portion of Section 4. The papers [27-30] refer mainly to
the Markov moment problem. Since the existence of a solution of the moment problem is an extension type
result of a linear form defined on polynomials to a larger space, Section 4 is directly related to Hahn-Banach
type results of Section 2. In the present work, existence and uniqueness of the solution for the full Markov
moment problem are of special interest. The construction of a polynomial solution for the truncated moment
problem is proposed in [28,29]. On the other hand, the notion of a moment determinate measure is basic
because it leads to the existence and uniqueness of the linear operator solution, also controlling its norm (see
[27,29]). An improved version of a result of [30] on operator-valued Markov moment problem is also stated.

Finally, in Section 5, this work seeks to revisit the result of [31] on convex operators P : B — Y, where
B c R" is a convex bounded subset and Y is an order complete vector lattice. In [31], we proved that any
such operator is bounded below on B. The proof was done by means of the existence of a subgradient of P
at an arbitrary relative interior point of B. This way, the strong relationship between convex and linear
operators is pointed out once more. Conversely, if B is a convex subset of an arbitrary (infinite-dimensional)
real vector space X, such that any real convex function defined on B is bounded below, then B is finite-
dimensional (and bounded). This is presented in Section 5.

The subjects reviewed later and the attached references relate to other fields of analysis and algebra
(self-adjoint operators, symmetric matrixes, quadratic forms, fixed point theory, convex analysis, elements
of Choquet theory, and polynomial approximation on Cartesian products of unbounded closed intervals).

Section 6 concludes the paper.

2 Various Hahn-Banach type results
The following lemma is the key result for the direct proof of the geometric version of Hahn-Banach theorem.

Lemma 2.1. (See [1], pp. 45-46). Let X be a real topological vector space (t.v.s.) of dimension at least 2. If D is
an open convex subset and 0 is not an element of D, then there exists a one-dimensional subspace of X not
intersecting D.

Lemma 2.1 and a standard application of Zorn’s lemma yield:

Theorem 2.2. (See [1], p. 46). Let X be a real t.v.s., let M be a linear manifold in X, and let D be a nonempty
open convex subset of X, not intersecting M. Then, there exists a closed hyperplane H in X, containing M and
not intersecting D.

Corollary 2.3. Let E be a tv.s., C an open convex subset of E, E; a vector subspace of E such that
Ei.nC + @, T, € L(E;, R) a continuous linear functional, P : C — R a convex upper semi-continuous func-
tional such that Ti(x) < P(x) for all x € E; n C. Then, there exists a continuous linear functional T € L(E, R),
which extends T, such that T(x) < P(x) for all x € C.

To deduce Corollary 2.3 from Theorem 2.2, one applies Theorem 2.2, where X stands for E x R, M stands
for the graph of T; (M = {(x, Ty(x)); x € E;}), D stands for {(x, t) € C x R; P(x) < t}. According to Theorem
2.2, there exists a closed hyperplane H in E x R, which contains M, such that H n D = &. Due to condition
E; n C + @, H cannot be vertical and hence is the graph of a linear functional T € L(E, R). From the details
of this sketch of the proof, it is easy to observe that T extends T;, T(x) < P(x), x € C and T is continuous
(and linear) from E to R (see also [1, Exercise 6, p. 69]).
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The next result holds in locally convex spaces. All such spaces are assumed to be Hausdorff.

Theorem 2.4. (See [1, Theorem 4.2, p. 49]). Let X be a t.v.s., whose topology is locally convex. If T is a linear
form, defined and continuous on a subspace M of X, then T, has a continuous extensionT to the entire space X.

Corollary 2.5. Givenn € {1, 2, ...} and n linearly independent elements x, of a l.c.s. X, there exist n continuous
linear forms T, on X such that T,(x,) = 8, (U, v = 1,...,n).

The next result is basic in the finite-dimensional convex analysis due to its applications, including the
maximum principle for convex functions.

Theorem 2.6. (Carathéodory; see [2], p. 7). Let K c R"(n € {1, 2, ...}) be a convex compact subset. Then, any
x € K can be written as convex combination of at most n + 1 extreme points of K.

A simple proof of Theorem 2.6 (by induction on the dimension n) is given in [2], pp. 7-8, essentially
using Theorem 2.2 stated earlier. Here is a main application of Theorem 2.6 to convex optimization
(in particular to linear optimization).

Corollary 2.7. (See [1, Exercise 26, p. 71]). Let K ¢ R™ be a nonempty compact subset. Then, its convex hull
co(K) is compact.

Theorem 2.8. (See [3, p. 171). If f is a continuous convex real function on a convex compact subset K ¢ R"
(nef{1,2,...}), then f attains a global maximum at an extreme point of K.

Theorem 2.9. (The maximum principle [3], p. 171). Let C be a convex subset of R". If a convex function
f: C > R attains its maximum on C at a point from the relative interior of C, then f is constant on C.

Next, we recall the following basic results, derived from Theorem 2.2.

Theorem 2.10. (First separation theorem [1], p. 64). Let A be a convex subset of a t.v.s. X, such that
int(A) # @ and let B be a nonempty convex subset of X, not intersecting the interior int(A) of A. There exists
a closed hyperplane H separating A and B; if A and B are both open, H separates A and B strictly.

Theorem 2.11. (Second separation theorem [1], p. 65). Let A, B be nonempty, disjoint convex subsets of
a locally convex Hausdorff space (l.c.s.) X, such that A is closed and B is compact. There exists a closed
hyperplane in X strictly separating A and B.

Corollary 2.12. Let X be a lc.s. and x, % € X, x; # x,. Then, there exists a continuous linear functional
x* € X* such that x*(x;) # x*(%).

The preceding corollary states that the topological dual X* of a l.c.s. X separates the points of X. On the
other hand, by the definition of weak topology on a l.c.s. X, any weak closed subset of X is closed in the
initial topology on X. For convex closed subsets, the reverse implication holds as well. Namely, we recall the
following well-known consequence of Theorem 2.11:

Corollary 2.13. (See [1], p. 65) Let X be a locally convex space and C c X a convex closed subset. Then, C is the
intersection of all closed half-spaces containing it. In particular, C is closed with respect to the weak topology
w(X, X*) on X.

The following result (Theorem 2.15) has a natural geometric meaning; it is based on Lemma 2.14 and
Theorem 2.10. It is worth noticing that in the latter theorem, if we additionally assume that A is open, then A
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is contained in the open half-space defined by H ([1]). Before stating Theorem 2.15, we have to review
Lemma 2.14, which generalizes the formula for the distance from a point to a hyperplane in R, n > 2, that
is well known from analytical geometry.

Lemma 2.14. Let X be a normed (real) linear space, H = {x € X;T(x) = a} a closed hyperplane in X, xq € X.
Then, the distance d(xo, H) = inf,,.y||xo — h|| is given by the following formula:

d(xo, H) = |T(xo) — al/|IT|

(hereT € X*, T+ 0, a € R).

Theorem 2.15. (See [4]). Let X be a normed linear space, A, B two convex subsets of X such that
d(A, B) = inf(, jyca.plla — b|| > O. Then, there exists two closed parallel hyperplanes H,, H, in X, which sepa-

rate the subsets A and B, such that d(H,, H,) = d(A, B).
The next key lemma is used in the proof of the main Theorem 2.17 (Krein-Milman).

Lemma 2.16. (See [1], p. 67). If C is a compact, convex subset of a locally convex space, every closed
hyperplane supporting C contains at least one extreme point of C.

We recall that, by definition, a closed hyperplane H in the locally convex space X under attention
is supporting C if C N H + & and C is contained in one of the two half-spaces defined by H. A pointe € C
is called an extreme point of C if from x, % € C, t € (0, 1), the equalitye = (1 — t)x + tx, implies x; = % = e.
In other words, e cannot be an interior element of any line segment of ends elements of C.

Theorem 2.17. (Krein-Milman; see [1], p. 67). Every compact convex subset of a locally convex space is the
closed convex hull of its extreme points.

Krein-Milman theorem says that in any compact convex subset C of a L.c.s., there are many extreme
points, which generate C (any element of C is the limit of a net whose elements are convex combinations
of extreme points of C).

Theorem 2.18. (See [1, Theorem 10.5, p. 68]). If K is a compact subset of a locally convex space such that the
closed convex hull C of K is compact, then each extreme point of C is an element of K.

