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Abstract: The (p q, )-th dual curvature measures and the Lp dual Minkowski problem were recently intro-
duced by Lutwak, Yang, and Zhang. In this paper, we give a solution to the existence part of the Lp dual
Minkowski problem about < <p0 1 and >q 0 for arbitrary measures. This fills up previously obtained
results.
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1 Introduction

A compact convex subset of �n with nonempty interior is called a convex body. Let � n denote the set of
convex bodies in�n, and � o

n denote the set of convex bodies in �n with the origin in their interiors. The unit
sphere in �n will be denoted by −Sn 1.

For all �∈x n, the support function of �∈K n is defined by

( ) ( ) { }= = ⋅ ∈h K x h x x y y K, max : ,K

where ⋅x y denotes the standard inner product of x and y.
For �∈K n and ∈

−v Sn 1, the supporting hyperplane ( )H K v, of K at v is defined by

�( ) { ( )}= ∈ ⋅ =H K v x x v h v, : .n
K

The radial function, � �( ) { }= ⋅ ⧹ →ρ ρ K, : 0K
n , of �∈K n is defined by

�( ) { } { }= ∈ ∈ ⧹ρ K x λ λx K x, max : , 0 .n

Let �∈K o
n and ⊂

−η Sn 1 be a Borel set. The reverse radial Gauss image of η, ( )∗α ηK is given by

( ) { ( ) ( ) }= ∈ ∈ ∈
∗ −α η u S ρ u u H K v v η: , for some .K

n
K

1

Geometric measures and their associated Minkowski problems in the Brunn-Minkowski theory and its
generalization are central to the study of convex geometric analysis. In regard to the dual Brunn-Minkowski
theory, Huang et al. in [1] recently studied the q-th dual curvature measures: for �∈K o

n and �∈q , the q-th
dual curvature measure, ( )͠

⋅C K,q , defined for every Borel ⊂
−η Sn 1 by

( ) ( )͠

( )

∫=

∗

C K η
n

ρ u u, 1 d
α

q

η
K
q

K

(1.1)
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is the Borel measure on −Sn 1. It is worth noting that the q-th dual curvature measure inconceivably connects
the well-known cone volumemeasure ( =q n) and Aleksandrov’s integral curvature ( =q 0). These measures
have never been linked before.

Huang et al. [1] asked for necessary and sufficient conditions so that a given measure on the unit sphere
is precisely the q-th dual curvature measure of a convex body in �n. This problem is called the dual
Minkowski problem. The dual Minkowski problem contains critical problems such as the Aleksandrov
problem ( =q 0), see, e.g., [2–4] and the logarithmic Minkowski problem ( =q n), see, e.g., [5–9] as special
cases. The problem has been completely solved for <q 0 (see [10]), but critical case for >q 0 is still
unsolved, see, e.g., [11–15].

Very recently, Lutwak et al. in [16] introduced a more general version of the q-th dual curvature
measure called the (p q, )-th dual curvature measure. For �∈K o

n and �∈p q, , the (p q, )-th dual curvature

measure ( )͠
⋅C K,p q, is defined by

( ) ( )͠ ͠
⋅ = ⋅

−C K h C Kd , d , .p q K
p

q, (1.2)

It should be noted that this definition is slightly weaker than the one defined in [16]. Lutwak et al. [16]
showed that special cases of the (p q, )-th dual curvature measure are the Lp surface area measure ( =q n),
the q-th dual curvature measure ( =p 0), and the Lp integral curvature ( =q 0). Regarding the new (p q, )-th
dual curvature measure, the following Lp dual Minkowski problem was posed in [16].

The Lp dual Minkowski problem: Given a nonzero finite Borel measure μ on the unit sphere −Sn 1 and real
numbers p q, , what are the necessary and sufficient conditions so that there is a convex body �∈K o

n

satisfying

( )͠
⋅ =C K μ, ?p q,

When =p 0, the Lp dual Minkowski problem is just the dual Minkowski problem; when =q 0, it
becomes the Lp Aleksandrov problem introduced and studied by Huang et al. [17]; when =q n, it reduces
to the Lp Minkowski problem, proposed in [18], which has been extensively studied, see, e.g., [19–43].

When >p 0 and <q 0, a complete characterization to the existence part of the Lp dual Minkowski
problem is given by Huang and Zhao [44].

Theorem 1.1. [44, Theorem 1.2] Let > <p q0, 0, and μ be a non-zero finite Borel measure on −Sn 1. There is

a convex body �∈K o
n so that ( )͠

= ⋅μ C K,p q, if and only if μ is not contained on arbitrary closed hemisphere.

The Orlicz extension of Theorem 1.1 was partially settled in [45], and later completely solved in [46].
When >p q, 0 and ≠p q, and the given measure is even, Huang and Zhao [44] also presented a com-

plete solution to the existence part of the Lp dual Minkowski problem.

Theorem 1.2. [44, Theorem 1.3] Let > ≠p q p q, 0, , and μ be a non-zero even Borel measure on −Sn 1. There is

an origin-symmetric convex body K in �n so that ( )͠
= ⋅μ C K,p q, if and only if μ is not contained in arbitrary

great subsphere.

The Orlicz version of Theorem 1.2 was obtained in [46].
When > >p q1, 0, and >p q, a sufficient condition on the existence of solutions to the Lp dual

Minkowski problem is given by Böröczky and Fodor [47] and obtained the following result.

