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Abstract: In this paper, we introduce generalizations of rising factorials and falling factorials, respectively,
and study their relations with the well-known Stirling numbers, Lah numbers, and so on. The first stage is
to define poly-falling factorial sequences in terms of the polyexponential functions, reducing them to falling
factorials if =k 1, necessitating a demonstration of the relations: between poly-falling factorial sequences
and the Stirling numbers of the first and second kind, respectively; between poly-falling factorial sequences
and the poly-Bell polynomials; between poly-falling factorial sequences and the poly-Bernoulli numbers;
between poly-falling factorial sequences and poly-Genocchi numbers; and recurrence formula of these
sequences. The later part of the paper deals with poly-rising factorial sequences in terms of the polyexpo-
nential functions, reducing them to rising factorial if =k 1. We study some relations: between poly-falling
factorial sequences and poly-rising factorial sequences; between poly-rising factorial sequences and the
Stirling numbers of the first kind and the power of x; and between poly-rising factorial sequences and Lah
numbers and the poly-falling factorial sequences. We also derive recurrence formula of these sequences
and reciprocal formula of the poly-falling factorial sequences.

Keywords: falling factorials, rising factorials, modified polyexponential functions, Stirling numbers of
the first and second kind, poly-Bernoulli polynomials, poly-Genocchi polynomials
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1 Introduction

In the study of falling factorials and rising factorials, the following properties produce important charac-
teristics for special numbers such as Stirling numbers and Lah numbers: the nth falling factorial of x is
expressed in terms of the Stirling numbers of the first kind and the power of x; the nth power of x is
expressed in terms of the Stirling numbers of the second kind ( )S n l,2 ; the falling factorials of x; the nth
rising factorial of x is expressed in terms of Lah numbers and falling factorials; and the nth falling factorial
of x can also be expressed in terms of Lah numbers and rising factorials [1–10]. Kim and Kim [11] introduced
the polyexponential functions in the view of an inverse to the polylogarithm functions which were first
studied by Hardy [12]. Many mathematicians have studied about “poly” for special polynomials and
numbers arising from the polyexponential functions or the polylogarithm functions [4,8,10,13–16]. Recently,
the degenerate poly-Bell polynomials and the degenerate poly-Lah-Bell polynomials derived from the
degenerate polyexponential functions were introduced in [17,18], respectively. In addition, it is briefly
mentioned that the degenerate Daehee numbers of order k expressed the degenerate polyexponential
functions in [19]. In this paper, we intend to study the above-mentioned properties by generalizing falling
factorials and rising factorials, respectively, using the polyexponential functions. In Section 2, we define



* Corresponding author: Hye Kyung Kim, Department of Mathematics Education, Daegu Catholic University, Gyeongsan 38430,
Republic of Korea, e-mail: hkkim@cu.ac.kr

Open Mathematics 2021; 19: 1620–1635

Open Access. © 2021 Hye Kyung Kim, published by De Gruyter. This work is licensed under the Creative Commons Attribution
4.0 International License.

https://doi.org/10.1515/math-2021-0128
mailto:hkkim@cu.ac.kr


poly-falling factorial sequences arising from the polyexponential functions, reducing them to falling fac-
torial if =k 1. We demonstrate the relations: between poly-falling factorial sequences and the Stirling
numbers of the first and second kind, respectively; between poly-falling factorial sequences and the
poly-Bell polynomials; between poly-falling factorial sequences and the poly-Bernoulli numbers; between
poly-falling factorial sequences and poly-Genocchi numbers; and recurrence formula of these sequences.
In Section 3, we introduce poly-rising factorial sequences arising from the polyexponential functions,
reducing them to rising factorial if =k 1. To elaborate, we analyze the relationships: between poly-falling
factorial sequences and poly-rising factorial sequences; between poly-rising factorial sequences of x and
the Stirling numbers of the first kind and the power of x; between poly-rising factorial sequences and
Lah numbers the poly-falling factorial sequences; recurrence formula of these sequences; and reciprocal
formula of the poly-falling factorial sequences.