From Theorem 2.6 (Carathéodory), Corollary 2.7, and Theorem 2.18, the following consequence follows:

Corollary 2.19. If K c R" is a compact nonempty subset, then its convex hull co(K) is compact and
co(K) = co(Extr(K)). Moreover, each point of co(K) can be written as convex combination of at most n + 1
extreme points of K.

The aforementioned results are more or less deduced from the geometric form of the Hahn-Banach
theorem. In most of the cases motivated by further applications, analytic proofs of Hahn-Banach type
theorems are more suitable. Here is the first main result, completely proved in [3, pp. 339-340].

Theorem 2.20. (The Hahn-Banach theorem). Let X be a vector space, P : X — R a sublinear functional,
M c X a vector subspace L : M — R a linear functional, such that L(x) < P(x) for all x € M. Then, L has
a linear extension T : X — R, such that T is dominated by P on the entire space X.

Corollary 2.21. (See [3], p. 340) If P is a sublinear functional on a real vector space X, then for every element
Xo € X, there exists a linear functional T such that

T(x0) = P(xp) and T(x) < P(x) for all x € X.
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Theorem 2.22. (The Hahn-Banach theorem on normed vector spaces; see [3], p. 341). Let X, be a vector
subspace of the real normed vector space X and Ty : Xo — R a continuous linear functional. Then, T, has
a continuous linear extension T : X — R, with ||T|| = || To||.

Corollary 2.23. (See [3], p. 341). If X is normed vector space, then for each xo € X, xo # 0, there exists a linear
functional T on X, such that T(xy) = ||xol|, and ||T|| = 1.

One of the reasons for using analytic proofs of Hahn-Banach type theorems is that they work not only
for extending linear functional but also for operators. As in the case of functional, the proofs of such type
results are quite simple, by means of Zorn’s lemma and extension of linear operators from a subspace S of
the involved domain space X, to a space S @ Span{x,}, where x, € X\S, preserving some constraints on the
extension. The codomain of the operators for which Hahn-Banach type theorems hold must be order
complete vector spaces, or even order complete vector lattices. We recall that an ordered vector space
is a vector space Y endowed with an order relation, which is compatible with the algebraic structure
of a vector space. Namely, the following two properties are satisfied:

NEYn YEYY+Y <Y, +Y, V<V, a € Ry = ay, < ay,.

We say that such an order relation is linear. If Y is an ordered vector space, thenY, ={y € Y; y > 0} is
a convex cone, called the positive cone of Y. We always assume that the positive cone is generating
(Y=Y, - Y,). An ordered vector space Y is called order complete (Dedekind complete) if for any upper-
bounded subset B ¢ Y, there exists a least upper bound for B in Y, denoted by sup(B). A vector lattice is an
ordered vector space Y with the property that for any y,, y, € Y, there exists sup{y,, y,} € Y. In a vector lattice
Y, for any element y € Y, one denotes|y| = sup{y, —y}. An ordered Banach space is a Banach space Y, which
is also an ordered vector space, such that the positive cone Y, is closed and the norm is monotone on Y,:

O<y <y =Inll <yl
A Banach lattice Y is a Banach space, which is also a vector lattice, such that
VY €Y, il < Iyl = Inll < [yl

Obviously, any Banach lattice is an ordered Banach space. In an ordered Banach space, there exists also
the compatibility of the topology defined by the norm with the order relation. There exist ordered Banach
spaces that are not lattices. For example, the space Y of all n x n symmetric matrixes with real coefficients,
endowed with the norm

VIl = max|(Vx, x)|
lxli<1

and the order relation V< W & (Vx, x) < (Wx, x),forallx e R", V, W € Y, is an ordered Banach space,
which is not a lattice for n > 2. Here, the norm x is the Euclidean norm of the vector ||x|| € R™ In the same
way, if H is a real or complex Hilbert space, the real vector space Y = A(H) of all self-adjoint operators
acting on H, with the norm and order relation defined similarly to the case of symmetric matrixes, is an
ordered Banach space, which is not a lattice (here R" is replaced by H). Almost all usual function spaces
and sequence spaces have natural structures of Banach lattices. On a vector space #(S) of real-valued
functions defined on a set S, the usual order relation is: f < g  f(t) < g(t) for allt € S. For example, if K is
a compact Hausdorff topological space, the space C(K) of all real-valued continuous functions over K is
a Banach lattice with respect to the aforementioned order relation and usual norm. If we assume that
K is compact, is connected, nonempty, and not reduced to a singleton, then C(K) is not order complete.
A particular such a Banach lattice is C([0, 1]). In other words, the only case when C(K) is order complete
is that of a totally disconnected space K. The Lebesgue spaces LP(F), 1 < p < co, F ¢ R", and the sequence
spaces [P, 1 < p < oo, are order complete Banach lattices.

Here is one of the old results on this subject, with many applications to the vector-valued moment
problem. Let X; be an ordered vector space whose positive cone X; , is generating (X; = X, — X;,,). Recall
that in such an ordered vector space X;, a vector subspace S is called a majorizing subspace if for any x € X
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there exists s € S such that x < s. The following theorem holds. Here is a significant example of a majorizing
subspace. Let F € R" be a closed unbounded subset and 1 < a@ < +co. Let v be a positive regular Borel
measure on F, with finite moments of all orders. We denote X = LY(F), X; the vector subspace of all
functions f € X for which there exists a polynomial p such that |f| < p on F. Then, the subspace S = P
of all polynomial functions on F is a majorizing subspace of X;. The space X; contains Co(F) (the subspace
of all continuous compactly supported real functions on F), as well as the subspace P (p € P = |p| =

J1p? < (1 + p?)/2 € P). The subspace X, is dense in X, since it contains Co(F), which is dense in LY(F) = X.

Theorem 2.24. (See [5], Theorem 1.2.1). Let X; be an ordered vector space whose positive cone is generating,
Xo ¢ Xi a majorizing vector subspace, Y an order complete vector space, Ty : Xo — Y a positive linear
operator. Then, Ty admits a positive linear extensionT : X; —> Y.

We continue with Hahn-Banach type theorems. Now a condition on the operator solution of being
dominated by a convex operator defined on a convex subset of the domain space is required. In other words,
a generalized Hahn-Banach theorem will be reviewed. The relationship between the next result and its
corollary (existence of subgradients of convex operators) will appear clearly. A point x, of the subset A of a
vector space X is called an (algebraic) interior point of A if for each x € X there is a positive Ay such that
A+ (1 — Axg € Afor|A| < Ap. The point x, is said to be an (algebraic) relative interior point of A if for each
x of the affine variety generated by A (affine hull of A) there is a positive Ay such that Ax + (1 — A)xg € A for
IA] < Ao. The set of all interior points of A is denoted by A™ and the set of all relative interior points by A",
For the next result, see [6, Theorem 2.1, pp. 284-286].

Theorem 2.25. (A generalized Hahn-Banach theorem; see [6], Theorem 2.1, p. 284). Let X be a vector space,
M c X a vector subspace, Y an order complete vector space, A ¢ X a convex subset, P: A — Y a convex
operator, Ty : M — Y a linear operator such that

Tu(x) < P(x) for all x e M n A.

If A"t 0 M + &, then there exists a linear operator T : X — Y such that
T(x) = Ty(x) for all x € M and T(x) < P(x) for all x € A.

Corollary 2.26. (See [6, Corollary 2.7, p. 286]). Let X be a vector space, Y an order complete vector space,
A < X a convex subset, P : A — Y a convex operator. If x, € A"\, then there exists a linear operatorT : X — Y
such that

T(x) — T(xo) < P(x) — P(xo) for all x € A. 1)

A linear operator T satisfying (1) is called a subgradient of P at xo. Corollary 2.26 says that a convex
operator having as codomain an order complete vector space admits a subgradient at every relative interior
point of its domain. This result (with a somewhat different proof) goes back to [7]. The set of all subgra-
dients of P at x is called the subdifferential of P at x, and is denoted by d,,P. This is a convex set, and, for
convex operators P satisfying the hypothesis of Corollary 2.26, is nonempty.