Theorem 1.3. [47, Theorem 1.2] Let > >p q1, 0, and >p q, and let μ be a finite Borel measure on −Sn 1 that is

not contained on arbitrary closed hemisphere. Then there is a convex body �∈K o
n so that ( )͠

= ⋅μ C K,p q, .

The Orlicz case of Theorem 1.3 is given in [46].
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As we can see those theorems above, when < <p0 1 and >q 0 there is no existence result concerning
the Lp dual Minkowski problem in the general case (without the condition that the measure is even). The
aim of this paper is to supplement the situation, which is motivated by the works of Zhu [41], Jian and Lu
[48], Chen et al. [22], and Huang and Zhao [44]. Thus, the following result is obtained.

Theorem 1.4. Let < <p0 1, >q 0, and ≠q p. If μ is a finite Borel measure on −Sn 1 and is not contained on

arbitrary closed hemisphere, then there is a convex body K in �n such that ( )͠
= ⋅μ C K,p q, .

Theorem 1.4 contains as special cases the solution to the existence part of the Lp Minkowski problem for
< <p0 1 (see [22]) and of the discrete Lp Minkowski problem for < <p0 1 (see [41]).
We remark that when <p q, 0 and the given measure is even, the existence part of the Lp dual

Minkowski problem was independently solved by Huang and Zhao [44] and Gardner et al. [46]. However,
this situation for <p 0 and >q 0 has not yet yielded any results, as far as we know.

In the next section, some preliminaries are given. In Section 3, we consider a minimizing problem and
give its corresponding solution. In Section 4, we first discuss the discrete case of Theorem 1.4. Then
the proof of Theorem 1.4 is completed by approximation.

2 Preliminaries

In this section, some basic facts about convex bodies are collected. The books of Schneider [49], Gardner
[50], and Gruber [51] are excellent references regarding convex bodies.

The work is carried out in �n equipped with the standard Euclidean norm. For any �∈x n, its Euclidean
norm is denoted by ∣ ∣ = ⋅x x x . The unit ball will be written by �{ ∣ ∣ }= ∈ ≤B x x: 1n . The set of continuous
functions on −Sn 1 is denoted by ( )−C Sn 1 and the set of positive functions in ( )−C Sn 1 is written by ( )+ −C Sn 1 .

Let us define the Hausdorff distance of two convex bodies K L, in �n as follows:

( ) ∣ ( ) ( )∣= −

∈
−

δ K L h u h u, max .
u S

K Ln 1

Assume Ki is a sequence of convex bodies in �n. We claim that Ki converges to a convex body �⊂K n
0

if

( ) →δ K K, 0,i 0

when → ∞i .
For ( )∈

+ −g C Sn 1 and a closed subset ⊂
−SΩ n 1 not concentrated on arbitrary closed hemisphere,

the Aleksandrov body relevant to ( )g, Ω , written by [ ]g , is the convex body that is defined as follows:

�[ ] { ( )}= ⋂ ∈ ⋅ ≤

∈

g ξ ξ u g u: .
u

n

Ω
(2.1)

Clearly, [ ] ≤h gg and [ ] =h KK if =
−SΩ n 1 and �∈K o

n. In fact, for any ∈
−v Sn 1,

�[ ] { ( )}⊂ ∈ ⋅ ≤ ≕g ξ ξ v g v E: ,n

which implies

( ) ( ) ( )[ ] ≤ =h v h v g v .g E

Thus by the arbitrariness of ∈
−v Sn 1,

[ ] ≤h g.g

Moreover, on one hand,

[ ] ≤h hh KK
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for �∈K o
n. On the other hand, for any ∈

−u Sn 1

� �{ ( )} { ( )}⊂ ∈ ⋅ ≤ ⊂ ⋂ ∈ ⋅ ≤

∈
−

K ξ ξ u h u ξ ξ u g u: : .n
K

u S

n
n 1

This has

[ ] ≥h h .h KK

Namely,

[ ] =h h .h KK

It was demonstrated that the (p q, )-th dual curvature measure is weakly convergent in [16]. Namely,
if �∈p q, , �∈Ki o

n, and �→ ∈K Ki o
n

0 , then for every ( )∈
−f C Sn 1 ,

( ) ( ) ( ) ( )͠ ͠∫ ∫=

→∞

− −

f v C K v f v C K vlim d , d , .
i

S

p q i

S

p q, , 0
n n1 1

(2.2)

Moreover, it easily follows from (1.1) and (1.2) that for �∈K o
n and >λ 0,

( ) ( )͠ ͠
⋅ = ⋅

−C λK λ C K, , .p q
q p

p q, , (2.3)

For �∈K n, the diameter of K is defined as follows:

( ) {∣ ∣ }= − ∈D K x y x y Kmax : , .

For �∈q and �∈K n, the q-th dual volume of K , denoted by ( )V͠ Kq and see [1], is

( ) ( )͠ ∫=

−

V K
n

ρ u u1 d .q

S
K
q

n 1
(2.4)

Let ⊂
−SΩ n 1 represent a closed subset which is not concentrated on arbitrary closed hemisphere, and

let �→f : Ω and ( )→ ∞h : Ω 0,0 be continuous. For ( )∈ −t δ δ, with >δ 0, define continuous function
( )→ ∞h : Ω 0,t by

( ) ( ) ( ) ( )= + +h v h v tf v o t vlog log ,t 0

for ∈v Ω, where �( )⋅ →o t, : Ω is continuous and ( )⋅ / =→ o t tlim , 0t 0 .
The next variational formula, see [1, Theorem 4.5], is important in the proof of our main result.

