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Abstract: In this paper, we consider the following quasilinear Schrodinger equation:

A+ V()u + gA(uz)u = Kx)f(u), xecRN,

where N > 3,k > 0, f € C(R, R), V(x) and K(x) are positive continuous potentials. Under given conditions,
by changing variables and truncation argument, the energy of ground state solutions of the Nehari type is
achieved. We also prove the existence of ground state sign-changing solutions for the aforementioned
equation. Our results are the generalization work of M. B. Yang, C. A. Santos, and J. Z. Zhou, Least action
nodal solution for a quasilinear defocusing Schrodinger equation with supercritical nonlinearity, Commun.
Contemp. Math. 21 (2019), no. 5, 1850026, DOI: https://doi.org/10.1142/S0219199718500268.
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1 Introduction

Considering the existence of solitary wave solutions for quasilinear Schrodinger equations of the form

0z = Az + W)z — @(|22)z + §A1(|z|2)1'(|z|2)z, X € RV, (1.1)

wherez : R¥Y x R — C,W : RY — R is a given potential function, , ¢ : R — R are suitable functions and k
is a real constant. For different forms of function /, the quasilinear equation (1.1) can be transformed into
many models to reflect different physical phenomena. For example, when I(s) = 1, equation (1.1) is trans-
formed into the classical stationary semilinear Schrodinger equation; see [1]. Kurihura [2] studied the case
of I(s) = s for the superfluid membrane equation in hydrodynamics.

Set z(t, x) = exp(—iEt)u(x) and I(s) = s in (1.1), where E € R and u is a real function, and equation (1.1)
can be reduced to elliptic equations:

A+ V(x)u + gA(uz)u = KxX)f(u), xecRN, (1.2)

where V(x) = W(x) - E and f: R — R is a new nonlinear term.
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In recent years, many authors studied the existence of positive solutions, ground state solutions and
multiple solutions for quasilinear Schrédinger equations (see [3—-5] and the references therein). Moreover,
many other scholars have been paying attention to the existence of sign-changing solutions for quasilinear
Schrédinger equations. For example, Deng et al. [6] obtained the multiplicity of sign-changing solutions
for quasilinear Schrodinger equations via minimization argument. In [7], Yang et al. proved the existence
of least-energy nodal solutions for quasilinear Schrédinger equations via Nehari manifold. Other results
on sign-changing solutions for Schréodinger equations can be found in [8-11].

In this paper, we consider equation (1.2) with ¥ > 0. We need to deal with the following two problems:

(P,) Owing to the appearance of non-convex term “A(u?)u,” the energy functional of equation (1.2) is given by

Iw = L I (1 - )|VupPdx + - I Voouldx — IK(X)F(u)dx 13)
2 RY 2 RY RY
which may be not well defined in usual Sobolev spaces.

(P,) The unboundedness of the domain RY leads to the lack of compactness. To overcome these diffi-
culties, we will use the main methods of [12-14].

The aim of this paper is to establish the existence of sign-changing solutions and ground state solutions
for the quasilinear Schrédinger equation. As far as we know, the case of the existence of ground state sign-
changing solutions for quasilinear Schrodinger equation with x > 0 is to be less concerned in pervious
studies of quasilinear Schrédinger equation. Now, we assume that the potential V(x), K(x) and nonlinearity
f(t) satisfy the following conditions:

(V) Ve CRN,R) satisfies inf, zvV(x) = Vp > 0, and meas (fx ¢ RN : V(x) < M}) < co for each M > 0,
where Vj is a constant and meas denotes the Lebesgue measure in RV;

(Ky) K € CRY,R) n L2(RN), ﬁ € L°(RM) and K(x) > 0 for all x € RY;

(f) feCR,R)and limt_@@ - 0;

(f5) There exist constants C > 0 and p ¢ (2, 2*) such that |f(t)] < C(1 + |t|P7) for all t € R;

f®)

(f3) There exists p > 1 close to 1 which satisfies p < p — 1 and limm_)mot—p = +00.