In the results stated earlier, the order relation that naturally exists on concrete spaces does not appear
on the domain space X in any way. The next theorems take into consideration linear order structures on X
as well. This way, from now on, we have three conditions on the linear operator solution T. Namely, T must
extend a given linear operator defined on a subspace of X, it is dominated by a given convex operator P and
dominates a given concave operator Q. If Q|x, > 0, then the linear extension T is positive: x € X,=T(x) € Y..
Recall that an ordered vector space X, which is also a topological vector space, is called an ordered
topological vector space if the positive cone X, is topologically closed. The next result was published by
H. Bauer, and independently by I. Namioka, with different proofs, in different journals, in 1957 (for citation
of the original sources see [1, p. 227]).
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Theorem 2.27. (See [1, Theorem 5.4, p. 227]). Let X be an ordered t.v.s. with positive cone X, and M a vector
subspace of X. For a linear form T, on M to have a linear continuous positive extension T : X — R it is
necessary and sufficient that T, be bounded above on M n (U - X,), where U is a suitable convex 0 — neigh-
borhood in X.

The next result is motivated by Theorem 2.27 and the discussion preceding it. Subsequently, all the-
orems are valid for operators. In particular, the corresponding cases of real-valued functionals follow as
consequences. In the next theorem, X will be a real vector space, Y an order-complete vector lattice,
A, B € X convex subsets, Q : A — Y a concave operator, P : B — Y a convex operator, M c X a vector
subspace, and Tp : M — Y a linear operator. All vector spaces and linear operators are considered over the
real field.

Theorem 2.28. (See [8], Theorem 1). Assume that To(x) > Q(x)Vx e M n A, To(x) < P(x) ¥x € M n B.
The following two statements are equivalent.
(a) There exists a linear extension T : X — Y of the operator Ty such that

Tla>=Q, T|p <P
(b) There exists P, : A — Y, convex, and Q, : B — Y concave operator such that for all
(p, t, A, @y, a, by, b,v) € [0, 1] x (0, c0) x A2 x B> x M,
the following implication holds:

(1-8a -thy=v+ A1 - p)a - pb)
= (1 - HPA(a) - tQi(b1) = To(v) + A((1 - p)Q(a) - pP(D)).

It is worth noticing that the extension T of Theorem 2.28 satisfies the following conditions: is an
extension of Ty, is dominated by P on B, and dominates Q on A. Here, the convex subsets A, B are arbitrary,
with no restriction on the existence of relative interior points or on their position with respect to the
subspace M.

The following theorems follow more or less directly as corollaries of Theorem 2.28. For details, see [8,9],
while for applications to the abstract Markov moment problem, see all the results of [10]. For applications
to characterizing the isotonicity of a convex operator over a convex cone, see [11] (for example, the proof
of Theorem 5 of [11] uses Theorem 2.33 of this article, Theorem 6 of [11] uses Theorem 2.34 of this article,
and Proposition 1 of [11] applies Theorem 2.30 of this article. The same article [11] contains a large class
of examples of concrete spaces and operators for which the developed theory works. Also, the article [11] gives
a new proof for a known result: any linear positive operator acting between two ordered Banach spaces
is continuous. In particular, this theorem works for operators acting between Banach lattices.

Theorem 2.29. (See [8], Theorem 2). Let E be an ordered vector space, F an order complete vector space,
M c E a vector subspace, T, : M — F a linear operator, and P : E — F a convex operator. The following two
statements are equivalent.

(a) There exists a positive linear extension T : E — F of T, such thatT < P on E;

(b) We have Ty(h) < P(x) for all (h,x) € M x E such that h < x.

One observes that in the very particular case E, = {0}, when the order relation on E is the equality, from
Theorem 2.29, one obtains Hahn-Banach extension theorem for linear operators dominated by convex
operators. When the convex operator P is defined only on the positive cone of E, one obtains the following
variant of Theorem 2.29 (see [9] and [14], Theorem 5):

Theorem 2.30. Let E be an ordered vector space, F an order complete vector space, M C E be a vector
subspace, T, : M — F be a linear operator, and P : E, — F be a convex operator. The following two state-
ments are equivalent.
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(a) There exists a positive linear extension T : E — F of T, such that T |g, < P;
(b) We have Ty(h) < P(x) for all (h,x) € M x E, such that h < x.

In Theorem 5 of [14], a direct sharp proof for Theorem 2.30 is pointed out. The next result provides
a sufficient condition on the given linear operators for the existence of the linear extensions. When
X =R?, Y =R, it has an interesting geometric meaning.

Theorem 2.31. (See [9]). Let X be a locally convex space, Y an order complete vector lattice with strong order
unit ug and S ¢ X a vector subspace. Let A ¢ X be a convex subset with the following properties:
(a) There exists a neighborhood V of the origin such that (S + V) n A = & (that is, by definition, A and S are
distanced);
(b) A is bounded.
Then for any equicontinuous family of linear operators {fi}j; ¢ L(S,Y) and for any y € Y,\{O}, there
exists an equicontinuous family {Tj}jc; ¢ L(X, Y) such that

Ti(s) =fi(s), seS, T(Y) =y, peA,je].
Moreover, if V is a convex balanced neighborhood of the origin such that
fi(Vn'S) c [-up, upl, (S+V)nA=g,

and if a > 0 such that Py(a) < a Va € A and &, > O is large enough such that y < aug, then the following
relations hold:

o) <A +a+a)Py(X)up, xeX,je].

We have denoted by Py the gauge attached to V.

The following theorem is also a Hahn-Banach type result (see Theorem 2.29), but is formulated in terms
similar to those of the abstract Markov moment problem [10]. However, the condition T(x;) = Yj» j € ] of the

abstract moment problem is replaced by T(x;) > y;, j € J.

Theorem 2.32. (Mazur-Orlicz: see [10], Theorem 5). Let X be a preordered vector space, Y an order complete
vector space, {xj}jes, {y}je) families of elements in X, respectively inY, and P : X — Y a sublinear operator.
The following two statements are equivalent:

(a) There exists a linear positive operator T : X — Y such that

T(G) 2y, je], Tx) < Px), x € X;
(b) For any finite subset J, c ] and any {aj}jej, € R, = [0, +00), the following implication holds true
Yax<xeX= ) ay<PX).
jeh jeh

If in addition we assume that P is isotone, the assertions (a) and (b) are equivalent to (c), where

(c) for any finite subset J, c ] and any {aj}j;, € R, the following inequality holds:

Y ay; < p( y ajx,.}

jeh j€h

The next two variants of the same controlled regularity property of some linear operators are also
consequence of Theorem 2.28. Recall that a linear operator T is called regular if it can be written as
a difference of two positive linear operators V, W:T = V — W.IfV is dominated by a given convex operator ¥,
we say that we have a controlled regularity for T. This terminology is motivated by the fact that in the
topological framework, ¥ is assumed to be continuous and V < ¥ on the entire domain space usually
implies the continuity of V. Sometimes, the norm of V can be evaluated as well.
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Theorem 2.33. (See [9]) Suppose that X is an ordered vector space, Y is an order complete vector lattice,
and P : X, — Y is a convex operator. Then for any linear operator T : X — Y, the following two statements
are equivalent.

(a) There exist two positive linear operators V, W : X — Y such that T=V - W, V|x, < P;

(b) T(x) < P(x) for all xi, x; in X such that O < x < x,.

Most of convex operators P appearing in applications are defined on the entire domain space.
Therefore, we recall the similar statement to that of Theorem 2.33, but for convex operators P : X — Y.

Theorem 2.34. (See [8], Theorem 3). Assume that X is an ordered vector space, Y is an order complete vector
lattice and P : X — Y is a convex operator. For any linear operator T : X — Y, the following two statements
are equivalent:

(a) There exist two positive linear operators V, W : X — Y such thatT =V - W, V < P;

(b) T(x) < P(x) for all x;, x, in X such that 0 < x; < %.

In the end of this section, we state a general constrained extension result, which can be proved
as a consequence of Theorem 2.28. Probably, Theorems 2.28 and 2.35 are equivalent.

Theorem 2.35. (See [9]). Let X be a vector space, Y be an order complete vector lattice, M ¢ X be a vector

subspace, Ty : M — Y be a linear operator, A € X be a convex subset, andQ : A — Y be a concave operator.

Assume that To(x) > Q(x) Vx € M n A. The following two statements are equivalent.

