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Abstract: One of the main problems connected with neural networks is synchronization. We examine a model
of a neural network with time-varying delay and also the case when the connection weights (the influ-
ential strength of the jth neuron to the ith neuron) are variable in time and unbounded. The rate of
change of the dynamics of all neurons is described by the Caputo fractional derivative. We apply Lyapunov
functions and the Razumikhin method to obtain some sufficient conditions to ensure synchronization in
the model. These sufficient conditions are explicitly expressed in terms of the parameters of the system,
and hence, they are easily verifiable. We illustrate our theory with a particular nonlinear neural network.
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1 Introduction

Nowadays, the synchronization of fractional-order delayed neural networks has attracted more and more
attention. Some synchronization results have been obtained, for instance, in [1-3], where the authors
studied the synchronization of fractional-order memristor-based neural networks with delay. The problem
of synchronization of the fractional neural network with delay is studied in [4]. In [5,6], the synchronization
of fractional-order neural networks with multiple time delays is investigated. Note that in most of the known
literature models, the connection weights are constants and the controllers are proportional to the error
with a constant.

Motivated by the above discussions, the main goal of this paper is to study synchronization of neural
networks with delay and with the Caputo fractional derivative. Note that the studies in this paper are more
general than the existing ones in the literature. We study the general case of time-varying self-regulating
parameters of all units and also time-varying functions of the connection between two neurons in the
network. For example, in [4] the model is considered in the case all the connection weights are constants,
the self-inhibition rate is described by a constant, and for a very special output depending on the Lipschitz
constants of the activation functions. Also, we are applying Mittag-Leffler function with one parameter,
which is deeply connected with the applied fractional derivative, and on the other side is a generalization of
the exponential function applied in [1,5,7]. The study in this paper is based on the application of Lyapunov
functions. To deal with the presence of the delay, we apply the Razumikhin method. By constructing
an appropriate Lyapunov function, applying a special type of its derivative (as introduced in [8]), and
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a comparison principle with time delay, we obtain some sufficient conditions to ensure synchronization in
the model. The theoretical results are illustrated in an example.
The main contributions of this paper could be summarized as follows:
e We include in the model the Mittag-Leffler function in both the self-inhibition rate and the connection
weights, which is more appropriate when we are modeling with a Caputo fractional derivative.
e We consider the variable coefficients in both the self-inhibition rate and the connection weights.
e We study the bounded variable in time delay.
e We consider output coupling controller depending on the delay and with variable in time input matrices.
e We apply the Razumikhin method and Dini fractional derivatives of Lyapunov functions, which are
connected with both the presence of the delay and Caputo fractional derivative in the system.

2 System description

We will consider the model based on an analog circuit, consisting of capacitors, resistors, and amplifiers.
The input—output characteristics of the amplifiers in the circuits are modeled by some functions known as
activation functions. In the literature, these functions are assumed to satisfy a wide variety of assumptions,
mainly they are Lipschitz functions.

Initially, we will give some basic definitions from fractional calculus. We fix a fractional order q € (0, 1)
everywhere in the paper, as it is usually done in many applications in science and engineering (for some
physical interpretation of the fractional order see, for example, [9]).

1. The Riemann-Liouville fractional derivative of order q € (0, 1) of m(-) is given by ([10])

1 d

RLDq t) = -
oDy m(t) 7I‘(1—q)dt

t
I(t - sy 9m(s)ds, t=to,
0

where I'(.) denotes the Gamma function.
2. The Caputo fractional derivative of order q € (0, 1) is defined by ([10])

t
1 /
gD;Im(t) = 1"(17—@!“ - 8)y9m'(s)ds, t=0.

We recall that the Mittag-Leffler function with one parameter is defined as

[e0)

Eq(Z) = z

i=0

i

_ >0, zeC.
'+ qi) g M

Definition 1. [11] Function m € C4R,, R") if m(-) is differentiable on R, and the Caputo derivative thq
exists, forallt € R,.