Lemma 2.1. Let [ ]ht be the Aleksandrov body associated with ( )h , Ωt . Then for ≠q 0

([ ]) ([ ])
( ) ([ ] )͠

͠ ͠
∫

−

=

→

V h V h
t

q f v C h vlim d , .
t

q t q
q

0

0

Ω

0 (2.5)

3 The minimization problem

To resolve the Minkowski problem by variational method, the first crucial step is to find an optimization
problem whose optimizer is exactly the solution to the Minkowski problem. In this section, we consider
a minimization problem and show the existence of a minimizer.

Let ( )∈
+ −g C Sn 1 and μ is a finite discrete measure on −Sn 1 which is not contained on arbitrary closed

hemisphere of −Sn 1. For the Aleksandrov body relevant to ( ( ))g μ, supp , it is denoted by [ ]g μ. Therefore,
for < <p0 1, the function, �[ ] →gΦ :g μ μ, , is defined as follows:

( ) ( ( ) ) ( ) ( ( ) ) ( )

( )

∫ ∫= − ⋅ = − ⋅

−

ξ g u ξ u μ u g u ξ u μ uΦ d d .g μ

S

p

μ

p
,

suppn 1
(3.1)

The Lp dual Minkowski problem about 0 < p < 1 and q > 0  1651



Now, take into account the next minimizing problem:

⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]

∈ =

∈

+ −ξ g C S V ginf sup Φ : and 1 .
ξ g

g μ
n

q μ,
1

μ

(3.2)

The solution of problem (3.2) will be given after the following Lemmas 3.1 and 3.2.

Lemma 3.1. Let < <p0 1, if μ is a finite discrete measure on −Sn 1 and is not contained on arbitrary closed
hemisphere of −Sn 1, then Φg μ, is strictly concave on [ ]g μ for ( )∈

+ −g C Sn 1 .

Proof. For < <p0 1, t p be strictly concave on [ )+∞0, , and for [ ]∈ξ g μ and ( )∈u μsupp , we have

( ) ( )[ ]− ⋅ ≥ − ⋅ ≥g u ξ u h u ξ u 0.g μ

Therefore, for < <λ0 1 and [ ]∈ξ ξ g, μ1 2 ,

( ( ) ) ( ( ) ( ( ) ) ) ( )

( ( ( ) ) ( )( ( ) )) ( )

( ( ) ) ( ) ( ) ( ( ) ) ( )

( ) ( ) ( )

∫

∫

∫ ∫

+ − = − + − ⋅

= − ⋅ + − − ⋅

≥ − ⋅ + − − ⋅

= + −

−

−

− −

λξ λ ξ g u λξ λ ξ u μ u

λ g u ξ u λ g u ξ u μ u

λ g u ξ u μ u λ g u ξ u μ u

λ ξ λ ξ

Φ 1 1 d

1 d

d 1 d

Φ 1 Φ ,

g μ

S

p

S

p

S

p

S

p

g μ g μ

, 1 2 1 2

1 2

1 2

, 1 , 2

n

n

n n

1

1

1 1

this is also equivalent to proving that

( ) ( )− ⋅ = − ⋅g u ξ u g u ξ u1 2

for arbitrary ( )∈u μsupp , namely,

( )− ⋅ =ξ ξ u 0.1 2

Since μ is not contained in arbitrary closed hemisphere, and ( )μsupp spans the whole space �n. Therefore,
we can conclude

=ξ ξ ,1 2

this yields that Φg μ, is strictly concave on [ ]g μ. □

Lemma 3.2. Let < <p0 1, if μ is a finite discrete measure on −Sn 1 and is not contained on arbitrary closed
hemisphere of −Sn 1, then for ( )∈

+ −g C Sn 1 , there is a unique ([ ] )∈ξ gintg μ , which ξg depends continuously on g

so that

( ) ( )
[ ]

=

∈

ξ ξΦ sup Φ .g μ g
ξ g

g μ, ,
μ

Proof. Let Φg μ, be strictly concave and continuous on [ ]g μ. Thus, there is a unique [ ]∈ξ gg μ so that

( ) ( )
[ ]

=

∈

ξ ξΦ sup Φ .g μ g
ξ g

g μ, ,
μ

(3.3)

We will show that ([ ] )∈ξ gintg μ . If not, ξg is on the boundary, ([ ] )∂ g μ , ([ ] )∈ ∂ξ gg μ .
Recalling the definition of [ ]g μ,

�[ ] { ( )}
( )

= ⋂ ∈ ⋅ ≤

∈

g ξ ξ u g u: .μ
u μ

n

supp

It is easy to see that there is ( )∈u μsupp so that

( )⋅ =ξ u g u .g (3.4)

1652  Fangxia Lu and Zhaonian Pu



Otherwise, for any ( )∈u μsupp , there is ( )⋅ <ξ u g ug . Then, for some >δ 01 and any ( )∈u μsupp , we have

( )⋅ + <ξ u δ g u ,g 1

i.e.,

( ) ( )+ ⋅ <ξ δ u u g u .g 1

This yields that ([ ] )∈ξ gintg μ , which is a contradiction.
Let

( ) = ∪μ A Bsupp , (3.5)

where

{ ( ) ( )}≔ ∈ ⋅ =A u μ ξ u g usupp : g

and

{ ( ) ( )}≔ ∈ ⋅ <B u μ ξ u g usupp : .g

Then, from (3.4), and μ is not contained on arbitrary closed hemisphere of −Sn 1, we can observe that A and B
are two disjoint nonempty sets. According to the definition of set A, and noting ( )∈