To prove our results, we use the variable in [7]. Now, we consider the following elliptic equation:
—div(g2(w)Vu) + gw)g’'W)|Vul? + Veu = K(x)f(u), x € RV, (1.4)

where g : [0, +00) — R is given by

V1 - «ks?, ifOss<L,

1/2
N e )
3
g(s) = iJrL’ ifs> -2 where ¢ = .
KN1-0a2s P JK
g(-s), if s <0,

1
b
[0, +00). The energy functional associated which equation (1.4) is given by

It follows that g € Cl([R, ( , 1]), g is an even function, which increases in (-co, 0) and decreases in

L) = % _[ 22W)|Vup + % j Voou? - j KGOF (). (1.5)
RY RY RY

t
In what follows, let G(t) = Iog(s)ds and we know that inverse function G7(t) exists and it is an odd
function. From the aforementioned variable, by setting u = G''(v), then the energy functional I reduces
to the following functional:

1 1
L) =2 [ 1o + 2 [veole mp - [ KeRG o). 1.6)
RN RY RY
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To simplify the calculations, we rewrite equation (1.2) in the following form:
—Av + V(x)v = KX (x,v), x€RV, 1.7)

and the corresponding energy functional is given as follows:

K = [1ove + 2 [ veowt - [ keoF v, 1.8
RY RY RY

where F(x, v) = '[(:f(x, s)ds with

fGw) Vo, Ve 6w
gGiv) K0 K 86w

To achieve our results, we also need to make the following assumption:

fx,v) = (1.9)

(fa) @ is non-decreasing on R\{0}.

Remark 1.1. The advantage of using this truncation argument is that we can transform the quasilinear
Schrédinger equation into a semilinear case. That is, it makes the calculations easier. When V = K = 1 and
g(t) =1, and

f@) = |t°e.
Obviously, f = f satisfies (f;)—(fs).

Motivated by the aforementioned works, we will consider the following minimization problem:

mg = Vierjl\golx(w and ¢ = Viengolx(vx (1.10)
where
Mo =1{veH:v:#0,Juv),v" = Juv),v") = 0}, (1.11)
and
No={veH:v+0, J.(v),v) =0}, (1.12)

with v* := max{v(x), 0} and v~ := min{v(x), 0}, which play an active role to seek sign-changing solutions
and ground state solutions for problem (1.2).
In the following, let us state our results.

Theorem 1.2. Suppose that (V;), (K;) and (f)-(f,) hold. Then, c, > O is achieved.

Theorem 1.3. Suppose that (), (K;) and (f;)—(fs) hold. Then, there exists k. > O such that for any x € (0, k.],
problem (1.7) has a sign-changing solutionv € M satisfyingmax, x¥|G™(v)| < %such that J(v) = infp, Jx > O,
which has precisely two nodal domains.

Theorem 1.4. Suppose that (V,), (Ky) and (f;)-(f4) hold. Then, problem (1.7) has a solution v € Ny satisfying
max, gv G (V)| < % such that J (V) = infy, ) for k € (0, x.], where k. is given in Theorem 1.3. More-
over, mgy > 2Co.

Remark 1.5. By comparing with [7], we assume the nonlinearities f satisfy (f3) weaker than Ambrosetti-
Rabinowite condition. Furthermore, we seek the sign-changing solutions and ground state solutions of
(1.2) via the non-Nehari method in [15,16]. Consequently, our results can be regarded as the generalization
of [7].
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Throughout this paper, let H = {u ¢ H(R"): _[[RNV(x)uzdx < oo} with the norm |ju|| = ('[RN(|Vu|Z+

1
V(x)uz)dx)z. Moreover, ||, denotes the norm in L'(RV). In most integrals, we omit the symbol “dx” and

C denotes different constants.

2 Preliminaries
In this section, we will give the following two lemmas, which are essential to prove our results.

Lemma 2.1. The functions g and G satisfy:

M limeo™ 2 = 15

: GO _ .
v 11mt—»+oof =p;
3 1< SO < p forallt +0;
2
@ -2 < %g’(t) <0 forallt € R;

t —1
®) G 0) = GI(t) for all t > 0.

