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Abstract: In the present work, we are concerned with the multiple solutions for quasilinear Choquard
equation with critical nonlinearity in R¥. We show multiplicity results for this problem, which are char-
acterized, respectively, by the new version of symmetric mountain-pass theorem and the mountain-pass
theorem for even functionals. The novelty of our work is the appearance of the convolution terms as well as
critical nonlinearities.
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1 Introduction

In the present paper, we are interested in the existence of multiple solutions for the following quasilinear
Choquard equation with critical nonlinearity in RV:

22%
Juf dy | [uf®2u, xeRY, (1.1
y

~la+ b | |VuPdx [Au — a[A?)]u = ak()|uP2u + B I |
X p—
N [RN

R

where a >0,b>0,0<u<4,1<p<4, N>3, a, and f are real parameters, 2, = % is the critical
22

2 -p°
First, we make a quick overview of the literature. To begin with, we note that the following Choquard
equation

exponent in the sense of Hardy-Littlewood-Sobolev inequality, and k(x) € L'(RY) with r =

—Au + VOJu = (X[ « F)f(w) x € RY (1.2)

was introduced by Choquard in 1976, to study an electron trapped in its hole. Equation (1.2) can be used to
describe many physical models. For instance, the quantum theory of a polaron [1], the modeling of an
electron, a certain approximation to Hartree-Fock theory of one-component plasma [2], and the self-grav-
itational collapse of a quantum mechanical wave-function, etc. Moreover, the existence and qualitative
properties of solutions to equation (1.2) have been widely studied in the last few decades, see e.g. [3-8] for
the work of Choquard-type equations.
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Once we turn our attention to the Kirchhoff-type problems with critical nonlinearity, we immediately
see that the literature is relatively scarce. In this case, we can cite the recent works of [9-17]. We call
attention to [18] in which work the authors have dealt with the following Kirchhoff-type equation

—a+ bI [VuPdx [Au + ViGOu = (K, * uDlul9?u  in R3, (1.3)

[R3

By using the Nehari manifold and the concentration-compactness principle, the author obtained the exis-
tence of ground state solutions for equation (1.3) if the parameter A is large enough.

On the other hand, another important reference is [19], where the authors have considered the fol-
lowing quasilinear Choquard equation:

—Au + VOOu — [A)u = (x| * |u|P)[ulP-2u in RN,

where N >3, ue (0,(N +2)2), pe (2, (4N - 4u)/(N - 2)). By a changing variable and perturbation
method, the existence of positive solutions, negative solutions, and high energy solutions was obtained.
Moreover, we also cite previous studies [20-24] with no attempt to provide the full list of references.

From the above mentioned papers, it is natural to ask what results can be recovered with this kind of
quasilinear Choquard equation with critical nonlinearity in RY. Compared to the above papers, some
difficulties arise in our paper when dealing with problem (1.1), because of the appearance of the convolution
terms as well as critical nonlinearities which provokes some mathematical difficulties, and these make the
study of problem (1.1) particularly interesting.

Our main results are as follows.

Theorem 1.1. Let O < u < 4 and1 < p < 4. Suppose that Q = {x € RY : k(x) > O} is an open subset of RN and
that 0 < |Q| < co. Then, for each B > O there exists A > 0 such that if a € (0, N) or for each a > O there exists
A > 0 such that if B € (0, A), problem (1.1) has a sequence of solutions (u,), and u, — 0 as n — oo
in DV2(RY),

Theorem 1.2. Let O < u < 4, p = 4, and f§ = 1. Then, there exists a positive constant a* such that, for each

a>a anda € (O, %aSIIkII;l), problem (1.1) has at least k pairs of nontrivial weak solutions.

Remark 1.1. The difficulties of this paper mainly lie in two aspects: one of difficulties of the problem (1.1)
stems from that there is no suitable working space on which the energy functional enjoys both smoothness
and compactness, so the standard critical point theory cannot be applied directly. In order to overcome this
difficulty, we use the method in [25-27]. The other is caused by the convolution terms as well as critical
nonlinearities, which leads to some estimates about nonlocal term that are likely to be confronted some
difficulties. In order to prove the compactness condition, we use the second concentration-compactness
principle and concentration-compactness principle at infinity to prove that the (PS). condition holds.