First, definitions and preliminary properties required in this paper are introduced.

For �∈x , the falling factorials ( )x n are defined by

( ) ( )( ) ( ) ( ) ( )= − − ⋯ − + ≥ =x x x x x n n x1 2 1 , 1 and 1n 0 (1)

(see [1,2,7,20–22]).
For �∈x , the rising factorials ⟨ ⟩x n are defined by

( )( ) ( ) ( )⟨ ⟩ = + + ⋯ + − ≥ ⟨ ⟩ =x x x x x n n x1 2 1 , 1 , and 1n 0 (2)

(see [2,5,6,20–22]).
It is well-known that for ∣ ∣ <t 1,
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(see [2,17,18]).
For ≥n 0, the Stirling numbers of the first kind ( )S n l,1 are the coefficients of xl in
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(see [2,9,22]).
From (4), it is easy to see that
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(see [2,9,22]).
In the inverse expression to (4), for ≥n 0, the nth power of x can be expressed in terms of the Stirling

numbers of the second kind ( )S n l,2 as follows:
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(see [2,7,21,22]).
From (6), it is easy to see that for ∣ ∣ <t 1,
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(see [2,7,9,22]).
The Bell polynomials ( ) ( )= ∑

=

x S n k xbel ,n k
n n

0 2 are natural extensions of the Bell numbers which are
the number of ways to partition a set with n elements into nonempty subsets. It is well known that the
generating function of the Bell polynomials is given by
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(see [2,3,10,23,24]).
The unsigned Lah number ( )L n j, counts the number of ways a set of n elements can be partitioned into

j nonempty linearly ordered subsets and has an explicit formula
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(see [2,5,6,8,18,25,26]).
From (1), the generating function of ( )L n k, is given by
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(see [2,5,6,8,25,26]).
We observe that
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On the other hand, we get
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From (10) and (11), we have
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(see [2,5]). Replacing x by −x, we get easily
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(see [5,6]).
Kim and Kim introduced the modified polyexponential functions as
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(see [11]). When =k 1, we see that ( ) = −x eEi 1x
1 .

The poly-Bernoulli polynomials are defined by
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(see [14,16]). When =x 0, ( )( ) ( )
=B B 0n

k
n

k , which are called the poly-Bernoulli numbers [14,16].
Since ( ( ))+ =t tEi log 11 , ( )( )B xn

1 are the Bernoulli polynomials [1,5,13,19,22].
The poly-Genocchi polynomials are given by
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(see [27]), and ( )( )
=G x 0k

0 . When =x 0, ( )( ) ( )
=G G 0n

k
n

k , which are called the poly-Genocchi numbers.

When =k 1, ( )( )G xn
1 are the Genocchi polynomials [4,27–29].
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We introduced the poly-Bell polynomials by
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When =k 1, from (17), we note that
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Combining (17) with (18), we have the Bell polynomials

( ) ( )( )
=x xbel beln n
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(see [2,3,22]).
As the multivariate version of the Stirling numbers ( )S n k, of the second kind, the generation function

of the incomplete Bell polynomials ( )…
− +

B x x x, , ,n k n k, 1 2 1 is given by

⎜ ⎟
⎛

⎝

⎞

⎠

( )∑ ∑

! !

= …

!

=

∞

=

∞

− +k
x t

h
B α α α t

n
1 , , ,

h
h

h k

n k
n k n k

n

1
, 1 2 1 (19)

(see [2,23,25,30]).
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(see [2,23,25,31]), where the sumover all nonnegative integers …h h h, , , n1 2 satisfying + + ⋯+ =
− +

h h h kn k1 2 1
and ( )+ + ⋯+ − + =

− +
h h n k h n2 1 .n k1 2 1

2 Poly-falling factorial sequences

In this section, we define the poly-falling factorial sequences by using the polyexponential functions.
We also give some relations between them and special numbers, and derive recurrence formula of these
sequences.