Proof. Conclusions (1)-(4) have been proved in [13]. Here, let us prove conclusion (5).

Define m(t) = m — G(t). Then, for t > 0, we have
—1 - CR0)) g' (G
m'(t) = 8(G7®) tg(Gfl(f)) _ 1 __ tg(Gfl(f))
gA(G(t) g(G(t)  gXG(t)

t

m > G_l(t) for all t > 0. O

From (4) of Lemma 2.1, we have m/(¢) > 0. Hence, m(t) > m(0) = 0, i.e.,

Lemma 2.2. Assume that (f})—(f3) hold. Then, the function f (x, t) has the following properties:

(f) f € CRYN x R, R) and limHO@ =0;

(f5) there exist constants C; > 0 and p € (2, 2*) such that |f (x, t)| < Ci(1 + |t|P~)) for all t € R;
X, t)

D) limmﬁmo% = +o00, where p is given by (f3).

Proof. Since f € C(RY x R, R) and functions V, K, g are continuous, f € C(RN x R, R) is obvious. Using (1)
in Lemma 2.1, we have
fx, 0

lim ———< = lim
-0 t -0 g(GI ()t K(x) -0

fGH ) |, Ve (GO \_ o, Ve, 1) _,
(GO Kool 20)

Then, (f;) holds. Next, using (2) in Lemma 2.1 and p € (2, 2*), we have
~ 1 1 p-1 -1
foo _ o fG0) (G (0) CLACI R ( S G—“)) <Cy

lim
t—+co P71 t—+oo (G71(t))P1

t 2(GH(t))  K(x) t=+eo\ tP2  tP2g(G D))t

where C; > 0 is a constant. Hence, |f (x, t)| < C;(1 + |t[P~1), then (f;) holds. Next, by (f3) and (4) and (5) in
Lemma 2.1, we have

fot) f(Gl(t))(Gl(t))" 1 VW Hm( 1L __G'® ):m,

t ) g(Gt) KX) it—roo\ tPT

lim
(- ((C ()

|t|—+0c0 tP |t|—=+0co (G—l(t))ﬁ

and thus, (f) holds. O
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3 Proof of Theorem 1.2

In this section, we will give the proof of Theorem 1.2. First, we recall the following using lemma, which was
proved in [15].

Lemma 3.1. [15] Suppose that (V;), (K), (f})-(f) and (f,) hold. Then, for 8, € (0, 1), we have that

K(x) pl 1Tf(X,T)—F(X,T) +w2>0 xeRY, 7 eR. (3.1)
+

2Ap +

Now, with the help of the aforementioned lemma, we prove Theorem 1.2.

Proof of Theorem 1.2. According to Lemma 4.4 in [15], we know that Ny # &. For any v € N, from the
definition of N, and (3.1), we have

RV = ) - %Ué(vm )

-1 1 - ~

Z(p 1) j [Vv (p V(X)|V|2 J;{K(X)[ﬁf x, v)v - F(x, v)]}

(p - D( - 6o) ) (0 - DIV (3.2)

p-Dd-%) . 1 5 = (P - DIV |
> 0D lIvil® + J;{K(x)[p " 1f(x, v)v - F(x, v)] + 01D vl }

R
2w IvIP.
(p+1

Since 6y € (0, 1), then (3.2) shows that J,(v) is bounded from below on N;. Thus, ¢y > 0 is well defined.
Let {v,} ¢ H satisfy J,(v,) — ¢ and ||[J,(v)||(1 + |[vall) — 0 asn — +oo, where ¢ € (0, ¢o]. Then, we have
Jc() = ¢ + 0p(1) and {J.(vy), V) = 0,(1). From the aforementioned two equalities and (3.2), we have

(p - DA - 6o)
2 +1)

which shows that {v,} is bounded in H.