(a) There exists a linear operator T : X — Y which extends Ty, such that T|s = Q;

(b) There exists a convex operator P : A — Y such that for all (x,r,a) € M x (0, co) x A, the following
implication holds:

x+raeA = Tyx)+rQla) < P(x + ra).

Moreover, if P satisfies the requirements of (b), then the extension T of (a) verifies the relation T|, < P.

Since all concrete spaces are endowed with a natural linear order relation, we restate Theorem 2.35
in the framework of ordered vector spaces.

Theorem 2.36. Let X be an ordered vector space, Y be an order complete vector lattice, M c X be a vector
subspace, Ty : M — Y be a linear operator, Q : X, — Y be a supralinear operator, and P : X, - Y be
a convex operator. The following two statements are equivalent.

(a) There exists a linear operator T : X — Y, which extends Ty, such that Q < T|x, < P;

(b) For all (h, ¢, p,) € M x X, x X,, the following implication holds:
h= Q, — Q= TO(h) < P((pz) - Q((Pl)

Corollary 2.37. Let X, Y, P, Q be as in the statement of Theorem 2.36. Assume that Q < P on X,. Then,
there exists a linear operator T : X — Y, such that Q < T |x, < P.

The last result of this section has also been deduced from the general Theorem 2.28. Theorem 2.38
is applied in the proof of Theorem 3.12 of the next section.

Theorem 2.38. (See [10, Theorem 4]). Let X, Y, {X}j, {yi}ief be as in Theorem 232, T, T, € L(X,Y)
two linear operators. Assume also that Y is a vector lattice. The following two statements are equivalent.
(a) There is a linear operator T € L(X, Y) such that

L) < TO) < B, x e Xy, TOG) =y, j e
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(b) For any finite subset J, c ] and any {aj}jc;, C R, the following implication holds true:

N o=, s Yty € X, | > Y ay; < BW,) - T,

Jjelo jeh

If X is a vector lattice, then assertions (a) and (b) are equivalent to (c), where

(¢) Ti(w) < T(w) for all w € X,, and for any finite subset J, c ] and V{a;;j € Jo} ¢ R, we have

+ —

Za,-y]-st Zajxj -1 Za,-x,-

jeh jeh jeo

3 Krein-Milman theorem and elements of representation theory

We start with an interpretation of Carathéodory’s Theorem 2.6 as an integral representation theorem (by
means of a discrete measure). Then, by using Krein-Milman Theorem 2.17 and a passing to the limit
procedure (eventually involving convergent subnets), one obtains integral representations in terms of
arbitrary probability measures. In what follows, K is a compact convex nonempty subset of a (Hausdorff)
locally convex space E. For y € K, one denotes by 8, the “point mass” at y, that is, 6, is the Borel measure,
which equals 1 on any Borel subset of K, which contains y, and equals 0 otherwise. According to these

comments, if x € K and K is contained in an n-dimensional subspace of E, there exist ey,..., e,,1 extreme
n+1
j=1
continuous linear form L on E, one obtains:

a; = 1, such that x = Z;’:llajej. Letus denote y = Y

points of K and ay, ..., ap 1 inR,, Y i1

ajtSe/.. Then, for any

n+1 n+l1

5.0) =100 = Y al(e) = 3. a8e(L) = u(L) = [ L @
K

j=1 j=1

Here, we recall that the first equality in (2) is actually the definition of the Dirac measure associated with
the point x € K, applied to the restriction to K of the continuous linear functional L on E. The conclusion

o6,(L) = IKLdy for all linear continuous forms L on E one reads as u represents x. In the last equality (2),

there is an abuse of notation: we denote in two different ways (u and du) the same measure y on K. In what
follows, a probability measure on K is a nonnegative regular Borel measure u on K, with u(K) = 1.

Definition 3.1. Suppose that K is a nonempty compact subset of a locally convex space X and pu is
a probability measure on K. A point x in X is said to be represented by u if

L(x) = ILdy
K

for every continuous linear functional L on X (other terminology: “x is the barycenter of yu” and “x is the
resultant of u”).

Note that any point x € K is trivially represented by &,; the interesting fact pointed out by (2) is that for
a convex compact subset K of a finite-dimensional space, each x in K may be represented by a probability
measure, which “is supported” by the extreme points of K. A similar result holds for arbitrary convex
compact metrizable subsets K of X (see Theorem 3.3).

Definition 3.2. If u is a nonnegative regular Borel measure on the compact Hausdorff space K and B is
a Borel subset of K, we say that u is supported by B if u(K\B) = 0.
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Theorem 3.3. (Choquet). Suppose that K is a metrizable compact convex subset of the locally convex space X,
and that xq is an element of K. Then, there is a probability measure u on K, which represents x, and
is supported by the extreme points of K.

For the proof of the preceding theorem, see [2, pp. 14-15]. The next result is somehow similar
to Choquet’s theorem, without requiring metrizability condition on K (see [2, p. 17]).

Theorem 3.4. (Choquet-Bishop-de Leeuw). Suppose that K is a compact convex subset of the locally convex
space X, and that x, is in K. Then, there is a probability measure u on K, which represents x, and which
vanishes on every Baire subset of K, which is disjoint from the set of extreme points of K.

Theorems 3.3 and 3.4 claim that any point in K is the barycenter of a probability measure essentially
defined by its behavior on the set of extreme points of K. The following question arises naturally: does any
probability measure on K have a barycenter? The answer is affirmative, and, moreover, for a given prob-
ability measure y on K, there exists a unique corresponding barycenter denoted bar(u). Namely, the
following result holds:

Theorem 3.5. (See 3, Lemma 7.2.3, p. 310]). If K is a compact convex subset in the locally convex space X and
U is a probability measure on K, there exists a unique point bar(u) € K such that

Libar(o) = [ Ly
K

for all continuous linear functionals L on X.

Since all the locally convex spaces are assumed to be Hausdorff, the uniqueness of bar(u) follows from
the fact that the topological dual X* of X separates the points of X. The next result follows from the more
general Theorem 7.2.4 of [3] and represents the Jensen integral inequality for a barycenter and probability
measures.

Theorem 3.6. (Jensen; see [3]). Suppose that u is a probability measure on the convex compact subset K
of the locally convex space X. Then,

f(bar(u) < jf(x)du(x)
K

for all continuous convex functions f: K — R.

Next, we recall some results on the uniqueness of the representing measure. The uniqueness holds
if and only if the compact convex subset K is a simplex. Before going to infinite-dimensional simplexes,
we review the definition of a finite-dimensional simplex. The sets of the form C = co({xo,...,xy}) are called
polytopes. If x; — xo,..., Xy — Xo are linearly independent, then C is called an N-simplex, with vertices
Xos-.-, Xy.In this case, dimC = N and any point x of C has a unique representation as a convex combination
of vertices:

N

N
X= ) txXi, @ € R, =[0,00), Y oy =1.
k=0 k=0

The numbers aq,..., ay are called the barycentric coordinates of x. The standard N-simplex (or unit
N-simplex) in R¥*! is defined by:

N
AN = {(ao,...,aN) e RN+L, Z(xk =1, ax =0, k= 0,...,N}.
k=0
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We go on with infinite-dimensional simplexes. As is shown in [2, pp. 51-52], for studying a compact
convex subset K of a locally convex space X and see when K is a simplex, it is easier to assume that K is the
base of a convex cone C (with vertex at the origin), i.e., K ¢ C and y € C if and only if there exists a unique
a > 0 and x in K such that y = ax. Moreover, as discussed in [2, p. 52], whenever a compact convex subset is
a base for a cone C, we can always assume that it is of the form H n C for some closed hyperplane H in X,
which misses the origin.

Definition 3.7. If a convex set K (not necessarily compact) is a base of a cone K, we call K a simplex if the
space K — K is a vector lattice in the ordering induced by K.

Definition 3.8. Let K ¢ X be a compact convex subset; if v and u are nonnegative regular Borel measures on
K, we write v > p if v(f) > u(f) for all continuous convex functions fon K, where v(f) = Idev.

Lemma 3.9. (See [2, p. 18]). If v is a nonnegative measure on K, then there exists a maximal measure u such
that p > v.