2 Preliminaries

In this section, we first recall the following well-known Hardy-Littlewood-Sobolev inequality, which will be
used in the sequel.

Proposition 2.1. [28] Lett,r >1and O < u < N with 1/t + u/N + 1/r = 2, f € L!(RN), and h € L'(RN). There
exists a sharp constant C(t, r, u, N) independent of f, h, such that

FOOhW) o
I oy XV = C6r s Nl o

RN RN
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Let S be the best constant for the embedding D>2(RY) into L?(RV), that is,

S= inf Iqulzdx: j|u|2"dx=1 . 2.2)
ueD2RMN)\ {0}
N [RN
Consequently, we define
27 27
Sui= inf '[|Vu|2dx WO 4, 4y, — 11, 2.3)
ueD“2(RY)\ {0} [x — y#
RN RY

Remark 2.1. From [4], we know that the constant Sy ; defined in (2.3) is achieved, and

Il f j T '_'fw

L
>
2y

defines a norm on L% (RY).

Problem (1.1) corresponding to the energy functional J : D%2(RY) — R is defined by

2

J(u) = Jqulzdx ;2 I|Vu|2dx ra I|u|2|Vu|2dx J.k(x)lulpdx
[RN

|u<x>|22u|u(y>|22
S e

-y
2

_a J(1 + 2upP)|vupdx + 2 J|Vu|2dx _« Ik(x)|u|l’dx -
2 4 P 2,

RY RV RY RV R

I f WEOPHU)P
) ey

Note that the functional J is not well defined in D“*(RYN). In order to overcome this difficulty, we make
the changing of variables v = f~1(u), where f is defined by

1

J1+ 2200

on [0, +00) and by f(t) = —-f(-t) on (-0, O].
We have collected some properties of the function f.

fl() = and f(0)=0

Lemma 2.1. [25,29] The function f satisfies the following properties:
(fo) f is uniquely defined C* and invertible.

(f) If'(O <1forallt € R.
() m—>1ast—>0.

3) &—>2%ast—>oo.

(fa) 3@ < tf'(t) < f(©) for all t > O.
(F5) 2O < FOF Ot < f2(0) for all t € R.
(fo) If()] <t forallt e R.

(fy) If ()] < 24|t] for all t € R.
(fs) The function f?(t) is strictly convex.
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(fo) There exists a positive constant C such that

O Clel, |t <1,
> :
Cltl, |t = 1.

(fio) There exist positive constants C; and G, such that

lt] < GIf ()| + GIf (D) for all t € R.
(i) FOF'()] < % forallt € R.

So after the change of variables, we can write J(u) as
2
Jw)=2 j VvPdx + 7 j FoRIvvRd| - & _[k(X)Lf(V)Ipdx
(2.4)

I lf(V(X))IZZVLf(V(y))IZZ dxdy
S22 Ix - yJ# '

By Proposition 2.1 and Lemma 2.1, we know that the functional J € C}(D%2(RY), R). As in [25], we note that
if f is a nontrivial critical point of J, then v is a nontrivial solution of problem

~abv - b j F'ORIVVRAX (FOF OIWVE + IF' ()P = g(x, v), 2.5)

where

2 *
800.9) = ) kP20 + B [ L Ly Jrops2pes) |
[RN

Therefore, let u = f(v) and since (f™)'(t) = [f'(f1(t)]" = V1 + 2t2, we conclude that u is a nontrivial
solution of the problem

—la+ bI [VulPdx |Au — a[Aw?)]u = ak()|uP2u + B I x Juf o dy ||lu 2 2u.

[RN

3 The Palais-Smale condition

In this section, we will use the concentration-compactness principle for studying the critical Choquard
equation [30] which is due to Lions [31] to prove the (PS), condition.

Lemma 3.1. Let 1 < p < 4. Then any (PS), sequence {v,} is bounded in D-%(RN).