+ −g C Sn 1 , there exists
a unit vector ∈

−u Sn
0

1 so that

⋅ <u u 0,0 (3.6)

for all ∈u A. On the basis of these facts that B is a closed subset of −Sn 1 and ( )⋅ −ξ u g ug , ∈
−u Sn 1 is

continuous, it follows from that there is a positive constant >a 0 so that

( )⋅ + <ξ u a g u2 ,g (3.7)

for arbitrary ∈u B. Therefore, for arbitrary < <λ a0 2 and arbitrary ( )∈u μsupp , we obtain

( ) ( )+ ⋅ <ξ λu u g u .g 0

This means that there is some >δ 02 so that

( ) ( )+ + ⋅ <ξ λu δ u u g u ,g 0 2

for all ( )∈u μsupp , i.e.,

( ) ([ ] )≔ + ∈ξ λ ξ λu gint .g μ0

By definitions (3.1) and (3.5), it follows that

( ( )) ( ) ( ( ) ( ) ) ( ) ( ( ) ) ( )

( ( ) ( ) ) ( ) ( ( ) ( ) ) ( ( ) ) ( )

∫ ∫

∫ ∫

− = − ⋅ − − ⋅

= − ⋅ + − ⋅ − − ⋅

∪ ∪

ξ λ ξ g u ξ λ u μ u g u ξ u μ u

g u ξ λ u μ u g u ξ λ u g u ξ u μ u

Φ Φ d d

d d .

g μ g μ g

A B

p

A B

g
p

A

p

B

p
g

p

, ,

(3.8)

For all ∈u A and some constant >δ 03 , inequality (3.6) is strengthened as follows:

⋅ < − <u u δ 0.0 3

Thus, for all ∈u A,

( ) ( )− ⋅ = − ⋅ >g u ξ λ u λu u λδ .0 3

This has

( ( ) ( ) ) ( ) ( ) ( ) ( ) ( )∫ ∫− ⋅ > =g u ξ λ u μ u λδ μ u λδ μ Ad d .
A

p

A

p p
3 3 (3.9)
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From (3.7), we get that for arbitrary ∈u B and < <λ a0 .

( ) ( ) ( )− ⋅ = − ⋅ − ⋅ > − >g u ξ λ u g u ξ u λu u a λ a2 .g 0

For < <p0 1, this has

∣( ( ) ( ) ) ( ( ) ) ∣ ∣ ∣− ⋅ − − ⋅ < − ⋅ ≤
− −g u ξ λ u g u ξ u pa λu u λpa .p

g
p p p1

0
1

Thus,

( ( ) ( ) ) ( ( ) ) ( ) ( ( ) ( ) ) ( ( ) ) ( )

∣( ( ) ( ) ) ( ( ) ) ∣ ( )

( )

∫ ∫

∫

− ⋅ − − ⋅ ≤ − ⋅ − − ⋅

≤ − ⋅ − − ⋅

<
−

g u ξ λ u g u ξ u μ u g u ξ λ u g u ξ u μ u

g u ξ λ u g u ξ u μ u

λpa μ B

d d

d

.

B

p
g

p

B

p
g

p

B

p
g

p

p 1

(3.10)

Associated with (3.8), (3.9) and (3.10), we have

( ( )) ( ) ( ) ( ) ( ) ( ( ) ( ))− > − = −
− − −ξ λ ξ λδ μ A λpa μ B λ δ μ A pλ a μ BΦ Φ .g μ g μ g

p p p p p p
, , 3

1
3

1 1

We can choose < <λ a0 0 small enough so that ( ) ([ ] )∈ξ λ gInt μ0 and

( ( )) ( )>ξ λ ξΦ Φ ,g μ g μ g, 0 ,

which is a contradiction since the maximum of Φg μ, is achieved at the point ξg from (3.3). Therefore,
([ ] )∈ξ gintg μ .

Let ( )∈
+ −g C Sn 1 , { } ( )⊂

+ −g C Sk
n 1 be arbitrary sequence of functions and uniformly converging to g on

−Sn 1. We next show that ξgk
converges to ξg in �n.

Note that the fact, see [49, Lemma 7.5.2], that [ ] [ ]→g gk μ μ as →g gk uniformly on −Sn 1. Since [ ]∈ξ gg k μk
,

ξgk
is bounded. Thus, we let { } { }⊂ξ ξg gki k

be arbitrary convergent subsequence and →ξ ξg 0ki
as → +∞i .

We will prove =ξ ξg0 .

Let [ ]∈ξ g μ. Thus, [ ][ ] →g gk μ μi
as → +∞i , there is a sequence with [ ]∈ξ gk k μi i so that →ξ ξki

as

→ +∞i . Then,

( ) ( ( ) ) ( )

( ) ( )

( ) ( )

( ( ) ) ( )

( )

∫

∫ ( )

∫ ( )

∫

= − ⋅

= − ⋅

≤ − ⋅

= − ⋅

=

→+∞

→+∞

−

−

−

−

ξ g u ξ u μ u

g u ξ u μ u

g u ξ u μ u

g u ξ u μ u

ξ

Φ d

lim d

lim d

d

Φ .

g μ

S

p

i
S

k k
p

i
S

k g
p

S

p

g μ

,

0

, 0

n

n
i i

n
i ki

n

1

1

1

1

This has

( ) ( )
[ ]

=

∈

ξ ξsup Φ Φ .
ξ g

g μ g μ, , 0
μ

By the uniqueness of ξg, it follows that =ξ ξg 0, which proves →ξ ξg gk
. □
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We are now ready to show the solution of problem (3.2).