For � { }∈ ∪n 0 and �∈x , we consider the poly-falling factorial sequences ( )( )x n
k , which are arising

from the polyexponential functions to be
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Proof. First, from (5), (14), and (21), we observe that
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By comparing the coefficients of both sides of (23), we get the desired result. □

Theorem 2. For �∈n , �∈k , and �∈x , we have
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On the other hand, from (7), the right-hand side of (21) is
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Combining (24) with (25), we have the desired result. □

In Theorems 1 and 2, when =k 1, we note that
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Theorem 3. For �∈n , �∈k , and �∈x , we have
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By comparing the coefficients of (17) and (26), for ≥n 1 we get
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Combining (21) with (32), for ≥n 1, we have the desired result. □
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Theorem 5. For �∈n and �∈k , we have
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( ) ( ) (( ) ( )( ) )

⎞

⎠
⎟

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

!

= + +

!

=

−

!

+

−

!

= − − !

! !

+ − − !

! !

= − − !

!

+ − − ! −

!

= − + − − ! + −

!

=

∞

−

=

∞

+

=

∞
+

=

∞

+

=

∞
+

=

∞

+

+

=

∞

+

=

∞

+

=

∞

+

=

∞

=

∞

=

+

− +

=

∞

=

+

−

=

∞

=

+

− + −

x t
n

t t x t
m

j
t x t

m j
t x t

m

j t
j

x t
m

j t
j

x m t
m

n
j

j x t
n

n
j

j n j x t
n

x n
j

j x n j x t
n

1 log 1

1 1

1 1 1 1

1 1 1 1

1 1 .

n
n
k

n

m
m
k

m

j

j
j

m
m
k

m

j

j
j

m
m
k

m

j

j
j

m
m
k

m

j

j
j

m
m
k

m

n j

n
j

n j
k

n

n j

n
j

n j
k

n

k

n j

n
j

n j
k

n j
k

n

1

1

0
1

1

1

0
1

1

1

0
1

1

1

1

0
1

1

1

1

1 1

1
1

2 1

1

1
2 1

1
1

(35)

By comparing the coefficients of both sides of (35), we get the desired result. □

Theorem 6. For �∈n and �∈k , we have

( ) ⎛
⎝

⎞
⎠

( ) ( )
∑=

=

n
m

B1 ,n
k

m

n

m
k

0

where ( )Bn
k are the poly-Bernoulli numbers.

Proof. From (15), we get

⎜ ⎟( ( )) ( )
⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠

( ) ( ) ( )
∑ ∑ ∑ ∑ ∑+ = −

!

=

! !

=

!

=

∞

=

∞

=

∞

=

∞

=

t e B t
m

t
j

B t
m

n
m

B t
n

Ei log 1 1 .k
t

m
m

k
m

j

j

m
m

k
m

n m

n

m
k

n

0 1 0 1 0
(36)
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On the other hand, when =x 1 in (21), we observe that

( ( )) ( ) ( )( ) ( )
∑ ∑+ + =

!

= +

!

=

∞

=

∞

t t
n

t
n

1 Ei log 1 1 1 1 .k
n

n
k

n

n
n
k

n

0 1
(37)

By (36) and (37), for ≥n 1, we attain the desired result. □

Corollary 7. For �∈n and �∈k , we have

( ) ( )( ) ( ) ( )
= −B B1 1 .n

k
n

k
n

k

Proof. From (15), we observe that

⎜ ⎟( )
( ( )) ⎛

⎝

⎞

⎠

( ) ( ) ( )
∑ ∑ ∑ ∑ ∑

!

=

+

+

=

! !

=

!

=

∞

=

∞

=

∞

=

∞

=

−B x t
n

t
e

e B t
j

x t
m

n
j

B x t
n

2Ei log 1
1

.
n

n
k

n
k

t
xt

j
j
k

j

m

m
m

n j

n

j
k n j

n

0 0 0 0 0
(38)

By comparing the coefficients of both sides of (38), we get

⎜ ⎟( ) ⎛

⎝

⎞

⎠

( ) ( )
∑=

=

−B x n
j

x B .n
k

j

n
n j

j
k

0
(39)

From (15) and (39), we have

⎜ ⎟ ⎜ ⎟( ( )) ( )
⎛

⎝

⎞

⎠

⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠

( ( ) )( ) ( ) ( ) ( ) ( )
∑ ∑ ∑ ∑+ = −

!