Proof. Let {v,} be a (PS). sequence in D>2(R¥) such that
2
a 2 b 1y, V12 2
c+o)=J) = 5 [VVnl*dx + Z If' (i)l Vv dx
N N (3.1)

OO g
=y

- | keorampax - o j
J,
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oWl = '), w) = a vaandx a jk(x)tf(vnnp 2f () (V) wix

[RN
|V VW VW(l + 2f2(e) = 2IVWlf ()f' ()W
[ T 22 J [+ 2220 &) 62
_B IV(Vn(X))|22“V(Vn(Y))|22 2f W ()W () dxdy.
Ix -yl
Choose w = w,, = /1 + 2f2(v,) f(v,), we have w,, € DV2(RN). From (f;) and since
[Vwy| = (1 + M)Ivvnl,
1+ zfz(vn)
we deduce that |wy| < c|lv,ll. By (3.2) we have
2
= = M 2 M
oMVull = J' (V) W) = a J:V(l + 1+ 272(v,) )|VVn| dx +b j 1+ zfz(vn)dx
R (3.3)
22)1 22
~a [Koorenrax - g ‘f(v"(")l'( LD gy
RY R

Thus, using Holder’s inequality and Sobolev embedding, and together with (3.1), (3.2), and (3.3), we have

¢+ oMlvll = J(v) - <J V), Wi

22*
=a I [l _ (1 + M)]szdx
12 22 1+ 2f2(vp)
R

1
+ (Z - 22*) jwvnnZanFdx + (22*

] jk(x)tf(vmpdx

U
1 »
r 22*
1 1 2 1 1 r 22°
2l la | IVwldx = | = - —|¢| | kOCOdx [f (v)I* dx
2 2, p 22
[RN RN N
1 p
r 4
1 1 2 1 1 . 2 2
2= - —|a | IVlfdx - | = = — || | [kCOIdx [Vf2(vn)lPdx
2 2 p 22
RY RY RY
1 1
2| = - = alval? - clvl?,
2 2,
which implies that {v,} is bounded in D**[R") since 2 < 2, and 1 < p < 4. O

Lemma 3.2. Let ¢ < 0,0 < u < 4, and 1 < p < 4. The next two properties hold.
(i) For each B > O there exists \ > O such that ] satisfies the (PS). condition for all a € (0, A).
(ii) For each a > O there exists A > 0 such that ] satisfies the (PS), condition for any f§ € (0, A).
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Proof. Let {v,} ¢ D"2(R") be a (PS).-sequence. By Lemma 3.1, {V,;} is bounded in D“?(R¥). Then {f(v,)} is
also bounded in DV%(RY). Therefore, we can assume that v, — v in D>2(RY), v, — v a.e. inR¥, since f € C*,
then f2(v,) — f2(v) a.e. in RN and then f2(v,) — f2(v) in D»2(RN). Hence, we can assume that

FORODP

V2P — w, If(Vn)lzz* -, Ix -yl y [f(vn)|22; -V,

where w, {, and v are bounded nonnegative measures on R¥. By the concentration-compactness principle
n [30], there exist at most countable sets I, sequences of points {X;}ic; ¢ RY, and families of positive
numbers {v; : i € I}, {w; : i € I}, and {{; : i € I} such that

22,
I V(V(Y))l lf(V()/))|22“ + ZV’ oo (34)
iel
w = VWP + Ywiby, = GO + Y (bx, (3.5)
iel el
1 2o

Spv* <w; and v < CN, ¢ N, (3.6)

where 6, is the Dirac mass at x;. Now, we take a smooth cut-off function ¢, ; centered at x; such that
. £ . 4
0<gx)<1, ¢ ,(x)=1in B(xi, E)’ @ ;(x) =0 in RN\ B(x;, €), Ve, (x| < e

for any € > 0 small. Let wy = /1 + 2f(v,) f(vs), then {wy} is bounded in DV4(R") and (J'(va), Wy, ;) — O.
Thus,

|VVn f(VH)VVnV(pgl
- J1+2f2(w, WV Ve, .dx — b
au!N I I T 22 I 1+ 2f2(u)

2 2 wW,l2o. .
- ,[(1 ' M)lv"nlzqog,idx +b Val” gy Wl @i g 3.7)
N

T+ 2P) oo ™| ) T
R R
F OO (g ()
p Jvlc(x)wvnnmpg,,-dx - BRUV e dxdy + 0(1).