Theorem 3.3. Let < <p0 1, if μ is a finite discrete measure on −Sn 1 and is not contained on arbitrary closed

hemisphere of −Sn 1, then there is a function ( )∈
+ −h C Sn 1 with =ξ oh and ([ ] )͠ =V h 1q μ so that

( )
⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]

= ∈ =

∈

+ −o ξ g C S and V gΦ inf sup Φ : 1 .h μ
ξ g

g μ
n

q μ, ,
1

μ

(3.11)

Proof. Let { } ( )⊂
+ −g C Sk

n 1 , ([ ] )͠ =V g 1q k μ , and

⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]
( ) = ∈ =

→+∞
∈

+ −ξ ξ g C S V glim Φ inf sup Φ : and 1 .
k

g μ g
ξ g

g μ
n

q μ, ,
1

k k
μ

(3.12)

Define [ ]=h hk gk μ. We can observe that for ( )∈u μsupp ,

( ) ( )≤h u g u ,k k

where [ ] [ ][ ][ ]= =h h gk μ g μ k μk μ . Note that ([ ] )∈o gint k μ . Thus, ( )∈
+ −h C Sk

n 1 . For any [ ] [ ]∈ =ξ h gk μ k μ, we have

( ) ( ( ) ) ( ) ( ( ) ) ( ) ( )

( ) ( )

∫ ∫= − ⋅ ≤ − ⋅ =ξ h u ξ u μ u g u ξ u μ u ξΦ d d Φ .h μ

μ

k
p

μ

k
p

g μ,

supp supp

,k k

This obtains

( ) ( )
[ ] [ ]

≤

∈ ∈

ξ ξsup Φ sup Φ .
ξ h

h μ
ξ g

g μ, ,
k μ

k
k μ

k

Thus,

( ) ( )
[ ] [ ]

≤

→+∞
∈

→+∞
∈

ξ ξlim sup Φ lim sup Φ .
k ξ h

h μ
k ξ g

g μ, ,
k μ

k
k μ

k (3.13)

Note that ( )∈
+ −h C Sk

n 1 and ([ ] ) ([ ] )͠ ͠= =V h V g 1q k μ q k μ . Then,

( ) ( )
[ ] [ ]

≥

→+∞
∈

→+∞
∈

ξ ξlim sup Φ lim sup Φ .
k ξ h

h μ
k ξ g

g μ, ,
k μ

k
k μ

k (3.14)

Combining (3.13) with (3.14), we have

( ) ( )
[ ] [ ]

=

→+∞
∈

→+∞
∈

ξ ξlim sup Φ lim sup Φ .
k ξ h

h μ
k ξ g

g μ, ,
k μ

k
k μ

k

This, together with (3.12), has

⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]
( ) = ∈ =

→+∞
∈

+ −ξ ξ g C S V glim Φ inf sup Φ : and 1 .
k

h μ h
ξ g

g μ
n

q μ, ,
1

k k
μ

From Lemma 3.2, we see ([ ] )∈ξ hinth k μk
and

( )
[ ]

( ) =

∈

ξ ξΦ sup Φ .h μ h
ξ h

h μ, ,k k
k μ

k

Recalling [ ] [ ]=h gk μ k μ, we get [ ] [ ]= =h h hk g hk μ k μ, namely, hk is the support function of [ ]hk μ as well.
For �∈x n, we calculate

([ ] ) ( ) ( )+ =
+

ξ x ξΦ Φ .h μ h h μ h, ,hk μ x k k k

Therefore, we can find a sequence, again denoted by { } ( )⊂
+ −h C Sk

n 1 , ([ ] )͠ =V h 1q k μ , and =ξ ohk
such that

( )
⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]

= ∈ =

→+∞
∈

+ −o ξ g C S V glim Φ inf sup Φ : and 1 .
k

h μ
ξ g

g μ
n

q μ, ,
1

k
μ

(3.15)
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That is to say that { }hk is uniformly bounded on −Sn 1. If not, there exists a subsequence of { }hk , also written
by { }hk , such that

( ) = +∞

→+∞ ∈
−

h ulim max .
k u S

kn 1

Let ( ) ( )= =
∈

−R h u h umaxk u S k k kn 1 for ∈
−u Sk

n 1. Since { } ⊂
−u Sk

n 1, it can be seen from the compactness of −Sn 1

that there exists a convergent subsequence, say { }uk , assuming

= ∈

→+∞

−u u Slim .
k

k
n

0
1

Since ( )μsupp is not contained in arbitrary closed hemisphere, thus, there is some ( )′ ∈u μsupp so that

′ ⋅ >u u 0.0

Let ( )= ′ ⋅ >b u u 01
2 0 . Then there is �∈k0 so that as ≥k k0,

′ ⋅ >u u b.k

Note that [ ]∈R u hk k k μ. Thus, when ≥k k0,

( ) ( )′ ≥ ′ ⋅ >h u R u u R b.k k k k

It then follows from that μ be a finite discrete measure, we obtain that for ≥k k0 and < <p0 1,