By the arguments similar to Lemma 2.4 in [8] and Lemma 2.8 in [16], we show that there exists
a v, € H\{0} such that v, — v, in H and J.(v) = 0. Hence, v, € Nj is a nontrivial solution of (1.7) and
Jc(Vi) = co. By (3.1), the weak semicontinuity of norm and Fatou’s lemma, we have

Ivall> < ¢ + on(D), (3.3)

Co=2C= lim []K(Vn) - L<];:(Vn)a Vn>]
n—oo p+ 1

= lim | 0= Il + j K(X)(—f(x v - F(x vn))
zliﬂg}f .- j Wy 1)(1 90) IV(X)lvnlz

+ lim inf J:V[K(x) %f(x, Vo)V — F(x, Vn)) + X+
R

p-1 (p = 1A - 6o)
230+ mez s LV(X)W
R R

+ —|‘
[RN

(p - DBV () w]

1= ~
K(x)(;f (%, vow - F(x, VK)) + oD

(b - DBV () w]
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p-1 " 1 = =
oo P+ j K(x)(—p T wom - Flx, v,())
R
= ]K(VK) - LU;L(VK), VK> = ]K(VK)'
p+1

Hence, we have J,(v) < ¢o, and so, () = co = infy, Jc > 0. The proof is completed. O

4 The proof of Theorems 1.3 and 1.4

Under the assumptions (V;), (K), (i)-(£) and (f,), according to the process of proof in [15,16], we have
the following two theorems.

Theorem 4.1. Suppose that (), (Ky), (f})—(f5) and (f,) hold. Then, problem (1.7) has a sign-changing solution
v € My such that J,(v) = infy, Jc > O, which has precisely two nodal domains.

Theorem 4.2. Suppose that (1), (Ky), (E)—(E) and (f3) hold. Then, problem (1.7) has a solution v € Ny such
that ] (V) = infx, J.. Moreover, mg > 2co.

By the truncation argument in Section 1, we know that if the solution vy of equation (1.7) satisfies
[Uoleo = 1G7I(Vo)leo < %, then ug is a sign-changing solution or ground state solution of original equation
(1.2). Next, we present the following two lemmas.

Lemma 4.3. If v is a critical point of ], then there exists a constant C independent of k such that ||v|| < C.
Proof. The proof is similar to Theorem 1.2, and so we omit it. O

Lemma 4.4. Let v be a solution of equation (1.7), then there exists a constant C* > 0 independent of k such
that |v|s, < C*.

Proof. For each m ¢ N and B > 1, set Ay = {x € R : [v|’-! < m} and B,, = RN\ A,,. Define the following
two sequences:

v vPED in Ay, v|v[f! in A,
Vn=1 ] and wy = .
mey in By, my in By,.

Observe that vy, Wi, € H, [V < [VI#! and W = vy, < |[vI#. By direct calculation, we have

28 - D|VPE-VVy in Ap, B-1yy i
Vi, = (2 - Dv| voindn, d vw, = B |vF-1vv TnAm,
m2vy in By, mvv in By,
Besides this, we have
IVvva =(2B-1) I [VPB-D|vy? + mzj [Vv[2, @1
RN Ap By,
and
| avwal w9 = g - 12 [ e e 42
N

R Am
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Taking vy, as a text function, from (4.1) and (4.2), we obtain

—-1)? ~
[rown | Coiaf [wvu < g2 [ 19vvm + Vool = B [ K0T v 43)
RY -1 RY RY RY
From (K;), Lemmas 2.1 and 2.2 and the fact that w? = v, there exists a constant C > 0 such that
F 6 V)i < C1winl? + VP2 Wi ). (4.4)
By (4.3)—(4.4), Sobolev inequality and Holder inequality, sincerll + pz—:2 = 1, we have

2
>

* _ -2
j|wm|2 <s? j Vil | < 5282 j (Wl + VIP2W2) < CSB2(Winl2 + IVIZ2 w3,
Ap, RN RY

where S > 0 is the best Sobolev constant. According to the definition of wy,,, and then, letting m — +oo
in the aforementioned inequality, we have

VIE. < GBI, + VI 2 VI35, (4.5)
By interpolation inequality, we obtain
Vg2 < V5 Vg5 (4.6)
where ¢ € (0, 1) satisfies i —£ + 217 that is, & = ﬁ L
In particular, by (4.6), we have