= −

!

= −

!

=

∞

=

∞

= =

∞

t e B t
d

n
d

B B t
n

B B t
n

Ei log 1 1 1 .k
t

d
d

k
d

n d

n

d
k

n
k

n

n
n

k
n

k
n

0 0 0 1
(40)

Combining (37) with (40), we have the desired result. □

Theorem 8. For �∈n and �∈k , we have

⎜ ⎟( )
⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠

( ) ( ) ( )
∑= +

=

− n
d

G G1 1
2

2 ,n
k

d

n

d
k

n
k

1

1

where ( )Gd
k are the poly-Genocchi numbers.

Proof. By (16) and ( )
=G 0k

0 , we observe that

⎜ ⎟

⎜ ⎟

⎜ ⎟

( ( )) ( )
⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎛
⎝

⎞
⎠

⎞

⎠

( )

( ) ( )

( ) ( )

( ) ( )

∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

+ = +

!

=

! !

+

!

=

!

+

!

= +

!

=

∞

=

∞

=

∞

=

∞

=

∞

= =

∞

=

∞

=

−

t e G t
d

t
j

G t
d

G t
d

n
d

G t
n

G t
n

n
d

G G t
n

2Ei log 1 1

2 .

k
t

d
d

k
d

j

j

d
d

k
d

d
d

k
d

n d

n

d
k

n

n
n

k
n

n d

n

d
k

n
k

n

0

0 0 0

1 0 1

1 1

1

(41)

From (37) and (41), we get what we want. □

3 Poly-rising factorial sequences

In this section, we define poly-rising factorial sequences by using the polyexponential functions and
give relations between poly-falling factorial sequences and poly-rising factorial sequences, and special

Poly-falling factorial sequences and poly-rising factorial sequences  1627



numbers. We also study recurrence formula of these sequences and a reciprocal formula of the poly-falling
factorial sequences.

Now, we consider the poly-rising factorial sequences ( )
⟨ ⟩x n

k , which are arising from the polyexponential
functions to be

( ( )) ( ∣ ∣ )( ) ( )
∑+ − − = ⟨ ⟩

!

⟨ ⟩ = ≠ <

=

∞

x t x t
n

x x t1 Ei log 1 and 1 0, 1 .k
n

n
k

n
k

0
0 (42)

When =k 1, since ( ) = −x eEi 1x
1 , we note that

( ( ))
( ( ))

( )( )
∑ ∑+ − − = +

− +

!

= = − = ⟨ ⟩

!

=

∞

− − −

=

∞

x t x t
n

e t x t
n

1 Ei log 1 1 log 1 1 .
n

n
x t x

n
n

n
1

1

log 1

0
(43)

Therefore, we have ( )
⟨ ⟩ = ⟨ ⟩x xn n

1 .

Theorem 9. For � { }∈ ∪n 0 and �∈k

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
⟨ ⟩ = − − = − ⟨− ⟩x x and x x1 1 .n

k n
n
k

n
k n

n
k

Proof. From (21) and (42), we observe that

( ( ))

( ( ( )))

( )

( )
( )

( ) ( )

( )

( )

( )

∑

∑

∑

∑

⟨ ⟩

!

= + − −

= +

− + −

− !

= −

−

!

= − −

!

=

∞

=

∞

=

∞

=

∞

x t
n

x t

x t
n n

x t
n

x t
n

1 Ei log 1

1 log 1
1

1

1

n
n
k

n
k

n

n

k

n
n
k

n n

n

n
n
k

n

0

1

0

0

(44)

and

( ) ( ( ))

( ( ) ( ( )))

( )

( )

( )

( )

( )

( )

∑

∑

∑

∑

!