( ) ( ) ( ) ( ) ( ) ( ) ( )∫= ≥ ′ ′ > ′ = +∞

→+∞ →+∞ →+∞ →+∞

−

o h u μ u h u μ u R b μ ulim Φ lim d lim lim .
k

h μ
k

S

k
p

k k
p

k
k

p
,k

n 1
(3.16)

Let ( )′ ∈
+ −h C Sn 1 and ([ ] )͠ ′ =V h 1q μ . Thus,

( ) ( ) ( )( ) ∫ ( )≤ = ′ − ⋅ < +∞

→+∞

′ ′ ′

−

o ξ h u ξ u μ ulim Φ Φ d
k

h μ h μ h

S

h
p

, ,k

n 1

this contradicts with (3.16). Consequently, { }hk is uniformly bounded.
According to the Blaschke selection theorem, { }hk has a convergent subsequence, also denoted by { }hk ,

letting →h hk on −Sn 1 as → +∞k . Thus, there are [ ]=h h h μ and [ ] [ ]→h hk μ μ. Moreover, we have ≥h 0 and

([ ] )͠ =V h 1q μ . From Lemma 3.2, we see

([ ] )= = ∈

→+∞

o ξ ξ hlim int .
k h h μk

Thus, >h 0, and associated with (3.15) we get

( )
⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]

= ∈ =

∈

+ −o ξ g C S V gΦ inf sup Φ : and 1 .h μ
ξ g

g μ
n

q μ, ,
1

μ

The proof of Theorem 3.3 is completed. □

4 Solving the Lp dual Minkowski problem

In the following, we first prove that the solution h which is obtained in Theorem 3.3 is exactly the solution to
the discrete case of Theorem 1.4. Then using approximation, Theorem 1.4 is proved.

Theorem 4.1. Let < <p0 1 and ≠q 0. If μ is a finite discrete measure on −Sn 1 and is not contained on
arbitrary closed hemisphere of −Sn 1, then there is a function ( )∈

+ −h C Sn 1 satisfying (3.11) and a positive
constant >c 0 so that

([ ] ) ( ) ( )͠ ∫= ⋅ =

−

μ cC h where c h u μ u, , d .p q μ

S

p
,

n 1
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Proof. By Theorem 3.3, we can see that there is a function ( )∈
+ −h C Sn 1 with =ξ oh and ([ ] )͠ =V h 1q μ so that

( )
⎧

⎨
⎩

( ) ( ) ([ ] )
⎫

⎬
⎭

͠

[ ]

= ∈ =

∈

+ −o ξ g C S V gΦ inf sup Φ : and 1 .h μ
ξ g

g μ
n

q μ, ,
1

μ

For arbitrary ( )∈
−f C Sn 1 and ( )∈ −t δ δ, where >δ 0 is small enough, we have

= heϱ .t
tf

Then,

= +h tflog ϱ log .t

From Lemma 2.1, we have for ≠q 0,

([ ] ) ([ ] )
( ) ([ ] ) ( ) ([ ] )͠ ͠

͠ ͠

( )

∫ ∫
−

= =

→

−

V V h
t

q f u C h u q f u C h ulim
ϱ

d , d , .
t

q t μ q μ

μ

q μ

S

q μ
0

supp n 1

(4.1)

Let ( )=g γ t ϱt t, where

( ) ([ ] )͠=
−γ t V ϱ .q t μ q

1

Then ( )∈
+ −g C St

n 1 and ([ ] )͠ =V g 1q t μ . Since = hϱ0 , it follows from (4.1) that

( ) ([ ] )͠∫
−

= − +

→

−

g g
t

h f u C h u hflim d , .
t

t

S

q μ
0

0

n 1
(4.2)

Let ( ) =ξ t ξgt
and

( ) ( ( ) ) ( ) ( ( ) ( ) ) ( )
[ ]

∫ ∫= − ⋅ = − ⋅

∈
− −

t g u ξ u μ u g u ξ t u μ uΦ sup d d .μ
ξ g

S

t
p

S

t
p

t μ n n1 1
(4.3)

This together with the fact that ( ) ([ ] )∈ξ t gint t μ has

( ( ) ( ) ) ( )∫ − ⋅ =
−

−

g u ξ t u u μ ud 0
S

t
p

i
1

n 1
(4.4)

for = …i n1, , , where ( )= …u u u, , n
T

1 . Note that ( ) = =ξ ξ o0 h . Then taking =t 0 in (4.4), we have

( ) ( )∫ =
−

−

h u u μ ud 0
S

p
i

1

n 1
(4.5)

for = …i n1, , . Hence,

( ) ( )∫ =
−

−

h u u μ ud 0.
S

p 1

n 1
(4.6)

Let

( ) ( ( ) ( )) ( )∫… = − + ⋯+
−

−

F t ξ ξ g u ξ u ξ u u μ u, , , di n

S

t n n
p

i1 1 1
1

n 1

for = …i n1, , . Then,

( ) ( ( ) ( )) ( )∫
∂

∂

= − − + ⋯+
−

−

F
ξ

p g u ξ u ξ u u u μ u1 d .i

j S

t n n
p

i j1 1
2

n 1
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Let ( )= …F F F, , n1 and ( )= …ξ ξ ξ, , n1 . Thus,

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( ) ( )

( )

∫
∂

∂

= −

…
×

−

−

F
ξ

p h u uu μ u1 d ,
n n S

p T

0, , 0

2

n 1

and uuT is an ×n n matrix.
On account of μ is not contained in arbitrary closed hemisphere, and ( )μsupp spans the whole space�n.