In our further investigations, we will use the following notations: | x| = ./ Z,’Ll x? is the Euclidean norm
of the vector x = (xq, x,..., Xp), the set C(J, R") of all continuous functions u : ] — R", ] c R, and for any
function ¢ € C([-1, 0], R™), we define ||pllo = SuUPse[-r,0lp(s), where r > 0 is a given number (it will be
connected with the delay).

Consider the general model of neural networks with time variable bounded delay involving the Mittag-
Leffler function with one parameter E,(-) defined above:

SDIxi(t) = Eg(pt9)| —ct)x(t) + Y azO)f;(5(t) + Y by()g(r(®)| + Kt), for t >0, )

j=1 j=1

fori=1,2,...,n, where
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¢ n represents the number of neurons in the network,

e x;(t) is the pseudostate variable denoting the average membrane potential of the ith neuron at time ¢,

o x(t) = (xq(t), x(t),..., x,(t)) €e R", and p > 0, q € (0, 1) are constants,

e 7€ CR,, [-1,00)),-r<1(t) <t fort >0 denotes the communication delay of the neuron,

o fi(x(t)), gj(x,-(r(t))) denote the activation functions of the neurons at time t and 7(t), respectively, and they
represent the response of the jth neuron to its membrane potential and define f(x) = (fi(qa), H(6), ..., fu(X4)
and g(x) = (g,0a), £00), ..., 8,(n),

e I=(, L,..., I) is an external bias vector, C(t) = diag(a(t), c(t),..., ci(t)), and ci(t)Ey,(pt9) is the self-
inhibition rate of ith neuron (the rate at which the ith neuron returns to a resting state without being
connected to the neural network),

e matrix A(t) = {a;(t)}nxn and a;;(t) E;(pt?) denote the connection weights (the influential strength of the jth
neuron to the ith neuron) at the current time t),

o matrix B(t) = {bj(t)}nxn and by(t) E4(pt?) indicate the delayed connection weights (the influential strength
of the jth neuron to the ith neuron at delay time 7(t)).

We set up the following initial condition to model (2):
x(t) =¢t) tel[-r0], i=12..,n, (3)

where ¢, € C([-r, 0], R"), and let ¢ = (¢, ¢,,..., P,).

Note that model (2) is more general than the existing ones in the literature. For example, the synchro-
nization of model (2) is studied in [4] in the case all the connection weights are constants, the self-inhibition
rate is described by a constant, and for a very special output depending on the Lipschitz constants of the
activation functions.

A similar model is studied in [13], but the connection weights are bounded, which is not satisfied in this
case because of the presence of Mittag-Leffler function.

System (2) is considered as the driven system, and the corresponding response system (slave system) is
described by the following fractional-order differential equations:

SDAY(t) = Eg(pt?)| —ct)yi(t) + Y agO)f;(y(6) + Y by(O)g(y(x(®) + K(t) + ui(t)|, for t20,  (4)

j=1 j=1
with initial condition
¥%(s) = ¢i(s), s e [-r,0], (5)

fori =1, 2,..., n,wherey = (3, ¥,, ..., ,) denotes the state variable of the response system (4) and u = (i, uy,
..., Up) indicates the synchronous controller to be designed.

Definition 2. The master delay Caputo fractional system (2) and the slave delay Caputo fractional system (4)
are globally asymptotically synchronized if, for any initial functions ¢, ¢ € C([-r, 0], R")with|l¢ — ¢llo < oo,
the limit

tlim x(t; ) — y(t; @) =0

holds, where x(t; ¢) and y(¢; @) are solutions of the master delay Caputo fractional system (2) with initial
condition (3) and the slave delay Caputo fractional system (4) with initial condition (5), respectively.

The main goal of the paper is to implement appropriate controllers u;(t),i = 1, 2,..., n for the response
system, such that the controlled response system (2) and (3) could be synchronized with the drive
system (4).

One approach to study synchronization problems is based on applying Lyapunov-like functions. Thus,
we start by defining what is a Lyapunov function and then its derivative among the fractional equation.
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Definition 3. [8] Let J ¢ R, be a given interval. We will say that the function V' : ] x R" — R, belongs to
the class A(J, R") if V is continuous at every (¢, x) € J x R" and it is locally Lipschitzian with respect to its
second argument.