The Holder inequality and (f;) imply that

e—->0n—-oo

0<lim lim |a I ST+ 2P0 f i) VvV, lx
[RN

<clim lim VeV Ve, ;dx
e—0n—oo ’
[RN
2 : (3.8)
< Clim lim j [Vval2dx j vV, Pl
N N

£—-0n—oo

1

<Clim I|v|2*dx _o.
e—0

B(x;,2¢)
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Similarly, we have

. . |V, f(V")VV"V(ps z _
i i o 5| s | 69)

From the definition of ¢, ; that

lim lim ’[k(x)[f(vn)lp(p&idx - 0.

e—-0n—
By (3.7)-(3.9), we get

2 2 v, Po. .
0=1lim lim {a J-(l + 2]‘-7(‘2/"))|V1/n|2(ps idX +b I . |anzl dx I [VVnl ;08,1 dx
-0 n—-oo " 1+ 2f (Vn) ’ RN 1+ 2f (Vn) RY 1+ 2f (Vn)
R

f (OO P lf vy D Prep, ((¥)
dxdy
x-y* (3.10)

—a jk(x)lf(vn)lp%,idx_ ’8.”
RY ®

vi.(x 227 Y 22 i
> lim lim 1 @ prgiIVfZ(Vn)lde —ﬂ” [f vaCON P lf ve(Y DI . (V) dxd
e-0n—oco | 2 ’ |X — yl”
N [RZN
= _a)l ﬁvl
This fact implies that aw; < 2fv;. Together with (3.6), we obtain
w; > (Z’IB’lan{:fL)Tlfl or w;=0. 3.11)

o1
If w, > (2*1[3*1(1812{’jL)2fr1 for iy € I. From the Holder inequality, the Sobolev embedding, and the Young
inequality, we have

a j KCOIF ) [Pdx < alkd, S-SFIP

173 17
1 1af1 1 1 1laf1 1 v
=I5 -5 6Gl7-5 | Four (———*)—(—— ] allkiS™>
[(2 2,,]2(;9 22H) } [ 2 2 )2(p 22
1 1)af1 Ya(1 1\
a <-p
<l -2 |82 - | e [———*] —[—— ] 7
(2 2},)2(;7 zz) 2 ({2 2,) aslp 22

(3.12)

According to this fact, we have

0>c= lim ( J(v) - 22* J' )y 1+ 2f2(v) f(Vn)>)

n—+

2

T l 3 1 ZfZ(Vn) ) 1 ) 5
= n1—1>IPOO a ,[][2 22;(1 EERETST 2fz(v”))]anI dx + (4 22*] I [f' ()l | Vvl dx
R

+ ( 2, - —) Ik(X)If(vn)Ipdx (3.13)
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: 1 1 29y _ | L _
anirfloo (2 ZZ)a J:VIanldx (p 22*] Ik(X)lf(Vn)Ide
R
; 1 _1)\a 20y )2dx —
> lim (2 2;;)2 .[NWf ()l dx (p 22*] .[k(x)lf(v")lpdx
R

1 1 1
S LR (Ilf(V)IIZ + Zwl] ( ) fk(x)tf(v)v’dx
2 21‘ iel p 22
1 PR 2
- -p 2-p 2
(1o 1)a,, 2-p (1_%) 2 (1_%] KT s
2 211 2 2 2 211 a p 22},
1 zp 2
i 1 _ - -p 2-p 2
S(L_oL (27'aSy, )5 B A — 2-pff1_1) 2 1 1 K2 P as.
2 2; 2 2 2; aS p 22;;

Thus, for any > 0, we can choose a; > 0 so small such that for every 0 < a < ay, the last term on the right-
hand side above is greater than zero, which is a contradiction.
Similarly, ifa > 0 is given, we take f;, > 0 so small that for every B € (0, 8,) again the right-hand side of
(3.13) is greater than zero. This gives the required contradiction. Consequently, w; = 0 for alli € I in (3.11).
To obtain the possible concentration of mass at infinity, similarly, we define a cut-off function i in

C®(RYN) such that , = 0 in Bg(0), Y, = 1 in RN\ Bg,1(0), and [Vif| < 2/R in R¥. Let

We = lim lim sup j |Vu, [2dx,
R—00 pnooo
{xeRN:|x|>R}

{, = lim limsup I |un % dx,
R—00 noeo
{xeRN:|x|>R}

and

= lim lim sup j (Fu % [unP0) | Pudlx.
R—o0 N
n {xeRN:|x|>R}

Thus, the Hardy-Littlewood-Sobolev and the Holder inequalities give

= lim lim

R—o0on—oo

J lf(vn(}/))| vdy [ (0 Py )dx

n
=

2
<o, Jim limUOni| [ PP x| < C2.