Then, for arbitrary �∈x n with ≠x 0, there is a ( )∈u μsuppi0 so that ⋅ ≠u x 0i0 . Consequently, for < <p0 1
we get

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

( ) ( ) ( )
⎞

⎠

⎟
⎟

( ) ( )( ) ( )

( )

( )

∫

∫

( )( ) ( )

∂

∂

= −

= − ⋅

≥ − ⋅ >

…

−

−

−

−

−

x F
ξ

x x p h u uu μ u x

p h u x u μ u

p h u x u μ u

1 d

1 d

1 0.

T T

S

p T

S

p

p
i i i

0, , 0

2

2 2

2 2

n

n

1

1

0 0 0

This suggests that ⎜ ⎟
⎛

⎝

⎞

⎠( )

∂

∂
…

F
ξ 0, , 0

is positive definite, namely,

⎛

⎝
⎜

⎞

⎠
⎟

( )

∂

∂

≠

…

F
ξ

det 0.
0, , 0

From the implicit function theorem, the facts that ( )… =F 0, ,0 0i follows by equation (4.5) for = …i n1, , ,
and ∂

∂

F
ξ

i

j
is continuous on a neighborhood of ( )…0, ,0 for all ≤ ≤i j n1 , , we conclude that

( ) ( ( ) ( ))′ = ′ … ′ξ ξ ξ0 0 , , 0n1

exists.

Since ( ) ( )= oΦ 0 Φμ h μ, and ( ) ( )=t ξΦ Φμ g μ g,t t
and note that ( )∈

+ −g C St
n 1 and ([ ] )͠ =V g 1q t μ , by Theorem 3.3

we have

( ) ( )≥tΦ Φ 0 ,μ μ

i.e., ( )Φ 0μ is an extremum of ( )tΦμ . Therefore, by (4.2) and (4.6) we get

( ) ( )
⎛

⎝

⎜
⎜

( ) ( ) ([ ] ) ( ) ( ) ( )
⎞

⎠

⎟
⎟

( )

( ) ( ) ( ) ([ ] ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ([ ] )

͠

͠

͠

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

= ′ = − + − ′ ⋅

= − + − ′ ⋅

= −

−

−

− −

− − − −

− −

p
h u h u f u C h u h u f u ξ u μ u

h u μ u f u C h u h u f u μ u ξ h u u μ u

h u f u μ u c f u C h u

0 1 Φ 0 d , 0 d

d d , d 0 d

d d , ,

μ

S

p

S

q μ

S

p

S

q μ

S

p

S

p

S

p

S

q μ

1

1

n n

n n n n

n n

1 1

1 1 1 1

1 1

where

( ) ( )∫= >

−

c h u μ ud 0.
S

p

n 1

That is, for all ( )∈
−f C Sn 1 ,

( ) ( ) ( ) ( ) ([ ] )͠∫ ∫=

− −

h u f u μ u c f u C h ud d , .
S

p

S

q μ
n n1 1
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Since [ ]=h h h μ. Then,

( ) ( ) ([ ] )͠
[ ]=
−μ u ch u C h ud d , .h

p
q μμ

Associated with (1.2), there is

( ) ([ ] )͠
=μ u c C h ud d , ,p q μ,

namely,

([ ] )͠
= ⋅μ cC h , . □p q μ,

Now, we have prepared enough to finish the proof of Theorem 1.4.

Proof of Theorem 1.4. The following proof is motivated by the work of [49, Theorem 8.2.2], for a given
finite Borel measure μ on −Sn 1, which is not contained on arbitrary closed hemisphere, then, we can find
a sequence with finite discrete measure { }μj on −Sn 1 so that ( ) ( )=

− −μ S μ Sj
n n1 1 and →μ μj when → +∞j .

Especially, μj is not contained on arbitrary closed hemisphere, on the grounds of Theorem 4.1, for every μj

there is a positive constant >c 0j and a function ( )∈
+ −h C Sj

n 1 so that

[ ]͠
( )= ⋅μ c C h , ,j j p q j μ, j (4.7)

where

( ) ( )∫=

−

c h u μ ud .j

S

j
p

j
n 1

Moreover, hj satisfies that =ξ ohj
, [ ]͠ ( ) =V h 1q j μj , and

( )
⎧

⎨
⎩

( ) ( ) [ ]
⎫

⎬
⎭

͠

[ ]
( )= ∈ =

∈

+ −o ξ g C S V gΦ inf sup Φ : and 1 ,h μ
ξ g

g μ
n

q μ, ,
1

j j
μj

j j

where

�[ ] { ( )}
( )

= ⋂ ∈ ⋅ ≤

∈

g ξ ξ u g u:μ
u μ

n

supp
j

j

and

( ) ( ( ) ) ( ) ( ( ) ) ( )

( )

∫ ∫= − ⋅ = − ⋅

−

ξ g u ξ u μ u g u ξ u μ uΦ d d .g μ

S

p
j

μ

p
j,

supp
j

n
j

1

Let ( )=m oΦj h μ,j j
. Let us prove that mj is uniformly bounded. The Aleksandrov body is related to

( ( )μ1, supp j ), denoted by [ ]1 μj. Let

 ⎛

⎝
⎜ [ ]