= + +

= +

− − − −

− !

= ⟨− ⟩

−

!

= − ⟨− ⟩

!

=

∞

=

∞

=

∞

=

∞

x t
n

x t

x t
n n

x t
n

x t
n

1 Ei log 1

1 log 1
1

1

1 .

n
n
k

n
k

n

n

k

n
n
k

n n

n

n
n
k

n

0

1

0

0

(45)

By comparing the coefficients of both sides of (44) and (45), respectively, we have the desired result.
□

When =k 1, we note that ( ) ( )⟨ ⟩ = − −x x1 .n
n

n

From Theorems 6, 7, 8, and 9, we observe the following identities, respectively.

Corollary 10. For �∈n and �∈k , we have
(1)

( ) ⎛
⎝

⎞
⎠

( ) ( )
∑⟨− ⟩ = −

=

n
m

B1 1 ,n
k

m

n
n

m
k

0
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(2)

( ) ( ( ) )( ) ( ) ( )
⟨− ⟩ = − −B B1 1 1 ,n

k n
n

k
n

k

(3)

⎜ ⎟( ) ⎛

⎝

⎞

⎠

( ) ( ) ( )

( )
⟨− ⟩ = − ∑ +

=

−

G G1 1
2

1 2 ,n
k n

d

n

d
n

d
k

n
k

1

1

where ( )Bn
k are poly-Bernoulli numbers and ( )Gn

k are poly-Genocchi numbers.

Next two theorems are relations of poly-rising factorial sequences and powers of x.

Theorem 11. For �∈n and �∈k , we have

( )
( )( )

∑⟨ ⟩ =

−

=

+

−

x
d

S n d x1 , .n
k

d

n n d

k
d

1
1 1

Proof. First, from (5) and (14), we observe that

⎜ ⎟

( ( ))
( ) ( ( ))

( )

( )
( ( ))

( )
( )

( )

⎛

⎝

( )
( )

⎞

⎠

∑

∑

∑ ∑

∑ ∑

+ − − = +

− −

− !

= +

−

!

−

= +

− −

!

= +

−

!

=

∞

=

∞

−

=

∞

−

=

∞

=

∞

=

+

−

x t x t
d d
x

d d
t

x
d

S n d t
n

d
S n d x t

n

1 Ei log 1 1 1 log 1
1

1 1 1 log 1

1 1 , 1

1 1 , .

k
d

d d d

k

d

d d

k
d

d

d d

k
n d

n n

n d

n n d

k
d

n

1

1
1

1
1 1

1 1
1 1

(46)

Combining (42) with (46), we get what we want. □

Theorem 12. For �∈n and �∈k , we have

( ) ( ) ( )
∑ − ⟨ ⟩ =

−

=

+n S n d x x1 , .k

d

n
n d

d
k n1

0
2

Proof. Substituting t by −

−e1 t in (42), the left-hand side of (42) is

( )
( )

( )
∑ ∑+ = +

− !

= +

!

=

∞

=

∞

−

xt xt
n n

x
n

t
n

1 Ei 1
1

1 .k
n

n

k
n

n

k

n

1 1
1 (47)

On the other hand, from (7), the right-hand side (42) is

⎜ ⎟

( )
( ) ( )

( ) ⎛

⎝

( ) ( )
⎞

⎠

( ) ( ) ( )
∑ ∑ ∑ ∑ ∑⟨ ⟩

−

!

= − ⟨ ⟩

−

!

= + − ⟨ ⟩

!

=

∞
−

=

∞

=

∞

=

∞

=

+x e
d

x S n d t
n

S n d x t
n

1 1 , 1 1 1 , .
d

d
k

t d

d

d
d
k

n d

n n

n d

n
n d

d
k

n

0 0
2

1 0
2 (48)

From (47) and (48), we attain the desired result. □

To prove the next theorem, we observe that

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( )
( ( )) ⎛

⎝

( ) ( )
⎞

⎠

( )
∑ ∑ ∑

−

= − = = −

−

!