Theorem 3.10. (Choquet-Meyer; see [2], pp. 56—57). Suppose that K is a nonempty compact convex subset of
the locally convex space X. Then, K is a simplex if and only if for each point x in K there is a unique maximal
measure i, on K such that pu,(h) = h(x) for all continuous affine functions h : K — R.

Next, we recall the statement of D.A. Edwards’ separation theorem (Theorem 16.7 of [2]).

Theorem 3.11. (Edwards). If f and —g are convex upper semicontinuous real-valued functions on a simplex
K contained in a locally convex space, with f < g, then there exists a continuous affine function h on K such
that f<h<g.

Of note, sandwich-type theorems such as Theorem 3.11 can be proved when the simplex K is replaced
by a finite-simplicial set, as discussed in [13]. Here, the novelty is that a finite-simplicial set can be
unbounded in any locally convex topology on E. A convex subset F of a vector space X is called finite
simplicial if for any finite-dimensional compact subset K < F, there exists a finite-dimensional simplex S,
such that K ¢ S, ¢ F. Here are a few examples:

1) In R", n > 2, any convex cone C having a base that is a simplex (the corresponding order relation
is laticial) is an unbounded finite simplicial set.
2) InR", n > 2, for each a € (1, 00), the convex cone C defined by

n-1 1/a
C=100,....X0); Xn 2 [Z |X]|a)

j=1

has a compact base, but C is not finite-simplicial.

3) Let X be an arbitrary infinite or finite-dimensional vector space (of dimension >2), T : X — R a non-null
linear functional and r € R. Then, the sets F; = {x;T(x) > r}, F, = {x;T(x) < r} are finite-simplicial.

4) Let X, T be as in Example 3), a, B two real numbers such that a < . The set

xeX;a<Tx)<pB}
is not finite-simplicial. From the last two examples, we easily infer that generally the intersection of two
finite-simplicial sets is not finite-simplicial.

The following sandwich type result holds true:

Theorem 3.12. (See [13], Corollary 3.5). Let X be an arbitrary vector space, F a finite-simplicial subset,
f: F > R a convex function, g : F — R a concave function such that f < g on F. Then, there exists an affine
function h : F —» R such that f<h<g.
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The proof of Theorem 3.12 is using Theorem 2.38 of Section 2. Next, we state a topological version
of Theorem 3.12.

Theorem 3.13. (See [14], Theorem 4, pp. 8-10). Let X be an ordered Banach space. Assume that the positive
cone X, is finite-simplicial and there exists xo € X, such that X, — xo contains a balanced and absorbing
convex subset. Let f, —g : X, > R be convex continuous functions such that f < g. Assume also that
f(0) = g(0) = 0. Then, there exists a continuous linear functional L : X — R such that f <L < g on X,.

4 The moment problem and related results

We recall the classical formulation of the moment problem, under the terms of T. Stieltjes, given in
1894-1895: find the repartition of the positive mass on the nonnegative semi-axis, if the moments of
arbitrary orders k (k = 0, 1, 2,...) are given. Precisely, in the Stieltjes moment problem, a sequence of real
numbers (y;)r=0 is given and one looks for a nondecreasing real function o(t) (t = 0), which verifies the
moment conditions:

[ee]

J-tkda =Y (k=0,1,2,...).
0

This is a one-dimensional moment problem, on an unbounded interval. Namely, it is an interpolation
problem with the constraint on the positivity of the measure do. The numbers y;, k e N ={0,1, 2, ...} are
called the moments of the measure do. Existence, uniqueness, and construction of the solution do are
studied. The moment problem is an inverse problem: we are looking for an unknown measure, starting from
its given moments. The direct problem might be: being given the measure do compute its moments

f;ot"da, k=0,1,2,.... The connection with the positive polynomials and extensions of linear positive

functional and operators is quite clear. Namely, if one denotes by ®; (p].(t) =tl,jeN, te[0,+co),
% the vector space of polynomials with real coefficients, and

Th:P - R, T Zaj(pj = Zajyj, 3)

jeh IS

where J; ¢ N is a finite subset, then the moment conditions To(goj) =Y j € N are clearly satisfied. It remains
to check whether the linear form T, defined by (3) has nonnegative value at each nonnegative polynomial.
If this condition is also accomplished, then one looks for the existence of a linear positive extension T of Ty
to a larger ordered function space X, which contains both # and the space of continuous compactly
supported functions, then representing T by means of a positive regular Borel measure y on [0, +00),
via Riesz representation theorem or applying Haviland theorem. Usually, the positive linear extension is
defined on a Banach lattice of functions. For example, if v is a positive regular Borel measure on [0, +00),
with finite moments I:Ot"dv of all orders k € N, and X = L¥( [0, +00)), 1 < a < 0o, one denotes by X; the

vector subspace of X defined by X; = {g € X; 3p € P, |g| < p}, X contains P and all continuous real-valued
compactly supported functions on [0, +00). If Ty defined by (3) is a positive (linear) functional on #, one
extends Ty to a linear positive functional T on X;, by means of Theorem 2.24 ( is a majorizing subspace in X;).
Usually, this extension is also continuous on the subspace X; of X. In this case, T can be extended to a linear
continuous functional T defined on the entire space X, via density of X; in X (the subspace of all continuous
compactly supported functions on [0, +00) is contained in X; and is dense in X). If an interval (for example,
[a, b], R, or [0, +00)) is replaced by a closed subset F of R", n > 2, we have a multidimensional moment
problem. Passing to an example of the multidimensional real classical moment problem, let us denote

Q) =t =t £, j = (o) €N = (tonly) €ERT, MEN, N2 2,
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If a sequence (y))jeN is given, one studies the existence, uniqueness, and construction of a linear
positive form T defined on a function space containing polynomials and continuous compactly supported
real functions, such that the moment conditions

T(@) =y, j € N" (4)

are satisfied. Usually, the positive linear form T (that is called a solution for the moment problem defined by
(4)) can be represented by means of a positive regular Borel measure y on R%. In this case, we say that u is a
representing measure for the sequence y = (¥;)jenr, and this sequence is called a moment sequence. Similar
definitions and terminology are valid when we replace R} with an arbitrary closed subset F of R". When an
upper constraint on the solution T is required too, we have a Markov moment problem (see the last part
of this section). From solutions linear functional, many authors considered linear operators solutions.
Of course, in this case, the moments y;, j € N" are elements of an ordered vector space Y (usually Y is
an order complete Banach lattice). The order completeness is necessary to apply Hahn-Banach type results
for operators defined on polynomials and having Y as codomain. The classical moment problem is clearly
related to the form of positive polynomials on the involved closed subsets of R". As it is known, there exist
nonnegative polynomials on the entire space R", n > 2, which are not sums of squares of polynomials,
unlike the case n = 1 (see [17], Proposition 13.4, p. 318; see also the comments which precede and follows
this result). The analytic form of positive polynomials on closed intervals is crucial in solving classical
moment problems. Such results are useful in characterizing the existence of a positive solution by means of
signatures of quadratic forms. In the case of the Markov moment problem, approximation of nonnegative
compactly supported continuous functions (with their support contained in a closed unbounded subset F)
by special nonnegative polynomials on that subset, having known analytic form, is very important. For the
multidimensional Markov moment problem on Cartesian products of closed unbounded intervals, this
method works, provided that each interval is endowed with a moment determinate positive regular Borel
measure. Recall that a measure is called M-determinate (moment determinate, or simply determinate) if it is
uniquely determined by its classical moments, or, equivalently, by its values on polynomials. A moment
sequence is called determinate if it has only one representing measure. If a sequence y has a representing
measure supported on a compact subset F, then y is determinate thanks to the Weierstrass approximation
theorem. We start reviewing existence of a solution for the simplest classical one-dimensional moment
problems: the Hamburger moment problem (when F = R), Stieltjes moment problem (when F = R,), and
Hausdorff moment problem (when F = [0, 1]). Inthe sequel, the following notations are used:N = {0, 1, 2, ...},

R, = [0, 00), Co(F)isthe vector space of all real-valued compactly supported continuous functions defined
on F, (Co(F)), is the convex cone of all functions in Co(F), which take nonnegative values at each point of F.
P, = P(F) is the convex cone of all polynomial functions with real coefficients, which are nonnegative on F.