⎞

⎠
⎟͠ ( )

=g
V

1
1

.j
q μj

q
1

Then we see  [ ] [ ]=g g 1j μ j μj j. Thus, there is [ ]͠ ( ) =V g 1q j μj . Note that ( ) ( )=
− −μ S μ Sj

n n1 1 . Hence,










( ) ( ( ) ) ( )

[ ] ( )

[ ] ( )

[ ] ( )

[ ]
∫

∫ ( )

( )

( )

= ≤ − ⋅

≤

=

=

∈

−

−

−

−

m o g u ξ u μ u

D g μ u

D g μ S

g D μ S

Φ sup d

d

1 .

j h μ
ξ g

S

j
p

j

S

j μ
p

j

j μ
p n

j
p

μ
p n

,

1

1

j j
j μj n

n
j

j

j

1

1
(4.8)
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We further show that [ ]( )D 1 μj is uniformly bounded. Otherwise, then there is a sequence of { }ξj so that

[ ]∈ξ 1j μj and

∣ ∣ = +∞

→+∞

ξlim .
j j

Let
∣ ∣

= ∈
−ξ Sj

ξ
ξ

n 1j

j
. By the compactness of −Sn 1, we can assume

→ ∈

→+∞

−ξ ξ Slim .
j j

n 1

On the other hand, ( )μsupp is not contained on arbitrary closed hemisphere, there is ( )∈w μsupp so that

⋅ >ξ w 0. (4.9)

Let ( )U w be arbitrary neighborhood of w. Then there is

( ( )) ( ( ))≥ >

→+∞

μ U w μ U wlim inf 0.
j j

Now, choose j sufficiently large that satisfy

( ) ( )⋂ ≠ ∅U w μsupp ,j

which means that we can find a sequence { }wji so that

( )∈ =

→+∞

w μ w wsupp and lim .j j i
ji i i

Note that [ ]∈ξ 1j μi ji
. Therefore,

[ ] ( )⋅ ≤ ≤ξ w h w 1,j j j1i i μ ji i

i.e.,

∣ ∣
⋅ ≤ξ w

ξ
1 .j j
j

i i
i

Taking the limit, it follows that

⋅ ≤ξ w 0.

This contradicts (4.9). Hence, there is a positive constant >M 0 so that

[ ]( ) ≤D M1 ,μj (4.10)

for all �∈j .
By virtue of [ ]⊂B 1 μj for each �∈j , we have for >q 0

 ⎜ ⎟
⎛

⎝ ( )

⎞

⎠
͠

≤g
V B

1 .j
q

q
1

(4.11)

Together with (4.8), (4.10), and (4.11), thus it can be seen that for >q 0 and all �∈j ,

( ) ( )͠≤
− −m M V B μ S ,j

p
q

n 1p
q (4.12)

namely, mj is uniformly bounded.
Now, let us prove that { }hj is uniformly bounded on −Sn 1. If this assertion is not true, there is a sub-

sequence { }{ } ⊂h hj ji so that

( ) = +∞

→+∞ ∈
−

h ulim max .
i u S

jn i1
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Let ( ) ( )= =
∈

−R h u h umaxj u S j j ji
n

i i i
1 , and { } ⊂

−u Sj
n 1

i . Then, by the compactness of −Sn 1, we can assume

= ∈

→+∞

−u u Slim .
i

j
n

0
1

i

Since ( )μsupp is not contained on arbitrary closed hemisphere, there is ( )∈v μsupp0 so that

⋅ >v u 0.0 0

Let ( )U v0 is a small neighborhood of v0 so that for every ( )∈u U v0 , there is

⋅ >u u 0.0

Let ( ) ( )= ⋅ >δ u u u 01
2 0 for ( )∈u U v0 , and [ ]∈R u hj j j μi i i ji

. Then, we can choose sufficiently large i such that
for all ( )∈u U v0 ,

( )

( ) ( )( )

⋅ >

≥ ⋅ >

u u δ u

h u R u u R δ u

,

,
j

j j j j

i

i i i i

and

( ( )) ( ( ))≥ >μ U v μ U v 0.j 0 0i

Therefore, for i sufficiently large we have

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

∫ ∫ ∫= > ≥

−

m h u μ u R δ u μ u R δ u μ ud d d ,j

S

j
p

j j
p

U v

p
j j

p

U v

p
i

n
i i i i i

1
0 0

which implies that → +∞m ji when → +∞i . This contradicts (4.12). Hence, { }hj is uniformly bounded
on −Sn 1.

According to the Blaschke selection theorem, the sequence { }hj exits a convergent subsequence, again

denoted by { }hj , supposing that →h hj on −Sn 1 as → +∞j . This implies ≥h 0, [ ] [ ]→h hj μ μj as → +∞j , and

( ) ( ) ( ) ( )∫ ∫= = ≕ ≥

→+∞ →+∞

− −

c h u μ u h u μ u clim lim d d 0.
j

j
j

S

j
p

j

S

p
0

n n1 1

From this and (2.2), and taking the limit in (4.7), we see

([ ] )͠
= ⋅μ c C h , .p q μ0 ,

On the basis of this, we get ≠c 00 . Let =
−c λq p

0 with ≠q p and >λ 0. Then from (2.3) we have

( [ ] )͠
= ⋅μ C λ h , .p q μ,

This completes the proof of Theorem 1.4. □
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