[RN
Therefore,

= lim lim (J'(va), Ypwi)

R—o0co n—oo

2 2 Vv, 2
- lim lim af 14+ ) VWP + b J’ | V¥l A J‘ [VVal* g dx
R—0co n—co v 1+ Zfz(vn) . 1+ 2f2(vn) ; 1+ sz(Vn)

R R x

ZZV . 22)‘
a j KOO )Pyl —BH PRGOSO oy 6.1
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> lim 1im 12 [ gvf2m)Pdx - a [ KGO (P - B IV(V”(X»'D”WV”(Y D) g
RY RY

R—00 n—co0 [x - yl#
%
- BCLZ.
%

Therefore, %a)oo < BC‘(O%*. As the discussion in [30], we obtain
Zua1 2
W = |27%aS2C B! oI Wy, = 0. (3.15)

As in (3.8) and (3.9), we have

p
. -1 p 2
2 2 _ P 2-p 2
0>c> 1_1 (27'aS)%2C %2 %2 — 2_p 1_1 i 1_1 ||k||r27p0(2317- (3.16)
22 2 2 2] aS p 22

Thus, for any S > 0, we choose a; > 0 so small that for every a € (0, &) the right-hand side of (3.16) is
greater than zero, which is a contradiction.

Similarly, if « > 0 is given, we select 8, > 0 so small that for every f € (0, 8,) the right-hand side of
(3.12) is greater than zero. This gives the required contradiction. Therefore, w,, = 0 in (3.11).

From the arguments above, put

A = min{ay, &} and A = min{f,, B,}.
Then, for any c < 0 and 8 > O we have
w;j=0foralliel and w, =0

for all « € (0, A).
Similarly, for any ¢ < 0 and a > 0 we again have

w;j=0foralliel and w,=0
for any B € (0, A).

Hence, asn — oo

2, 2, 2, 2
J Va QO V(Y )| dxdy — J‘ VOOV 4
b =yl b =yl

and
jk(X)(Ianq = vIDdx < Ikl l[v 19 = vl — O.
q
[RN

Since ([|vul),, is bounded and J'(v) = 0, the weak lower semicontinuity of the norm and the Brézis-Lieb
lemma yield as n — oo

_7! _ 2f2(va) 2 [V [?
oVull = J' (V) W) = a J;(l + 1+ Zfz(vn))|VVn [*dx + b ‘[Vl + 2f2(v)
R

22,, 22
4 j KOOI P — B I f If(vn(X)?)IC U;(ll;n(y))l dxdy
RN N N

2

2
=alvl + a J A [Vv,|?dx + b B A7
1+ 2f2 (W) N1+2f2(vn)

R
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[ [P0 4 g,

_aikuWOMWh—ﬁ |x — y]#

RN RV

2 2
>allvy, - VP + allvl]? + a MWvlzdx +b J’ﬂ
1+ 2720 T+ 2720

R

22;, 22,
_p j KOOI V) Pdx — B I f FEEDPH O 4 o
RY RN RY

R

Ix -yl
= vy = vI? + oIV

This fact implies that {v,} strongly converges to v in D%?(RY). This completes the proof of Lemma 3.2. [

4 Proof of Theorems 1.1

In this section, we will use the following version of the symmetric mountain-pass lemma to prove the
existence of infinitely many solutions of (1.1) which tend to zero.

Lemma 4.1. [32] Let E be an infinite-dimensional Banach space and ] € C'(E, R). Suppose that the following
properties hold.

(J1) ] is even, bounded from below in E, J(0) = 0 and ] satisfies the local Palais-Smale condition.
(Jo) For eachn e N there exists A, € I, such that supyeaJ(u) < 0, where

2.=1{A: A C E is closed symmetric, O ¢ A, y(A) = n}
and y(A) is a genus of A.

Then ] admits a sequence of critical points (u,), such that J(u,) < 0, u, # 0 for each n and (uy,), converges
to zero as n — ©o.