In connection with the Caputo fractional derivative, it is necessary to define in an appropriate way
the derivative of the Lyapunov functions among a nonlinear Caputo fractional differential equation

$DIx(t) = G(t, x(0), x(7(1)), t=0, (6)

where the function G : R, x R" x R" - R", G = (G1, G2 ..., Gn)-
The studied model is a partial case of the nonlinear system (6). Some existence and uniqueness results
of global solutions of Caputo fractional differential equations are given in [12].
In this paper, we will use Dini fractional derivative of the Lyapunov function V € A(J, R") among the
fractional system (6), introduced in [8] by
4]

D)V (t, ¥) = lim Sup% V(t, h(0) + Y (=1, C,V (t - sh, Y(0) - hIG (¢, P(0), P(r(0)) |, @)

h—0 s=1

where ) € C([-1, 0], R"), [ﬂ denotes the integer part of the fraction %, and ,C = 49-D .. (q=s+1)

s!
We will illustrate the application of the above defined Dini fractional derivative among the fractional

system (6) to a particular Lyapunov function.

Example 1. Consider the particular Lyapunov function
n
V(t, x) = Eg(pt) ) 17,
i=1

with x = (x4, X%, ..., X,) and the Mittag-Leffler function with one parameter E,(pt9), defined by (1).

Let € C([-r, 0], R") with ¥ = ({;, ¥,,..., P,). Then, the Dini fractional derivative of the Lyapunov
function V among the fractional system (6) is

D)V(t, ) = lim supi E,(pth)) (07
h—0 hi

j=1

t
H "
= Y (1) CE(p(t - sh)Y (@0) - hiGi(t, P(0), Y((0))?

s=1 i=1

n (®)
= 111’111 Sup% Ey(pth)) ($(0)) — (¥,(0) - h9Gi(t, P(0), P((0))?)
-0

i=1
. 2]
+ Y.0h(0) - hGHt, Y0, PrON? Y. (-1, Cq(p(t - sh)?)

i=1 5=0

= 2E,(pth)Y P,(0)Gi(t, Y(0), Y(T(0) + Y (P(0)*FDU(E,(pt)).

i=1 i=1

Using the formula

RLpq _
SDIEP) = 11—

+ qu(ptq)
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in (8), we obtain

DG V(t, ) = 2Eg(pt1) Y %,(0)Gi(t, Y(0), Y(T(0)) + (mt—_qq) + pE(,(ptq)JZ(wiw»% t=0. (9
i=1 i=1

In the sequel, we will use the following comparison result:
Lemma 1. [8] Assume:
1. Function x € CAR,,R") is a solution of (6) with initial condition x(s) = ¢(s), s € [-r, 0], where ¢ €

C([_r’ 0]1 |Rn)'
2. Function V € A([-r, 00), R") is such that, for any point t € R, with

V(t+6,%(©) < V(t,P(0), ©¢[-r0],
the inequality
DV(t, ) < O (10)
holds, where (0) = x(t + ©), © € [-r, 0].
Then,
V(t, x(t;0) < Jmax V(®, $(®)), for t>0.

3 Synchronization with output coupling controller depending
on delay

The controller with time delay in the response system can be taken as output coupling in the following way:
n n
w(t) = E((pt9)| Y &0 F040) ~ fog0) + Y1) Gy - @), i=1,2..,n, QD)
j=1 j=1

where E,(pt9)E(t) = {Eq(ptq).{ij(t)} and E, (pt?)Y(t) = {Eq(ptq)nij(t)} denote the control income matrices at
current time t and delay time 7(t), respectively.