Theorem 4.1. (Hamburger’s theorem: see [17], Theorem 3.8, p. 63). For a real sequence y = (¥, )nens
the following statements are pairwise equivalent.
(i) The sequencey is a Hamburger moment sequence, that is, there is a nonnegative Radon measure p on R

such that t/ € Ly(R), j € N and

ftfdy(t) —y, jen.
R

(ii) The sequence y is positive semidefinite, i.e., for alln € N and xo, x,..., X, € R, we have

n

D VXX 2 0.
i,j=0

(iii) All Hankel matrices Hy(y) = ()/i+j){fj:0, n € N are positive semidefinite.

(iv) T, defined by (3) is a positive linear functional on R[t], that is, Ty(p?) = O for p € R[t].
(v) To(q) = O for all q € P,(R).
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Theorem 4.2. (See [17], p. 65). For a real sequence y = (y,)nen, the following statements are pairwise
equivalent.
(i) y is a Stielties moment sequence, that is, there is a nonnegative Radon measure u on [0, co) such that
the LiR,), j €N and
(o)
Itidy(t) =Y, jeN.
0

(ii) For alln € N and xo, xi,..., X, € R, we have

n n

z YirjXiX; >0, Z Yirj 1 XiXj > 0.

i,j=0 i,j=0
(iii) All Hankel matrixes (y;,;)ij-0s (iiji1)ij-0o 1 € N, are positive semidefinite.
(iv) To(p?) = 0 and Ty(tq?) = O for p, q € R[t].
(v) To(q) = 0 for all g € P(R ).
Theorem 4.1 (respectively 4.2) gives necessary and sufficient conditions for a sequence (y,)nen Of real
numbers to be an R -moment sequence (respectively an R ,-moment sequence). Next, we go on with the
corresponding problem on [0, 1] (the Hausdorff moment problem).

Theorem 4.3. (See [17], p. 66). For a real sequence y, the following statements are pairwise equivalent:
(i) y is a0, 1]-moment sequence.
(if) To((1 - )"t%) > 0 forn. k e N.

(iii) Z?:O(—l)j(r;)yﬂk >0, forn. k € N.

Next, we go on with the problem of determinacy. A Hamburger moment sequence is determinate if it
has a unique representing measure, while a Stieltjes moment sequence is called determinate if it has only
one representing measure supported on [0,00). The Carleman theorem contains a powerful sufficient con-
dition for determinacy.

Theorem 4.4. (See [17], Theorem 4.3, pp. 80-81). Suppose that y = (y)nen IS a positive semidefinite
sequence. The following assertions hold.
(i) If y satisfies the Carleman condition

o1
Yy = +c0,
n=1

then y is a determinate Hamburger moment sequence.
(i) If in addition (¥, ,)nen is positive definite and

(ee)
_1
ISR
n=1

then y is a determinate Stieltjes moment sequence.

The following theorem of Krein consists in a sufficient condition for indeterminacy (for measures given
by densities).

Theorem 4.5. (Krein condition: see [17], Theorem 4.14, pp. 85-86). Let f be a nonnegative Borel function on
R. Suppose that the measure u defined by du = f(t)dt is a Radon measure on R and has finite moments

Yy = JR t"du for alln € N,
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if
f (D 4y oo

1+ x?
then the moment sequence y = (¥, )nen. is M-indeterminate.

Next, we give new checkable sufficient conditions on distributions of random variables that imply
Carleman condition, ensuring determinacy. Consider two random variables V ~ ¥, V with values in
R, W ~ A, W with values in R,. Assume that both ¥ and A belong to the class C! and let ¢ = ¥/, and
A = N be the corresponding densities. All moments of V, W are assumed to be finite. The symbol .~ used
later has the usual meaning of “monotone increasing.”

Theorem 4.6. (See [19], Theorem 1, p. 498: Hamburger case). Assume that the distribution Y of V is
symmetric on R and continuous and strictly positive outside an interval (—to, to), to > 1, such that the fol-
lowing conditions hold:

I “nd® 4,
2 In(lt)

s

|t|=to

—In ()

Jooasty <t — oo.
Int

Under these conditions, V ~ ¥ satisfies Carleman’s condition, and hence, it is M-determinate.

Theorem 4.7. (See [19], Theorem 2, p. 498: Stieltjes case). Assume that the density A of W is continuous and
strictly positive on [a, co) for some a > 1 such that the following conditions hold:

2
J‘ ln/l(t)dt_+
t2Int

-In A(t)

Jooasa<t— oo.
Int

Under these conditions, W ~ A satisfies Carleman’s condition, and hence, it is M-determinate.

Example 4.8. The distribution function A having as density A(u) = exp(-u), u € R, satisfies the condi-
tions of Theorem 4.7; hence, it is M-determinate.

Going back to the existence problem for a solution, we consider the multidimensional case, which is
much more complicated than the one-dimensional moment problem. The main reason is that the analytic
form of nonnegative polynomials on closed subsets of R", n > 2, is generally not known in terms of sums of
squares of polynomials. A case when this difficulty can be solved is that of semi-algebraic compact subsets
of R™. Here is one of the main results on this subject. If y = (yj)}-eNn n > 2, isasequence of real numbers, one

denotes by T, the linear functional defined on R[f;,..., t;] by

Ty Z(Xitj = Z(ij}-,

IS Jj€lo

where J, ¢ N" is a finite subset and q; are arbitrary real coefficients. Let {f,...,fi} be a finite subset of
R[t,...,t,], where R[t,...,t,] is the real vector space of all polynomials with real coefficients, of n real
variables t,..., t,. Then, the closed subset given by

K ={t e R" fi(t) = 0,..., fi(t) = O} (5)
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is called a semi-algebraic set. The following result was proved for compact semi-algebraic sets (see [21]
Theorem 1.4, and [22] Theorem I1.2.4 for related or more general results). On the other hand, important
results on resolution of the moment problem on any compact (not necessarily semi-algebraic) subset with
nonempty interior in R™ had been proved in [20] (see [20], Theorems 1, 2, and 4). The expression of positive
polynomials on such a compact is also deduced in Theorem 4 of [20].

Theorem 4.9. (See [18]). Let K be a compact semi-algebraic set as defined earlier. Then, there is a positive
Borel measure u supported on K such that

Itidy =Y, Vj €N,
K

if and only if
T,(ff -+ fip?) = 0, Vp € R[t,....t], Vey,..., e € {0, 1}.

Corollary 4.10. (See [18]). With the aforementioned notations, if p € R[t,,...,t,] is such that p(t) > 0O for all
t in the semi-algebraic compact K defined by (5), then p is a finite sum of special polynomials of the form

191 ,,,flfqu > 0’
for some q € R[t,,...,t,] andey,..., e, € {0, 1}.

The next results of this section are based on polynomial approximation on unbounded subsets, also
using Hahn-Banach type results. We start by recalling the following key approximation lemma.

Lemma 4.11. (See [27], Lemma 3). Let F € R" be an unbounded closed subset, and let v be an M-determinate
measure on F (with finite moments of all natural orders). Then, for any x € Co(F), x(t) > 0, Vt € F, there
exists a sequence of polynomials (Dm)ms Pm = X, m €N, pn — x in LY(F). In particular, we have

lim j P(B)dv = j x()dv,
F F

the cone P, of nonnegative polynomials is dense in (LX(F)),, and P is dense in LL(F).