Note that
1 14
a a r . s .
J0) > S - & j|k<x)|fdx jf2<2>(v>dx - gl
p RrRY RN H
a *
> VP - aclf MIIZ — Bollf ()P
a *
> Envu2 - aqlvllz - BollvIZ
= QUIvID,

where ¢ and ¢, are some positive constants and Q(t) := %tz - agt? - Bt Obviously, fixed f > O there
exists ay > 0 so small that for every O < a < o, there exists 0 < ty < t;, Q(t) > 0 for ty < t < t, Q(t) < O for
t >t and 0 < t < to. Similarly, fixed « > 0, we can choose f; > 0 with the property that t,, t; as above exist
foreach 0 < B < B,. Clearly, Q(ty) = 0 = Q(t;). Following the same idea as in [34], we consider the truncated
functional

2
OB j|Vv|2dx + % lef’(v)PwVde - % Lk(X)Lf(V)IPdX
R R

IRN

B OO V()
“ 50 jl dxdy,
R

4.1)

Ix -y
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where @(v) = x(lvl) and x : R* — [0, 1] is a nonincreasing C® function such that y(t) =1if t < Ty and
x(t) = 0 ift > T,. Thus,

Jv) = advl,
where Q(¢t) = %tz - aqt? - PotZ'@(t). 1t is clear that J (v) € C! and is bounded from below in D2(RV).

From the above arguments, we have the next results for functional T(V).

Lemma 4.2. Let ] (v) be defined as in (4.1). Then

(@) IfJ(v) <0, then|v| < Ty and J(v) = J(v).

(i) Letc < 0. Then, for any B > O there exists A > O such that | satisfies the (PS). condition for alla € (0, 1).
(iif) Letc < 0. Then, for any a > O there exists A > O such that ] satisfies the (PS). condition for all B € (0, A).

Proof of Theorem 1.1. Clearly, J (0) = 0, and J is of class C}(D3(RYN)), even, coercive, and bounded from

below in D"2(R¥). Furthermore, J satisfies the (PS). condition in D“2(R¥), with ¢ < 0, by Lemma 4.2.
Foranyn € N, we take n disjointing open sets X; such that UL, X; ¢ Q, where Q is the nonempty open set
introduced in the statement of Theorem 1.1. For each i =1, 2,-- ,n, take v; € (D"2(R") n C§°(X;))\{0},
with ||| = 1. Put E,, = span{vy, vo, -+ ,Vi,}.
Thus, for any v € E,, with ||v|| = p, we have

~ a b a B 2.2

<A+ 2 4——jk Pdx - 222

J(v) 2||V|| + 4||V|| » | 2.7, IVlinz
Q

<202+ 2p' - Gov - P,
where C; and G aEe some positive constants, since all the norms are equivalent in the finite dimensional
space E,. Hence, J (v) < 0 provided that p > 0O is sufficiently small, being 1 < g < 4. Therefore,
{ueE,: Vl=p}c{veE:J(v)<O0}

Moreover,

y{v € Eq: IVl = p}) = n.
Hence by the monotonicity of the genus y, we have

ydv e E,: J(v) < 0}) > n.

Choosing A, = {v € E, : ] (v) < 0}, we have A, ¢ >, and supveAj (v) < 0. Therefore, all the assumptions
of Lemma 4.1 are satisfied, since D2(R¥) is a real infinite Hilbert space. Thus, there exists a sequence {v,}
in DY2(RN) such that

Jv) <0, w#0, J'(w)=0foreachn and |[v] — 0 as n — co.

Combining with Lemma 4.2 and taking n so large that ||v,|| < p is small enough, then these infinitely many
nontrivial functions v, are solutions of (2.5). This completes the proof of Theorem 1.1, since u, = f(vy,) #
u, = f(vy) if vy # vy and f e C. O

5 Proof of Theorem 1.2

In this section, we give the following general version of the mountain pass lemma in [33], which will be
used to prove Theorem 1.2.
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Proposition 5.1. [33] Let X be an infinite dimensional Banach space with X = V& Y, where V is finite
dimensional and let ] ¢ C'(X, R) be an even functional with J(0) = 0 such that the following conditions hold:
(I;) There exist positive constants @, p > 0 such that J(u) = g for allu € dB,(0) N Y.

(I) There exists c* > O such that ] satisfies the (PS). condition for 0 < ¢ < c*.