Define the error function e(t) = x(t) — y(t), where x(-), y(-) are solutions of the initial value problems for
the driven system (2), (3) and for the response system (4), respectively, with controller defined by (11). Then,
the synchronization of system (4) is equivalent to asymptotic stability of the zero solution of the system for
the error functions given by

§Dfet) = Eq(ptq)[—ci(oei(t) + Y (ay(t) - E(E)E(e(t) + ¥ (by(t) — 1;(t) G,-(e,-(r(t)»],
- - 12)
fort>0,i=1,2,...,n,

i(s) = ¢(s) — ¢ss), se[-10],
where
Fie(t) = F(y(t) - x(0) = fi(y(®) - fO4(8)) and  Gilei(t)) = Gi(y;(t) — x;(8)) = g;(y,(t) — g(x;(t).

We assume the following:

Assumption Al. The neuron activation functions are Lipschitz, i.e., there exist positive numbers L;, M;,
i=1,2,...,n, such that

Ifiw) = i)l < Lijlu —v| and |gu) - g(v)| < Mjju - v/,

fori=1,2,...,n,and forallu,v e R.
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Assumption A2. Functions a;;, b;;, é,’,.’]-, n;; € CR4, R) and there exist positive constants Hy, Kj;, Py, Qjj,
i,j=1,2,...,n, such that

) - £l < —D_ ¢s0
K T Eptny v Q7 T

and

by(t) - ;) < ——, t=0.
s =y < 5 e

Assumption A3. Functions ¢; € C(R., (0, 00)),i =1, 2,..., n, are such that ¢;(t) > C(t) > 0, for t > 0, where
C € C([0, 00), (0, 00)) and

n n n n
C(t)20.5p+t9+ max Y HyL;+ ) max HyLj+ max Y KyMj+ E(pr9)) max KjM; |, 13)
i= j=1,2,...,n i=1, n =1,2,...,n

=1, ,u.,nj=1 io1J=b2 i s T iz J=h2

where the constants L;, M;, i = 1, 2,..., n, and Hy, Kj;, i, j = 1, 2,..., n are defined in Assumptions Al and A2,
respectively.

Remark 1. Assumption Al means the activation functions are Lipschitz. Assumption A2 gives bounds between
the connection weights and the controllers at the current time and the delayed time. Assumption A3
guarantees small enough Lipschitz constants and bounds in the above conditions Al and A2.
Remark 2. If Assumption Al is satisfied, then functions F, G in (12) satisfy

IF) < Lilul and |Gw)| < Mjlul,

forj=1,2,...,nand for any u € R.

Theorem 1. Let Assumptions A1-A3 be satisfied. Then, the master delay Caputo fractional system (2), (3) and
the slave delay Caputo fractional system (4) are globally asymptotically synchronized.

Proof. Consider the Lyapunov function

E (pt9)xTx, for x e R", t >0,

xTx, for x e R", t e [-1,0O].

V(t, x) = {

Let the function e(-) = e(t), t > 0 be a solution of the initial value problem (12) and let t > O be a point
such that
V(t +s,P(s) < V(t, P(0), se[-1,0), (14)
where Y(s) = e(t + s), s € [-1, O].
If inequality (14) holds, then for t > r the inequality
n n
E(p(t + DY h(s) < Ef(ptD)Y (0), s e [-1,0)
i-1 i=1

holds, and, for t € [0, r), the inequality
n n
YWs) < YY0), s e [-1,0)
i=1 i=1

holds.
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From Example 1 and equation (9) with

j=1 j=1

N N
Gilt,x,y) = Eq(ptq)[_ci(t)xi + Y (@) = EENFG) + Y (by(t) - ni,-(t))G;(y,-)}

we get for the Dini fractional derivative of the Lyapunov function V among the fractional system (12) at
the point ¢ and the function i defined above:

D) V(t, ) = zE(pt%Zl/)xmg(t $(0), ¢(r<o>»+[ (f qq) + pE, (th)jZ(t/)l(ow

i=1

= 2EZ(pt9)y’ zpi(O){—ci(t)zpi(O) + ) (a(t) — &) F(0)

i=1 j=1

+ qu<ptq)jZ<¢ (0)? (15)

i=1

n t q
+ Y (by(t) - () G;(l/),-(r(O)»} (r =
j=1
< - 2EX(pth)Y $0)ci(t) + 2E;(ptq>2 ¢i(0)z<ai,-<t) — &(O)EW,(0)
i=1 i=1 j=1
t4q

2 < S N _ N -
+ 2EX(pt)Y (0) Y (bi(t) — 0y (1) Gi(T(0)) + [ AT g

i=1 j=1

+ pJ V(t, ¥(0)).