Proof. To prove the assertions of the statement, it is sufficient to show that for any x € (Co(F)),, we have

Qi(x) = inf Ip(t)dv;p >X, peP; = Ix(t)dv.
F F

Obviously, one has
Q0> [xav. (6)
F
To prove the converse, we define the linear form
To: Xo =P & Spix} > R, To(p + ax) = Ip(t)dv +aQi(x), pe P, a €R. O
F

Next, we show that Ty is positive on X,. In fact, for a < 0, one has (from the definition of Q;, which is
a sublinear functional on X)):

p+ax>0=p>-ax = (—a)Qi(x) = Qi(—ax) < jp(t)dv = Th(p + ax) = 0.
F
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If a > 0, we infer that:

0 = Qi(0) = Qi(ax — ax) < aQy(x) + Qi(-ax) =

jp(t)dv > Qu(-ax) > -aQi(0) = To(p + ax) > 0
F

where, in both possible cases, we have xy € (Xp); = To(xo) > 0. Since X, contains the space of the poly-
nomial functions, which is a majorizing subspace of X;, there exists a linear positive extensionT : X — R of
To, which is continuous on Co(F) with respect to the sup-norm. Therefore, T has a representation by means
of a positive Borel regular measure u on F, such that

T(x) = Jx(t)dy, x € Co(F).
F

Let p € P, be a nonnegative polynomial function. There is a nondecreasing sequence (x;;),, of contin-
uous nonnegative function with compact support, such that x,, / p pointwise on F. Positivity of T and
Lebesgue’s dominated convergence theorem for u yield

Ip(t)dv =T(p) = supT(xp) = sup'[xm(t)du = fp(t)du, p€P.
F F F

Thanks to Haviland’s theorem, there exists a positive Borel regular measure A on F, such that
A(p) = v(p) - u(p) © v(p) = A(p) + u(p), p € P.
Since v is assumed to be M-determinate, it follows that
V(B) = A(B) + u(B)

for any Borel subset B of F. From this last assertion, approximating each x € (LL(F)),, by a nondecreasing
sequence of nonnegative simple functions, and also using Lebesgue’s convergence theorem, one obtains
first for positive functions, then for arbitrary v-integrable functions, ¢:

I(pdv = J-(pd/\ + I(pdy, @ € LYF).

F F F

In particular, we must have
dev > dey - T = Tyx) = Q). @)
F F

Then, equations (6) and (7) conclude the proof. O

Lemma 4.12. Let v = v; X--- X V, be a product of n M- determinate measures on R; we can approximate any
nonnegative continuous compactly supported function in X = L}(R") with dominating sums of products:

P1®-+-® Pn, (D1 ®-+- @ pp)(bis..., 1) = p1(t)-+- Pn(t),

where p; are nonnegative polynomial on the entire real line, j = 1,..., n.

To prove Lemma 4.12, one uses approximating Bernstein polynomial of n variables. Then, Lemma 4.11
is applied in each separate variable, for n = 1, F = R, and the Fubini theorem.

Theorem 4.13. (See [27], Theorem 7). Let v be as in Lemma 4.12, X = LYR™), and Y be a Banach lattice.
Assume that T is a linear bounded operator from X to Y. The following statements are equivalent:
(a) Tis positive on the positive cone of X;
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(b) For any finite subsets Jy ¢ N, k =1,...,n, and any {A;}; ¢j € R, k =1,..., n, the following inequalities
hold true:

0< Z Z }lil/ljl ~~~/lin/tjnT(Xilﬂ-l,...,in+jn)

inji €l Inejn €Jn

Proof. Note that (b) says that T is positive on the convex cone generated by special positive polynomials
DP1®---® py, each factor of any term in the sum being nonnegative on the whole real axis. Consequently,
(a) = (b) is clear. To prove the converse, observe that any nonnegative element of X can be approximated
by nonnegative continuous compactly supported functions. Such functions can be approximated by the
sums of tensor products of positive polynomials in each separate variable, the latter being sums of squares.
The conclusion is that any nonnegative function from X can be approximated in X = L1(R") by the sums of
tensor products of squares of polynomials in each separate variable. We know that on such special poly-
nomials, T admits values in Y,, according to the condition (b). Now, the desired conclusion is a consequence
of the continuity of T, also using the fact that the positive cone of Y is closed. This concludes the proof.

O

Let H be a Hilbert space and U a self-adjoint operator acting on H. Let Y = Y(U) the order complete
Banach lattice (which is also a commutative real algebra) of self-adjoint operators discussed in [26,
pp. 303-305]. Namely, if A = A(H) is the space of all self-adjoint operators acting on H, the natural order
relation on A is, by definition,

V<We (Vh,h) < (Wh,h)Vhe H.

With respect to this order relation, A(H) is an ordered Banach space, which is not a lattice. Moreover,
the multiplication operation on A(H) is not commutative. Therefore, we use the following notations,
to define a suitable subspace Y(U) of A(H):

Yi(U) = {V € A;UV = VU}, Y(U) = {W € Y,(U);WV = VW, YV € Y(U)}. (8)

Then, Y (U) is the codomain space we are interested in: it is an order complete Banach lattice (see [26],
pp. 303-305) and is a commutative real algebra (this last assertion is obvious).

In the sequel, the condition 0 < T < T, on X, is replaced by a more general requirements on the solution
T,namely,T; < T < T, on X,, where T, T; are given linear operators satisfying natural assumptions. We start
with a one-dimensional Markov moment problem on an arbitrary compact subset K ¢ R,. We denote by
X = C(K) the Banach lattice of all real-valued continuous functions on K and let Y be an arbitrary order
complete Banach lattice. We use the following notation:

pt) =), teR,, jeN.

Theorem 4.14. (See [29], Theorem 3). Let T;, T> be two linear operators from X toY, such that 0 < T, < T, on
the positive cone of X, and (y,)n=0 a given sequence of elements inY. The following statements are equivalent:
(a) There exists a unique (bounded) linear operator T : X — Y such that T(go].) =¥, jeN, T <T<T,onthe

positive cone of X, ||Til| < ||IT|| < || T2l
(b) For any polynomial Z;’ioaj(pj > 0 on K, we have Z:."zoajﬂ(goj) < Z:.'Loajyj; if Jo ¢ N is a finite subset and
{a;;j € Jo} € R, then the following conditions are satisfied:
z aiaj)/i+j+1 < z aiajﬁ((Pi+j+1), I € {01 1}'
i,jelo i,jelo

The next result holds also for the multidimensional Markov moment problem.

Theorem 4.15. (See [29], Theorem 4). Let F € R" be a closed unbounded subset, v a positive Borel moment
determinate measure on F, having finite moments of all orders, X = L} (F), (p].(t) =thteF, jeN"' LetY be
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an order complete Banach lattice, (yj),-eNv1 be a given sequence of elements inY, T,, and T, be two bounded

linear operators from X to Y. Assume that there exists a sub — cone P,, € P, such that each f € (Co(F)), can
be approximated in X by a sequence (p;);, p1 € P+, D1 = f for alll. The following statements are equivalent:

(a) There exists a unique (bounded) linear operatorT : X — Y, T((p].) =Y, JeNL,0<T<T<TLonX,
1Tl < 1T < 1215

(b) For any finite subset J, c N"and any {a;; j € Jo} C R, the following implications hold true:

Za,-<pj EP. = ZajTl@pj) < Zajyj; Za,-goi EP.L = ZajTl(qu) >0, Zajyj < Zaﬂ}((pj).

jelo jelo jelo jelo Jjelo jelo j€h

The proof of Theorem 4.15 is essential based on previous approximation results published in [27].
Next, we use approximation by special nonnegative polynomials [27] to express conditions of Theorem
4.15 in terms of quadratic forms. The following consequences follow.

Corollary 4.16. (See [29], Corollary 2). Let X = LX(R), where v is a moment determinate positive Borel
measure on R, with finite moments of all orders. Assume that Y is an arbitrary order complete Banach lattice,
and (V,)n=0 1S a given sequence having its terms inY. Let T, T, be two linear operators from X to Y such that
0 < T, < T, on X,. The following statements are equivalent:
(a) There exists a unique bounded linear operator T from X to Y, T <T< T, on X, ||T|l < ||IT|l < I,
such that T(p,) =y, for alln € N.
(b) If Jo c N is a finite subset and {a;;j € Jo} C R, then the following inequalities hold:
Z aiTi(g;, ;) < Z i, < Z 25T (@, ;)
i,jelo i,jelo i,jelo
Using the notation of Theorem 4.15, in Corollary 4.16, we have #,, = #.. since any nonnegative poly-
nomial on the entire real axis is a sum of squares.
We next write the solution for a multidimensional Markov moment problem, which follows via Theorem
4.15 as well. In the case of S = R} (respectively S = R"), n > 2, the cone #,, consists in all polynomials that
are sums of products of the form:

D1®---®Pn,
(pl ®"'®pn)(t1a~~~,tn) = pl(tl)"' pn(tn)’

where each p;, j = 1,..., n, is a nonnegative polynomial on R, (respectively on R) and hence is expressible
by means of sums of squares of polynomials of one variable. Proceeding this way, some of the conditions
of Theorem 4.15 can be written in terms of quadratic forms.