Vi < WP <+ vhIv, (4.7)

because 28(1 - &) =2 + 2(1 ﬁ) < 2. By (4.5) and (4.7), we have
Vi < czﬁz (1 + VR2IVERE + VI 2 vEs, | < 268201 + VB + v DlvEhr, (4.8)
where 1 € {1, é}. By (4.8), one has
Vigzr < CRBYR(L + [vl5 + VB )Y |vi3g,. (4.9)
Taking o = 2271 > 1 and setting = o in (4.9), we get
Ve < CY209(1 + IV + VB )20V, (4.10)
where 7 € {1, ¢} and ¢, = % Next, taking B = 02 in (4.9), we have

Vg < CY2°029°(1 + |V + VB2V |2, (4.11)

where 1, € {1, &} and &, = zzzrr‘"rll Now taking B = o/ for j € N, we proceed the j times iterations and by
-
combining (4.10) and (4.11), we deduce that

© 1§ ®© 1 )
Wiy < CLitaio2in (1 + VB + VB2 25 i |y[T2T, (4.12)

where 7 € {1, &} and ¢ = (”1 " . Next, we estimate the right side in (4.12). At this point, we analyze two
cases: |[v|y = 1or |v|» < 1.

27 < |v]y due to i ... T < 1. Hence, we have

Case 1: If [v|; = 1, then we have ||,
Vlpiy < Cxovoev*(1 + VB + [VIED)es|vly, Vi € N.
Letting j — +oco in the last inequality, we have

a
Vleo < Coonowv?(1 + V3 + |v|§‘2)z(a1—1>|v|2*. (4.13)
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Case 2: If |v

» <1, then for any j € N, we have that 0 < §¢,... § < 7n ... ;< 1, and

j j
Y Ing < Y Ing = In(zs; ... 1) < 0,
k=1 k=1

oln—n n-1 s
where {] = ﬁ =1- aflrl—l <1, 15={1,§}. By In(1-5)> T for all s € (0, 1), we have

J J n-1 n-1& 1
kz_:llnszzm(l—l )2-1 zok—r

k _
k=1 no 1 n k=1

n

Setting v == Zilﬁ, by (4.14) and the last inequality, we get In(7i1, ... 1) > -

n
then we have w < O; hence, 11, ... 7 > exp(w), Vj € N,

According to [v]y < 1, we have that [v[i* % < [v|SP®), By (4.12), we get that

Wi,y < Ciongwn? 2 L P D) [VER@ v
oz < Con0 v’ (1 + |vf3 + V5 )xed|v[2P, V) e N,

Letting j — +o0 in the aforementioned inequality, we have

10 2 p-2y- 1 exp(w)
Vleo < Cono@-?(1 + [V[; + [V )2on|v 5P,

Combining (4.13) and (4.15), we have
Voo < Ciava@n?(1 + [V + VIZ2se0 ][5,
where ¢ = 1 or ¢ = exp(w). From Lemma 4.3 and H — LS(RY) for s € [2, 2*], we have
Voo < Coom002(1 + VIR + [VIP-2)n vl < C,

where C* is a real constant independent of k > 0.

_llv, and setting w =

(4.14)

n-1

1%
no

(4.15)

O

Proof of Theorems 1.3 and 1.4. Combining Theorem 4.1 and Lemma 4.4, we deduce that the solution v

of (1.7) satisfying |v|., < C.. Hence, there exists 1g > 0 such that
o
G Wloo < P Voo < N vk € (0, xi].
Similarly, combining Theorem 4.2 and Lemma 4.4, there exists 1, > O such that
_ _ o
G Mloo < P V]eo < Nk vk € (0, K].
Choosing x, < min{x, 1}, since x € (0, k], we have

-1 9 -1y 9
G (Voo < NG and |GVl < N

Therefore, u = G'1(v) is a sign-changing solution and &t = G™(¥) is a ground state solution of equation (1.2).

Therefore, Theorems 1.3 and 1.4 are completed.

O
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