(I;) For each finite dimensional subspace X c X, there exists R = R(X) such that J(u) < O for allu € X \Bg(0).
Suppose that V is k dimensional and V = spaniey, e, ..., ex}. For n > k, inductively choose ey, ¢ X, =
span{ey, e, ..., en}. Let R, = R(X,) and D, = Bg, (0) n X,. Define

Gp=1{h € C(Dy, X) : h is odd and h(u) = u, VOBg,(0) N X}
and

Tj={h(D\E) : h € Gp,n2j,E€c ) and y(E) <n - j}.
Foreach j e N, let

¢ = inf maxJ(u).
KeTj uek

Then, 0 < p < ¢ < ¢y for j > k, and if j > k and ¢; < c*, then we conclude that ¢ is the critical value of J.
Moreover, if ¢; = i1 =...= G = C < ¢* for j > k, theny(K.) = | + 1, where

K.={ueE:J)=cand J'(u) =0}

Lemma 5.1. Let a € (O, %aSZIIkIIi}). Then ] satisfies (PS). condition, for all c € (0, c*), where

1 1 ZT‘ 1 1 2; a2
c*:=min{| = - (27%aSy, )3, | = - (27'aS)s2C 72 . (5.1)
4 22, 4 22,

Proof. On the one hand, from Hoélder’s inequality, Sobolev embedding theorem and (f;), we get

j KOOIF V)ldx < 252Kl VIR (5.2)

R

Together a ¢ (O, %aSZIIkIIZ}) with (5.2), and proceeding as in proof of Lemma 3.1, we have

1
¢ + ovall = J(vn) = — ' (vn), W)
2,
o [ f VrPdx - | - 5 |a j KeOCfdx
2 2”; 4 22;
el RY
1 1 1 1
>| = - = lalvil? - (— - —*Jaszllkﬂy vl
2 2;1] 22
1 2
> — - a
4 22*) (Ivall

This fact implies that {v,} is bounded since 2 < 2;,. As similar discussion in Lemma 3.2, we deduce that (3.11)
* 1 2;3 o 202
and (3.15) hold. By contradiction, we assume that w;, > (2‘1aS,2,’jL)2§*1 for iy € I and wy, > (2‘laSzC 1) ’

hold. Similar to Lemma 3.2, we deduce

c= lim (J(VH)— L o, \/1+zf2(vn)f(vn)>) (53)

Nn—-+co 22;:
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> 1im {[1 - Ll lev,,lzdx I B I Va2
n—+oo 2 2; 2 2*
RY RY

> lim (l - ] I|Vf2(vn)|2dx

n—+oo |\ 4 22%
Sk 1 Q> 1 (271as )22*
2| — - —Wj, 2| — u
4 22,027 |4 22* HL
and
e laSyEae T, (5.4)
4 22*

Then, for any c € (0, c*), (5.3) and (5.4) cannot happen. Thus, we have

wi=0foralliel and w =O0.
The rest of the proof is the same as in the proof to Lemma 3.2. Therefore, the compactness of the Palais-
Smale sequence holds. O
Remark 5.1. It is easy to verify that the functional J satisfies the hypotheses (I;) and () fora € (O, %aSZIIkIIi} )

Lemma 5.2. There exists a sequence {M,} c (0, +co0) independent of a, with M, < My,,, such that for
any a > 0,

¢t = inf maxJ(v) < M,
Kel, uek

Proof. Our proof is similar to that presented in [35, Lemma 5]. The definition of ¢ implies that

- -
¢¥ = inf maxJ(v) < inf max —||v||2 ||v||“ _ I FOODPF ()P dxd
Kel, veK Kel, veK 22, [x - y|#
[RZN
Let
2 2
Mn = inf max —||V||2 ||V||4 _ J- U:(V(X))l If(v()/))l dXd
KeT, veK 22, Ix — y*

then we conclude that M, < +co and M,, < M,,,; by the definition of [,,. O

Proof of Theorem 1.2. Taking a* > 0 large enough such that for any a > a*, we have
O<cf<scf << cf < My<c.

From Proposition 5.1, the levels ¢* < ¢ <---< ¢f are critical values of J. So, if ¢! < ¢§ <---< ¢f, the func-
tional J has at least k critical points. Now, if ¢f = ¢}, for some j =1,2,..., k - 1, again Proposition 5.1
implies that K is an infinite set (see [33, Chapter 7]) and hence in this case, problem (5.1) has infinitely
many weak solutions. Consequently, problem (5.1) has at least k pair of weak solutions. Therefore, problem
(2.5) has at least k pairs of solutions and u = f(v) must solve problem (1.1). O
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