Corollary 4.17. (See [29], Corollary 3). Let v = vix---x V,, where V; is an M-determinate (moment determi-
nate) positive regular Borel measure on the real line, j=1,...,n, X = LV1 (R™), go).(t) =t teR", jeN",
In addition, assume that v; has finite moments of all orders, j = 1,...,n. Let Y be an order complete Banach
lattice, (y))jen be a given sequence of elements in Y, and T; T, two bounded linear operators from X to'Y.

The following two statements are equivalent.
(a) There exists a unique (bounded) linear operatorT : X — Y, T(goj) =Y, jeN,0<T<T<honX,

T < ITI < I T2l
(b) For any finite subset J, c N"and any {a;;j € Jo} c R, the following implication holds true:
Zajq)i EP = Zaﬂ](q)i) < Za;y]-;
jeh jelo jelo

for any finite subsets Ji ¢ N, k =1,..., n, and any {a;}; ¢ € R, the following inequalities hold true:
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0c Y[ [ ¥ aes - usstio ||

i,j1eh in.jy €Jn
Z z iy 0, = QG Vit |
inj €h In-jn€Jn
< Z Z ailajl ainajn]-‘z(q)il‘Fjl ,,,,, in+jn)
inj el injn €Jn

We recall that a moment problem is called truncated if the interpolation moment conditions (4) are
satisfied only for j = (j,...,j,) € N, ji < d for all k € {1,...,n}, for some fixed natural number d. Therefore,
related problems involve only a finite number of unknowns (or equations, or inequalities). For some results
on truncated moment problem, see [28] Theorems 2.4 and 2.5, and perturbation of the solution in terms
of the perturbations of the moments ([28], p. 35). See also [29] p, 11, Theorem 5 for a polynomial solution,
as well as the references of [29] for other kinds of solutions. On the other hand, moment problems can
be reduced, but not truncated in the sense mentioned earlier. Here is an illustrating example. Let Y = Y(U)
be defined by (8) and B € Y,\{0}. Let X be the vector space of all continuous complex functions defined on
the unit closed polydisk

Di={z=(z,....z0) : lzil <1, i €{l,..,n}k.

The norm on X is defined by ||g |l = sup{|g(2)| : z € D}, g € X. We denote

h(z) = zk - zk k= (k.. k) €N, z € Dy, k| = K + -+ kn.

The next result is using this space Y(U) as the codomain of the involved operators. Let (By)xene be
a multi-indexed sequence of operators in Y = Y(U).

Theorem 4.18. (See [30], Theorem 3.1). Assume that A,..., A, are elements of Y(U) such that there exists
a real number M > 0, with the property

2k 2k,
Al 1 ) An n

B < M2 .. ,
1Bl Kk

n
2
vk € N1, ZAp <I,
p=1

where 1: H — H is the identity operator. Let {g}xext C X be such that 1= g lle = 8(0), Vk € N".
Then, there exists a linear bounded operator T € B(X, Y) such that
T(hy) = By, |k| =1, F(g) = B, Vk € N,

T(h) < 2 + BM'e™)||h|louo, Vh € X, uo = Mel.

In particular, the following evaluation holds: T < 2Me + B.

For this space X the proof from [30], Theorem 3.1, works.

5 On convex operators defined on convex-bounded finite-
dimensional subsets
In [31], we emphasized a property of convex operators defined on convex bounded finite-dimensional

subsets. The codomain was an order complete vector lattice having a strong order unit. This last condition
was removed, without affecting the result of the next theorem.
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Theorem 5.1. (See [31]). Let X be an arbitrary real vector space, B ¢ X be a finite-dimensional convex
bounded subset, Y be an order complete vector lattice, and P : B — Y be a convex operator. Then, there
exists y, € Y such that P(x) =y, for all x € B.

Proof. Since B is finite-dimensional and convezx, its relative interior ri(B) is nonempty. Recall that by ri(B)
one denotes the interior of B with respect to the topology induced on B by that on the (finite-dimensional)
linear variety generated by B. As is well known, P is subdifferentiable at any point of ri(B) (this follows from
Corollary 2.26 stated earlier). Let by € ri(B) and T a translation of a subgradient of P at by, that is an affine
operator T : X — Y such that T(xo) = P(xo) and T(x) < P(x) for all x € B. On the other hand, let xi,..., Xp.1
(at most) p + 1 affine independent points in the linear variety generated by B, such that O

B¢ CO{Xl,...,Xp+1}

(here, p is the linear dimension of the linear variety generated by B). Such a system of points does exist
thanks to the fact that B is finite dimensional and bounded. Now the following relations hold

j=1 j=1

+1 +1 +1
P(x) > T(x) = T[pz ajxj) = pZa,vT(x,-) > (pz aj)inf{T(Xj);l <jsp+1}
j=1

= infilTx);1<j<p+ 1=y,

where x = Zf’jlla]-xj, >0, j=1.,p+1, f’jllaj = 1. This concludes the proof. O
The following question appeared naturally: given a convex subset B with the property stated in the
conclusion of Theorem 5.1, is B necessarily finite dimensional? The answer is affirmative. Namely, using

some results of [1], we prove the following theorem.

Theorem 5.2. (See [31]). Let X be an arbitrary real infinite-dimensional vector space and B c X a convex
subset, such that any convex real function defined on B is bounded below. Then, B is contained in a finite-
dimensional subspace of X and is bounded there.

Proof. Let x* be an arbitrary linear functional in the algebraic dual X* of X. Then, x* and —x* are convex,
and, by hypothesis, both of them are bounded from below on B. Thus, x*(B) is bounded in R. Hence, B is
weakly bounded in X, endowed with the weak topology corresponding to the dual pair (X, X*). Let us endow
X with the finest locally convex topology, which is compatible with this dual pair (the Mackey topology),
which is actually the finest locally convex topology on X. By [1], Chapter IV, Corollary 2, p. 132, we derive
that B is bounded in this topology. Application of [1], exercise 7, Chapter II, p. 69, leads to the fact that
B is contained in a finite-dimensional subspace and bounded there. This concludes the proof. O

Thus, according to the two results of this section mentioned earlier, the property stated in Theorem 5.1
characterizes the finite-dimensional bounded convex subsets of an arbitrary vector space.

6 Conclusion

One of the aims of the present work was to emphasize the relationships between the properties of convex
operators and related properties of linear operators. In Section 1, we state the main purposes of this work
and the corresponding references used or related to it. Section 2 overviewed main Hahn-Banach type
theorems and some of their direct applications. This was done in the general ordered vector setting, as
well as in concrete spaces framework. For example, some of the Hahn-Banach results of Section 2 have been
recently applied to characterizing isotonicity of a convex operator on a convex cone. Also, Theorem 2.38
was applied to prove an unusual sandwich theorem for real functions defined on finite-simplicial sets (see
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Theorem 3.12 of Section 3). Here, the new aspect is that such subsets can be unbounded in any locally
convex topology on the entire space X. A topological version of this kind of sandwich results is Theorem
3.13. Other results of Section 3 concern applications of Krein-Milman theorem to representation theorems
(the notion of the barycenter of a probability measure being the main point). In Section 4, both old and very
recent results on the moment problem are analyzed. One of the main results from this section are Lemmas
4.11 and 4.12 and Theorem 4.13. From the point of view of this last mentioned theorem, we solve the
difficulty created arising from the fact that on R", n > 2, there exist nonnegative polynomials that are
not sums of squares. Instead of looking for the expression of any nonnegative polynomial, we approximate
an arbitrary nonnegative function from LXR™ (where v is as in Lemma 4.12), by sums of squares of
polynomials ¢;®---®¢qy, q; € R[t], i =1,..., n. This result leads to Theorem 4.13, whose statement has
nothing in common with the moment problem. However, Lemma 4.12 was initially proved and applied
to solve a multidimensional Markov moment problem. Moreover, in Theorem 4.15 and its consequences, the
solution T verifies the sandwich condition T; < T < T, on the positive cone of the domain space, where T is
not necessarily the null operator. In particular, this allows the control of the norm of the solution. Finally,
Section 5 detailed a main property of convex operators defined on convex bounded finite-dimensional sets.
This property characterizes such subsets. Going back to Section 2, take note that the general Theorems 2.28
and 2.35 are equivalent. This could be the first time that Theorem 2.35 has been submitted for publication in
English.
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