Applying the formula

Eq(pt9)

—— < t=0,
E (pt9) + E

with E = Pj and E = Q;;, Remark 2 and Assumptions A1-A2, we obtain

* R S BN S ] 2
D(12)V(t’ Iwb) < V(t, 'l’(o))[P + Eq(ptq)F(l _ q)J ZEq(ptq)i:Zlcz(t)’wbi (0)

+ 2E3(pth)Y [y (0N Y layi(t) — &L, (0] + 2E;(pt)Y (0N Y. 1byi(t) — n(6) Ml (z(O))
i=1 j=1 i=1 j=1
t4

< V(t, PO _—
< V(t, »(p+ EGIT

- 2C(t)j + EXpt0)Y. ¥ lay(t) - &(O)LHA0) + PA(0)]

i=1 j=1

+EXptD)Y. Y bii(t) ~ 1(6) M0 + YX(T(0))

i=1j=1

V(t, (0)

,2,...,nj:1 E (pt9) + Q,]

<Vt YO)(p + t77 - 2C(t)) + Eq(ptq)[ ma i

(16)

n

Hj

+ E,(pt9) max ———L; |V(t, P(0))
q ;j:l,Z,...,n 7(pt9) + Qy !

+ E, td max —_———
o(PLY) - Eg(ptd) + By

M; |V (¢, %(0))

n K;
max ———
SJEL2.n q(ptq) +Pll

+ EApt9)| Y, M; Z Yi(T(0)

< V(t, 1/;(0))[ +E9-2C(0) + max ZPL,L + Z max HL; + max ZK,,M

Mg i=1 /=0 =1

+Eq(ptq)(z max KUM]ZIIJZ(T(O

,,,,, j=1
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Ift € [0, r], then

Y PAT(0) < Y $(0)

i=1 i=1

and, from inequality (16), we obtain

DipV(t, ¥) < V(t, Pp(0)|p + t79 - 2C(t) + max ZH,,L + Zmax HyL;
2.1 j=1 i=1 J

17)
N N
+ {r;ayi Y KyM; + Z max KUM
1 1 i=1/
If t > r, then applying
(pt?)
L q(pr )
Ey(p(t + T(0)7)
and the inequality
n n
Ey(p(t + 7(0)1)) Y (1(0)) < Ey(pth)) $(0),
i=1 i=1
we obtain
N
Dy V(t, ) < V(t, Y(0)|p + t~9 — 2C(¢) + max ZHUL + Z max HyL; j+ max ZKUM
Eq(pt9) <
+ — max K M; |V(t, Y(0))
Eq(p(t + T(0))7) (Z ..... ’ J
(18)
< V(t, l[)(O))[p +7-20(0) + max ZH,,L + Z max Hyl
N e T o A
KiM; + E q K M;
+ l{gax’]zi iM; + Eg(pr )IZ{ max K; ]
From inequalities (17), (18), and Lemma 1, it follows that
n
e®)I? = Yeit) = Vi(t, e(t)) < max V(s, ¢.(s (s) = , t>0. 1
IO = 3l = T Vit et) < s max Vs, 9is) = @) = 5 tq)uqb ol (19)

If the initial functions ¢, ¢ € C([-r, 0], R™) are such that ||¢p — @[y < oo, then
tlim Ix(t;¢) - y(t;9)ll = O

and, therefore, the master delay Caputo fractional system (2) and the slave delay Caputo fractional system
(4) are globally asymptotically synchronized. O

4 An application

As an example, we will study a partial case of the driven system (2) and the corresponding slave system (4)
with the controller with time delay taken as output coupling given by (11).
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Consider the following master delay Caputo fractional system with three agents, i.e., n = 3:

3
§DP2xi(t) = E0.5(2t0~5)[—(2 + 0.5E05(2) + 0.5t70%)x;(t) + Y ay(t) tanh(x(t)

j=1
3 (20)
+ Y by(t)tanh(x(t — [sin(t))|, for ¢ >0,
j=1
xi(s) = ¢(s), for s € [-1, 0],
and the slave system described by the following fractional-order differential equations:
3
SDPPy(t) = Eo5(2t°%)| —(2 + 0.5E05(2) + 0.5t 09)y(t) + Y ayi(t)tanh(y(t)
j=1
3 n
+ Y b(t)tanh(y;(t — [sin(t)])) | + Y &;(t) (tanh(y(t)) — tanh(x(t))) @)
j=1

j=1
+ Y 1;(t) (tanh(y(t - Isin(t)])) - tanh(q(t — [sin(t)[)), for t>0,
j=1
yi(s) = @(s), for s e [-1,0],

for i =1,2,3, where ¢,(s) =1, ¢,(s) = 0.1, ¢5(s) = 0.5, ¢,(s) = 0.5, ¢,(s) = 1.5, and ¢5(s) = 2. Matrices
A = {a;;(t)} of the connection weights at the present time and B = {b;(t)},1,j = 1, 2, 3, ¢ > 0 of the connection
weights at the delay time are given by

0 -2 13 0 1 -21
A={1 0 02|, B=|03 0 21| (22)
04 -22 0 1.2 1 0

Controllers’ matrices Z = {{ij(t)}, E-= {nij(t)}, i,j=1,2,3, t > 0 at the current time and the delayed time,
respectively, are defined by

1 1 1

-2 - 1.3 +
2E 5(2t9%) + 0.001 2E5(2t9%) + 0.001 2E 5(2t9%) + 0.001
=] 1+ ! ! 0.2 + ! , 23)
2E, 5(2t%%) + 0.001 2E, 5(2t%%) + 0.001 2E, 5(2t%%) + 0.001
1 1 1
4 - =22 +
2E().5(2t0'5) + 0.001 ZEO'5(2t0'5) + 0.001 2E0_5(2t0'5) + 0.001
1 1 1
1- =21+
Eo5(2t%%) + 0.001 Eo5(2t9%) + 0.001 Eo5(2t9%) + 0.001
1 1 1
E=|03+ 21+ 2
E0_5(2t0'5) + 0.001 E0'5(2t0'5) + 0.1 E0_5(2t0'5) + 0.001 ( 4)
1.2 + ! 1- ! !
Eo5(2t9%) + 0.001 Eo5(2t9%) + 0.001 Eo5(2t%%) + 0.001

Note that Assumption A1 is satisfied with L; = M; = 1,i = 1, 2, 3. It is easy to check that Assumptions A2 and
A3 are also satisfied with B;; = Kj; = 1, Q;; = P;j = 0.001. Therefore, according to Theorem 1, the master delay
Caputo fractional system (20) and the slave delay Caputo fractional system (21) are globally asymptotically
synchronized. The solutions of both systems are graphed in Figures 1-3. Also, in Figure 4, the differences
between components of both solutions are graphed. As it can be observed, these differences approach 0
very fast.

Remark 3. The synchronization of Caputo delay neural networks was also studied in [14]. But, in that case,
the connection weights (the influential strength of the jth neuron to the ith neuron) at the current time as well
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as at the delayed time are bounded from above. Now, because of the Mittag-Leffler function, this condition
is not satisfied and the results from [14] could not be applied to the master delay Caputo fractional system (20)
and the slave delay Caputo fractional system (21).

0.81
0.61

047

0.21 \

0.02 0.04 006 0.08 0.10

Figure 1: Graphs of first components of the solutions of both the slave and the master delay Caputo fractional system (21), (20).
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0.8-5-:
0.61:
0.4

0.21

Figure 2: Graphs of second components of the solutions of both the slave and the master delay Caputo fractional system
(21), (20).
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1.07:
0.81:
0.61:
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024\

Figure 3: Graphs of third components of the solutions of both the slave and the master delay Caputo fractional system
(21), (20).
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Figure 4: Graphs of the differences between the solutions of the master system (20) and the slave system (21).
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