= −

!

− − −

=

∞

=

∞

=

+

t
t e x t

d
S n d x t

n
1

1
1 1 log 1 1 , .

x
x x t

d

d d
d

n d

n
n d d

n
log 1

0 0 0
1 (49)

Poly-falling factorial sequences and poly-rising factorial sequences  1629



From (10) and (49), we obtain

( )( ) ( ) ( )∑ ∑= −

= =

+L n j x S n d x, 1 , .
j

n

j
d

n
n d d

0 0
1 (50)

From (6) and (50), we note that

( )( ) ( ) ( )

( ) ( ) ( )( )

⎛

⎝
⎜

( ) ( ) ( )
⎞

⎠
⎟

( )

∑ ∑

∑ ∑

∑ ∑

= −

= −

= −

= =

+

=

+

=

= =

+

L n j x S n d x

S n d S d j x

S n d S d j x

, 1 ,

1 , ,

1 , , .

j

n

j
d

n
n d d

d

n
n d

j

d

j

j

n

d j

n
n d

j

0 0
1

0
1

0
2

0
1 2

(51)

By comparing the coefficients of both sides of (51), we obtain

( ) ( ) ( ) ( )∑= −

=

+L n j S n d S d j, 1 , , .
d j

n
n d

1 2 (52)

Theorem 13. For �∈n and �∈k , we have

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )
∑ ∑= − ⟨ ⟩ ⟨ ⟩ =

=

−

=

x L n v x and x L n v x1 , , .n
k

v

n
v n

v
k

n
k

v

n

v
k

0 0

Proof. By (52), Theorems 1 and 12, we obtain

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

∑

∑ ∑

∑ ∑

∑

=

= − ⟨ ⟩

= − − ⟨ ⟩

= − ⟨ ⟩

=

−

=

−

=

− +

= =

− +

=

−

x
d

S n d x

d
S n d d S d v x

S n d S d v x

L n v x

1 ,

1 , 1 ,

1 1 , ,

1 , .

n
k

d

n

k
d

d

n

k
v

d
k v d

v
k

v

n

d

n
v n n d

v
k

v

n
v n

v
k

1
1 1

1
1 1

0

1
2

1 1
1 2

1

(53)

By ≥n 1, ( ) =L n, 0 0, and (53), we obtain

( ) ( ) ( )( ) ( )
∑= − ⟨ ⟩

=

−x L n v x1 , .n
k

v

n
v n

v
k

0
(54)

Thus, substituting x by −x in (54) and by using Theorem 9, we arrive at the result. □

In Theorem 13, when =k 1, we note that

( ) ( ) ( ) ( )( )∑ ∑= − ⟨ ⟩ ⟨ ⟩ =

=

−

=

x L n v x x L n v x1 , and , .n
v

n
v n

v n
v

n

v
0 0

Theorem 14. For �∈n and �∈k , we have

( ) ( )
⟨ ⟩ = −⟨ ⟩

−x xk k
1

1
1
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and

⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( ( ) ) ( )( ) ( ) ( )

∑⟨ ⟩ = − ! ⟨ ⟩ − − ⟨ ⟩ ≥

−

=

− + −

x n
j

j x n j x n1 2 .n
k

j

n

n j
k

n j
k1

1
1

Proof. Differentiating with respect to t in (42), the left-hand side of (42) is

( ( ( )))
( ) ( ( ))

( )

( ) ( )

( ( ))

( )

( ) ( )
( ( ))

( ) ( )

( )

∑

∑

∑

∂

∂

+ − − =

− −

− !

−

−

=

− −

− −

− !

=

− −

− −

=

− −

⟨ ⟩

!

=

∞
−

−

=

∞

−

−

=

∞

−

t
x t x t

n n t

t t
x t
n n

t t
x t

t t
x t

n

1 Ei log 1 log 1
1

1
1

1
1 log 1

log 1
1

1
1 log 1

Ei log 1

1
1 log 1

.

k
n

n n

k

n

n

k

k

n
n
k

n

1

1

1

1
1

1

1

1

(55)

On the other hand, the right-hand side of (42) is

⎜ ⎟
⎛

⎝

⎞

⎠
( )

( ) ( ) ( )
∑ ∑ ∑

∂

∂

⟨ ⟩

!

= ⟨ ⟩

− !

= ⟨ ⟩

!

=

∞

=

∞
−

=

∞

+t
x t

n
x t

n
x t

n1
.

n
n
k

n

n
n
k

n

n
n
k

n

0 1

1

0
1 (56)

By (56) and (57), we obtain

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
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( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎜
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⎜
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⎜
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⎠
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⎜
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⎠
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⎠
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⎜
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⎠
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∞
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∞
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∞
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∞
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∞
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j
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j
j

t
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n
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n
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n
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n
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n
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1
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By comparing the coefficients of both sides of (58), we get what we want. □

Now, we consider the reciprocal of the poly-falling factorial sequences given by

( ( ))
( )( )

∑

+ +

=

!

=

∞

x t
R x t

n
1

1 Ei log 1
.

k n
n

k
n

0
(58)

In (59), when =k 1, by (1), (2), (11), and (12), we observe that
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From (59), we obtain
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To give an explicit reciprocal formula of power series of the poly-falling factorial sequence ( )( )x n
k ,

when =k 1, we get the following theorem.

Theorem 15. Assume that
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The following theorem can be obtained simply by using Theorem 5 of [23].

Theorem 16. Assume that
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Proof. We observe that
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From (61), we have
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From (62), we obtain
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When =n 1, we have
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When =n 2, we obtain
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On the other hand, from (19), we observe that
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By (66), we have
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From (65) and (67), we obtain
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When =n 3,
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On the other hand, from (19), we observe that
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By (70), we have
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From (69) and (71), we obtain
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Continuing this process, we have
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By comparing (20), (73), and Theorem 1, we obtain the desired result. □

4 Conclusion

To conclude, note that in Section 2 we introduced poly-falling factorial sequences in terms of the poly-
exponential functions, reducing them to rising factorial if =k 1. We demonstrated the following: the nth
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poly-falling factorial sequences of x were expressed in terms of the Stirling numbers of the first kind and the
power of x; the nth power of x were expressed in terms of the Stirling numbers of the second kind and poly-
falling factorial sequences of x; the poly-Bell polynomials were represented in terms of the poly-falling
factorial sequences; the poly-falling poly-falling factorial sequences were represented in terms of the poly-
Bell polynomials; recurrence formula; and the poly-falling factorial sequences were expressed in terms of
the poly-Bernoulli numbers and poly-Genocchi numbers, respectively. In addition, in Section 3 we intro-
duced poly-rising factorial sequences in terms of the polyexponential functions, reducing them to rising
factorial if =k 1. Thus, these relations between poly-falling factorial sequences and poly-rising factorial
sequences were expressed as: the nth poly-rising factorial sequences of x were expressed in terms of the
Stirling numbers of the first kind and the power of x; the nth power of x were expressed in terms of the
Stirling numbers of the second kind and poly-rising factorial sequences; the poly-falling factorial sequences
are represented in terms of Lah numbers and the poly-rising factorial sequences; the poly-rising factorial
sequences were represented in terms of Lah numbers and the poly-falling factorial sequences; a recurrence
formula; and a reciprocal formula of the poly-falling factorial sequences.

In conclusion, in [8], one of the generalizations of Lah numbers, multi-Lah number was studied using
the polylogarithms. From a similar point of view, we may generalize the results of the poly-falling factorial
sequences and the poly-rising factorial sequences, respectively. There are various methods for studying
special polynomials and numbers, including generating functions, combinatorial methods, umbral cal-
culus, differential equations, and probability theory. The next academic project for our continuing research
would be to examine the application of “poly” versions of certain special polynomials and numbers in the
domains of physics, science, and engineering as well as mathematics of course.
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